首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effects of ambient flow velocity, colony size, and the presence of an actively-feeding colony upstream on the feeding success of the encrusting bryozoan Conopeum reticulum (Linnaeus) were studied. Zooids from both large and small colonies showed a reduction in feeding as flow velocity increased, however, the reduction in feeding was less for zooids from large colonies except at very fast ambient flow velocities. The greater pumping capacity of large colonies may result in a relatively greater per zooid feeding success from moving water. The presence of an actively-feeding colony upstream was found to enhance the feeding of zooids on downstream colonies. Diversion of flowing water by actively-feeding colonies upstream may account for the observed enhancement of feeding by zooids on colonies downstream.The results from this study on an encrusting species are compared with results from a previous study on feeding from flow by an arborescent bryozoan, and the feeding performances of these two colony types are related to their respective flow microhabitats.  相似文献   

2.
Summary

The growth pattern of zooids formed asexually by budding was studied in the colonial ascidian, Polyandrocarpa misakiensis. Each colony started from a blas- tozooid (the first generation) on the glass plate in two series of experiments. To evaluate the growth of colonies, lineage of all the zooids of three successive generations was traced on photographs which were taken once a week. The zooids of the first generation produced many buds from any basal margin of the zooidal body, and those of the second generation produced a small number of buds mainly from anterior parts of the zooidal body. The zooids of the second generation produced by early budding of mother zooids were clearly more prolific than those produced by late budding. Circular colonies which developed around a zooid of the first generation consisted of stratified zones of successive generations. Each zone was composed of two subzones; the outer one mainly containing early-produced zooids, and the inner one mainly containing late-produced zooids. The zooids in the marginal area of colony are early-produced ones from generation to generation. The seawater temperature may influence the growth of zooids and/or the frequency of budding.  相似文献   

3.
Colonies of Celleporella hyalina (L.), settled on glass Petri dishes, were grown in the Menai Straits. Water flow over the colonies was either unrestricted or increasingly restricted by short and long funnels fitted over the Petri dishes. Under all conditions, colonies grew exponentially for the first few weeks, but then growth decelerated. Growth rate at standard size was minimal in winter (December–February). Restricted water flow enhanced growth during winter but retarded growth at other times. Colonies began sexual reproduction at a size of ≈57 autozooids, but at different ages depending on growth conditions. When colonies had accumulated 1000–2000 autozooids, the number of reproductive zooids (males plus females) per autozooid became asymptotic in the ratio of 1.0 : 2.0 : 3.6 in conditions of restricted, semi-restricted, and unrestricted water flow, respectively. The proportion of sexual zooids that were reproductively active was greater among colonies experiencing greater water flow and, for all treatments, was greatest in June and least in winter. The experimentally induced trends in growth and reproduction were reversed by translocating colonies from one regime of water flow to another. Colonies had lower budding rates when grown close to neighbouring colonies than when isolated, but the ratio of reproductive zooids to autozooids was similar in both treatments. Ratios of female to male zooids varied among colonies but with no clear relation to the experimental conditions, suggesting that relative investments in male and female functions are largely under genetic control. The life history of C. hyalina is well-suited to the ephemeral frondai tissue of Laminaria saccharina L. (Lamour), commonly used as a substratum in British waters. Early sexual maturity and sexual activity, concurrent with somatic growth, maximize average sexual output in the circumstances of unpredictable longevity.  相似文献   

4.
Most Recent bryozoan species are encrusting sheets, and many of these colonies have densely packed feeding zooids. In this study, I tested whether tight packing of feeding zooids affects food capture. Colonies of a bryozoan with an encrusting sheet form (Membranipora membranacea) were dissected to produce individuals whose feeding zooids were (1) closely packed, (2) more widely spaced, or (3) isolated. For each type, rates of particle ingestion were measured in still water and in a freestream velocity of 2.7 cm s(-1). Ingestion rate increased when zooids were closest together, probably because of reduced refiltration and increased feeding current strength farther from the lophophores. The mean incurrent velocity within 0.02 cm above the center of the lophophore was 0.28 cm s(-1) regardless of zooid spacing; however, when the incurrent velocity was measured more than 0.1 cm from the lophophores, zooids that were close together or spaced one zooid's width apart had significantly faster incurrent velocities than single zooids. Flow visualization suggests that isolated zooids and those spaced far apart refilter more water than zooids that are close together. These results along with the observed trend of increased zooid integration over evolutionary time suggest that the benefits of increasing coordination outweigh the consequences of intrazooid competition.  相似文献   

5.
Many organisms use fluid transport systems that are open to the external environment for suspension feeding or gas exchange. How do factors related to the environment, such as injuries and ambient currents, affect remodeling of these systems? In the bryozoan Membranipora membranacea, the lophophores (crowns of ciliated tentacles) form a canopy over the colony. The lophophores pump seawater from above the colony through themselves to capture food particles. The seawater then flows under the canopy to exit the colony at chimneys (openings in the canopy) or at the canopy edge. To test whether either ambient flow speed or injury affects remodeling of this system, I measured changes in chimney size and spacing in colonies grown in flow tanks at different ambient flow speeds, and in colonies in which I killed patches of zooids. There was no effect of either ambient flow speed or injury size on chimney remodeling. Injury did not induce chimney formation. In addition, chimneys formed at the canopy edge, indicating that high pressure under the canopy did not induce chimney formation. These results suggest that ambient flow, injury, and the pressure under the canopy may have little effect on the remodeling of this fluid transport system.  相似文献   

6.
Cilia-generated flow in the absence of ambient current is directed from frontal to reverse sides of branches in Bugula turrita, B. turbinata, B. neritina , and B. stolonifera , whether axes of feeding lophophores are perpendicular to the basal plane of branches or are tilted toward distal ends of branches. Ambient current less than 5 cm per second interacts with cilia-generated flow, but ambient flow of 15 cm per second destroys self-generated colonial flow and severely hampers feeding. Polypides are located in the more distal, younger portions of colonies, in species with and without polypide recycling, whereas zooids in the more proximal, older portions are senesced. Presence of feeding polypides in distal but not in proximal portions of the larger spiralled colonies of B. turrita and B. turbinata results in downward, slightly radially directed flow through the colony. The colonial flow passes directly from one whorl to the next-proximal so that water exits from low around the colony perimeter, and a proximally expanding conical stagnant zone occupies the interior of the colony. A substantial percentage of zooecia in distal whorls of well-preserved Archimedes is filled by sediment and inferred to have been occupied by actively feeding polypides. whereas spar-filled zooecia capped by terminal diaphragms were apparently senesced during the latter part of a colony's existence. The capped zooecia constitute an increasing percentage of the total in more proximal whorls. Generally similar colony form and inferred similarity in distribution of current-generating polypides in spiralled colonies of Bugula and in Archimedes suggest that colony-generated flow in Archimedes was similar to that in Bugula , passing downward and then outward, and only through the distal whorls of the colonies.  相似文献   

7.
Mesozoic bryozoan faunas are dominated by two cyclostome form-genera, Stomatopora and Berenicea. Encrusing colonies of Stomatopora and Berenicea are respectively linear with zooids arranged in branching uniserial rows, and discoidal with zooids arranged in a multiserial sheet. Functional morphological analysis indicates that Berenicea colonies were physiologically and hydrodynamically better integrated than Stomatopora colonies and were also more successful at competing for substrate space. However, Stomatopora colonies had the abilitu to locate spacial refuges where mortality was decreased. The comparatively opportunistic mode of life inferred for Stomatopora is substantiated by apparent absence of larval brooding. Stomatopora was propably an early successional genus normally replaced by Berenicea during later ecological succession except in palaeoenvironments experiencing high levels of disturbance. Stomatopora is more like to have been ancestral to Berenicea than vice-versa.  相似文献   

8.
Post-Cretaceous examples of Electridae, a primitive family of cheilostome bryozoans, are poorly represented in the fossil record, probably because of their thinly calcified zooids and preference for nearshore environments. Two new electrid species are here described from the Lower Miocene (Burdigalian) of Pontpourquey, Aquitaine, France: Electra triaurata nov. sp. and Electra aquitanica nov. sp. Both species belong to extant species groups, the E. indica and E. biscuta groups, respectively, that presently occur in the Indo-Pacific; both are the only fossil examples of these species groups. Whereas E. triaurata nov. sp. has uniserial colonies, zooids with porous gymnocysts, three flattened spines and basal windows allowing etching of the substrate to produce the trace fossil Leptichnus, E. aquitanica nov. sp. has multiserial colonies and zooids with a proximal gymnocyst bearing 2 to 5 spines.  相似文献   

9.
Reversal of the bilateral asymmetry of the zooids was induced in a series of colonies of Botryllus schlosseri. Palleal buds from colonies with normal or reversed bilateral asymmetry were isolated in the early stages from the parental zooids and cultured in the vascularized tunic of the same colony or of another colony with opposite asymmetry. Vascular budding was induced in colonies with either type of asymmetry.The bud polarity was shown to depend on the vascularization; the test vessel entering the isolated palleal bud always causes the entrance point to become the posterior end of the developing zooid. On the contrary, the bilateral asymmetric type is predetermined in the bud primordium; the isolated palleal buds develop the type of asymmetry of their parents, even when grafted in the test of a colony with opposite asymmetry. Since the same was also true of the vascular buds, it is concluded that the information for the kind of bilateral asymmetry to be developed is conveyed by the epidermal envelope of the bud. The epidermis of the parental zooids influences the palleal buds, whereas the wall of the test vessels, epidermal extrusions of the zooids, influences the vascular buds.  相似文献   

10.
The size of cheilostome bryozoan zooids has been widely discussed for its potential in inferring palaeotemperatures, based on correlations between zooid size and temperature. Studies in both the natural environment and under experimental laboratory conditions have shown that an increase in temperature significantly decreases zooid size in a range of bryozoan taxa. In order to test the effect of temperature on zooid size, the cheilostome bryozoan Cryptosula pallasiana was for the first time successfully cultured under laboratory conditions. C. pallasiana was grown at 14 °C and 18 °C using Rhodomonas sp. as a food organism. Zooid size, tentacle number and growth rate were measured over a period of 26 days. For comparison, zooids from colonies of C. pallasiana collected from the natural environment were measured in winter and summer months. Results showed that colonies grown in laboratory culture had significantly longer and wider zooids at 14 °C than at 18 °C. The specific growth rate of C. pallasiana doubled from 14 °C to 18 °C. Comparison of tentacle number in culture showed a significantly higher value at lower temperatures. This may be related to differing food availability, longer polypide life spans, or a shift of energy use at colder temperatures. In nature the zooids were significantly longer in colonies sampled in July than in January, a clear difference from laboratory results. The utility of cheilostome Bryozoa as indicators of environmental change and their potential for studies of paleotemperature are highlighted.  相似文献   

11.
Colonies of the cheilostome bryozoan Schizoporella errata were grown at a site near Ischia Island (Tyrrhenian Sea, Italy) where volcanogenic CO2 emissions lower seawater pH to 7.76, simulating levels of ocean acidification predicted for the end of the present century. Compared with colonies from a control site (mean pH = 8.09), putative defensive polymorphs (avicularia) were significantly fewer, and retarded growth of zooidal basal and lateral walls was evident at the low pH site. The lower proportion of avicularia suggests a switch in resource allocation away from defence to favouring rapid growth. In addition, corrosion of the skeleton was observed in both new and old zooids at the low pH site, and feeding zooids were slightly smaller but had larger orifices for the protrusion of feeding lophophores. These findings corroborate previous studies demonstrating potential dissolution of carbonate skeletons in low pH seawater, while providing new insight into the possible ability of colonial species to respond to ocean acidification by adjusting resource allocation between zooids of different types.  相似文献   

12.
While simultaneous hermaphroditism occurs in most animal phyla, theories for its adaptive significance remain untested. Sex allocation theory predicts that combined sexes are favored in sedentary and sessile organisms because localized gamete dispersal and local mate competition (LMC) among gametes promote decelerating fitness “gain curves” that relate male investment to reproductive success. Under this LMC model, males fertilize all locally available eggs at low sperm output, additional output leads to proportionally fewer fertilizations, and combined sexes with female-biased sex allocation are favored. Decelerating male gain curves have been found in hermaphroditic flowering plants, but the present paper reports the first analysis in an animal. The colonial hermaphroditic bryozoan Celleporella hyalina forms unisexual male and female zooids that can be counted to estimate absolute and relative gender allocations. I placed “sperm donor” colonies—each with different numbers of male zooids, and each homozygous for diagnostic allozyme alleles—among target maternal colonies on field mating arrays, and estimated donor fertilization success by scoring allozyme markers in target-colony progeny. Fertilization success increased with numbers of donor male zooids, but linear and not decelerating curves fit the data best. Mean sex allocation was not female biased, consistent with nondecelerating male gain. Sperm donors, moreover, did not monopolize matings as expected under high LMC, but rather shared paternity with rival colonies. Hence localized water-borne gamete dispersal alone may not yield decelerating male gain and favor the maintenance of hermaphroditism; relaxed sperm competition in low density populations might also be required. In free-spawning marine organisms, males cannot control access to fertilizations, intense sperm competition may be commonplace, and high male sex allocation may be selected to enhance siring success under competition.  相似文献   

13.
Bryozoans are impressively active suspension feeders, with diverse feeding behaviors. These have been studied extensively in marine bryozoans, but less so in their freshwater counterparts. Here we identified 16 distinct behaviors in three phylactolaemate species and classified them into behaviors involving separate tentacles, groups of tentacles, lophophore arms, the introvert, or multiple zooids. We examined (1) the repertoire of behaviors in each species, and each behavior's (2) absolute frequency, (3) relative frequency and (4) duration in each of the three species, at two flow velocities (0 and 0.2 cm s?1). Nine feeding behaviors were shared by all three species, but the occurrence of other behaviors in a given species was limited by its morphology. Behaviors involved in particle capture were the most frequent, and were often faster than the reactions involved in particle rejection. By contrast, the absolute frequency of behaviors varied widely among species without clear associations with species form, or function of the behavior. Flow velocity had only minor effects on the feeding behaviors exhibited by a species, or their frequencies or durations. Our results show that phylactolaemates have the same key feeding behaviors of the individual polypides (especially involving separate tentacles) as previously described in gymnolaemate and stenolaemate bryozoans, although their behaviors tend to be carried out more slowly than those of stenolaemates or gymnolaemates. Feeding behaviors involving multiple zooids were nearly absent in the studied phylactolaemates, but are common in gymnolaemates. Freshwater bryozoans appear to be intermediate between stenolaemate and gymnolaemate bryozoans in terms of richness of the repertoire of feeding behaviors.  相似文献   

14.
The relationship between ambient seawater flow velocity and growth of the giant scallop Placopecten magellanicus Gmelin is shown to be a reverse ramp function with growth inhibition at flow velocities of > 10–20 cm · s−1. The mechanism of inhibition involves a reduction in ration as velocities around the scallop increase. In ambient flows which are sufficient to cause overloading of the scallop gill, the feeding/filtration rate is reduced by an unknown mechanism, possibly involving the mantle edge closing or a gill bypass mechanism operating. In ambient flows where the pressure at the exhalant opening exceeds the inhalant plus the pressure head created by the gill, as when the scallop is placed dorsal edge to the flow, the tendency for flow reversal is resisted by a similar mechanism involving a reduction in feeding/filtration rate.  相似文献   

15.
A hydrodynamic model was developed to examine particle capture by lophophores of encrusting bryozoans. Particle capture rate is predicted to increase with increasing speed of the feeding current. There should be a large feeding advantage when lophophores are tightly packed and excurrents are vented through chimneys. This prediction contradicts conclusions of an earlier model study and suggests that selection for colony integration has a basis in the acquisition of food. If lophophores are not tightly packed, particle-capture patterns depend on two key ratios: the advection ratio (feeding current velocity to shear velocity) and the separation ratio (lophophore spacing to lophophore diameter). At high separation ratios, particle capture rates should be fairly uniform among zooids. At high advection ratios, lophophores located near the upstream colony edge should experience higher rates of particle capture. Rates of particle capture in turbulent flows should greatly exceed those in laminar flows (of identical speed) when excurrent waters are locally remixed into the flow above lophophores. However, when lophophores are tightly packed and excurrents are vented through chimneys, feeding rates should be identical in turbulent and laminar flows. Thus, colonies that vent excurrents through chimneys may be uniquely able to exploit weak laminar flows.  相似文献   

16.
Coral reefs comprise a variety of microhabitats, each with a characteristic pattern of water movement. Variation in flow microhabitat is likely to influence the distribution and abundance of suspension feeders, including the corals. Water flow was measured concurrently with wave heights at 8 depths along the forereef slope in Salt River Canyon, St Croix, U.S.V.I. The greatest flow speeds occurred on the shallow forereef at 7 m depth, where oscillatory wave-induced flow reached speeds over 50 cm s–1. From 7 m to at least 15 m depth, flow decreased and was primarily bidirectional. Below 15 m depth, flow decreased even further, to less than one fifth of that experienced by shallow corals, and was unidirectional. The relationship between particle capture by the corals Meandrina meandrites and Madracis decactis and water flow was studied in the field. Colony morphology and the resulting modification of flow influenced the relationship of flow to feeding success; prey capture by the branching Madracis colonies increased with flow, while that of the flat Meandrina colonies did not. Such relationships may contribute to differences in distribution of corals of divergent morphologies. In transect surveys from 7 to 45 m depth,; branching and mounding corals with tentacular feeding modes were most common in the shallow forereef habitats, and plating corals with small polyps (ciliary mucus feeders) were ubiquitous in the deeper zones.This paper was presented at the Fifth International Conference on Coelenterate Biology at Southampton, UK in July 1989. A synopsis appears in the Proceedings (Hydrobiologia 216/217: 247–248, 1991).This paper was presented at the Fifth International Conference on Coelenterate Biology at Southampton, UK in July 1989. A synopsis appears in the Proceedings (Hydrobiologia 216/217: 247–248, 1991).  相似文献   

17.
Ryland  J.S  Babcock  R.C 《Hydrobiologia》1991,216(1):117-123
Gametogenesis and spawning have been studied since 1986 in a population of Protopalythoa sp. (Anthozoa, Zoanthidea) from Orpheus Island, Great Barrier Reef. Fertile zooids were gonochoric or hermaphroditic with oocytes and sperm vesicles intermingled in the same mesentery; colonies were single sex or mixed. Oocytes arose in macrocnemes below the actinopharynx and were first observed in July. Their mean diameter increased from < 50 µm to 160–240 µm by November, by which time they contained zooxanthellae. Female zooids each produced 800–2400 ova. No testicular vesicles were visible before October but spermatozoa were present in November and December. Spawning in each of three years occurred in November (4th to 6th nights after full moon) simultaneously with mass spawning of scleractinian corals. The buoyant eggs (along with sperm in the hermaphroditic zooids) were released in bundles. Some large oocytes and mature sperm were still present in December.  相似文献   

18.
The colonial tunicate Botryllus schlosseri undergoes cyclic blastogenesis where feeding zooids are senescened and resorbed and a new generation of zooids takes over the colony. When non-identical colonies come into direct contact, they either reject each other or fuse. Fusion is usually followed by the resorption of one of the partners in the chimera (immunological resorption). The striking morphological similarities between the two resorption phenomena suggest that both may involve tissue destruction following self-nonself recognition events. Here we attempt to modify these two events by whole colony gamma irradiation assays. Three sets of experiments were performed: 1) different doses of whole colony irradiation for determination of irradiation effects (110 colonies, up to 8,000 rads); 2) pairs of irradiated-nonirradiated isografts of clonal replicates for the potential of reconstruction of the irradiated partners (23 pairs); 3) chimeras of irradiated-nonirradiated partners for analysis of resorption hierarchy. Mortality increased with the irradiation dose. All colonies exposed to more than 5,000 rads died within 19 days, while no colony died below 2,000 rads. The average mortality periods, in days, for doses of 6,000-8,000, 5,000, and 2,500-4,000 rads were 14.4 +/- 3.1 (n = 24), 19.8 +/- 6.0 (n = 15), and 19.6 + 5.1 (n = 22), respectively. Younger colonies (3-6 months old) may survive radiation better than older ones (more than 13 months). Many morphological alterations were recorded in irradiated colonies: ampullar contraction and/or dilation, accumulation of pigment cells within ampullae, abnormal bleeding from blood vessels, sluggish blood circulation, necrotic zones, reduction in bud number, and irregularities in zooid and system structures. With doses of 3,000-4,000 rads and above, irradiation arrested the formation of new buds and interrupted normal takeover, turning the colony into a chaotic bulk of vessels, buds, and zooid segments. Death supervened after a period of up to 1 month of poor condition, which was also characterized by loss of organization in systems. In isografts of irradiated-nonirradiated parts, the normal subclone resorbed all zooids and buds of the irradiated one within less than 1 week, even if it was up to 13 times smaller, without showing any sign of harmful effects. Thus, the irradiated subclone is not reconstituted by sharing blood circulation with a syngeneic part. Under 2,000 rads some of the irradiated zooids within this type of union started to regenerate, and at 1,000 rads no resorption was recorded, even though the number of zooids decreased in the irradiated part.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Relatively little is known about the role of turbulence in a predator-prey system where the predator is a passive, pelagic forager. The Campanulariid hydroid Clytia gracilis (Cnidaria, Hydrozoa) is unusual because it occurs as planktonic colonies and is reported to forage passively in the water column on Georges Bank, Massachusetts, USA. In this study, we investigated the role of various turbulence conditions on the feeding rate of C. gracilis colonies in laboratory experiments. We found a positive relationship between turbulence velocities and feeding rates up to a turbulent energy dissipation rate of ca. 1 cm2 s− 3. Beyond this threshold feeding rate decreased slightly, indicating a dome-shaped relationship. Additionally, a negative relationship was found between feeding efficiency and hydroid colony size under lower turbulent velocities, but this trend was not significant under higher turbulence regimes.  相似文献   

20.
Botryllus schlosseri is a colonial marine urochordate in which all adult organisms (called zooids) in a colony die synchronously by apoptosis (programmed cell death) in cyclical fashion. During this death phase called takeover, cell corpses within the dying organism are engulfed by circulating phagocytic cells. The "old" zooids and their organs are resorbed within 24-36 h (programmed cell removal). This process coincides temporally with the growth of asexually derived primary buds, that harbor a small number of undifferentiated cells, into mature zooids containing functional organs and tissues with the same body plan as adult zooids from which they budded. Within these colonies, all zooids share a ramifying network of extracorporeal blood vessels embedded in a gelatinous tunic. The underlying mechanisms regulating programmed cell death and programmed cell removal in this organism are unknown. In this study, we extirpated buds or zooids from B. schlosseri colonies in order to investigate the interplay that exists between buds, zooids, and the vascular system during takeover. Our findings indicate that, in the complete absence of buds (budectomy), organs from adult zooids underwent programmed cell death but were markedly impaired in their ability to be resorbed despite engulfment of zooid-derived cell corpses by phagocytes. However, when buds were removed from only half of the flower-shaped systems of zooids in a colony (hemibudectomy), the budectomized zooids were completely resorbed within 36-48 h following onset of programmed cell death. Furthermore, if hemibudectomies were carried out by using small colonies, leaving only a single functional bud, zooids from the old generation were also resorbed, albeit delayed to 48-60 h following onset of programmed cell death. This bud eventually reached functional maturity, but grew significantly larger in size than any control zooid, and exhibited hyperplasia. This finding strongly suggested that components of the dying zooid viscera could be reutilized by the developing buds, possibly as part of a colony-wide recycling mechanism. In order to test this hypothesis, zooids were surgically removed (zooidectomy) at the onset of takeover, and bud growth was quantitatively determined. In these zooidectomized colonies, bud growth was severely curtailed. In most solitary, long-lived animals, organs and tissues are maintained by processes of continual death and removal of aging cells counterbalanced by regeneration with stem and progenitor cells. In the colonial tunicate B. schlosseri, the same kinds of processes ensure the longevity of the colony (an animal) by cycles of death and regeneration of its constituent zooids (also animals).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号