首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Five agricultural fertilizers were tested as potential nutrient enrichments for the mass culture ofTetraselmis suecica. Maximum algal growth was observed for the trade fertilizer IgromurtonikR (Murphy Ltd, England) adjusted for a nitrate to phosphate ratio of 24:1. The gross biochemical composition ofT. suecica grown in the enriched fertilizer was compared to the composition of the alga grown in control medium. The nutritional value of the algal material was then tested on the rotiferBrachionus plicatilis. The medium based on the fertilizer is as an inexpensive substitute for mass algal culture ofTetraselmis suecica, a food source for the rotiferBrachionus plicatilis.  相似文献   

2.
The present study aimed at evaluating the ability of some isolated cyanobacterial and microalgal strains for the removal of ρ-chlorophenol (ρ-CP), an environmentally harmful contaminant. To identify the most efficient species, a screening program was carried out using 15 microalgal and cyanobacterial strains. Among them, Tetraselmis suecica was able to remove 67 % of the ρ-chlorophenol at an initial concentration of 20 mg L?1 from the medium within a 10-day period. The efficacy of the process was dependent on the ρ-chlorophenol concentration. At concentrations above 60 mg L?1 of the pollutant, no removal was observed due to the inhibitory effect of ρ-chlorophenol on the T. suecica cells. The effect of cell immobilization in alginate beads on T. suecica removal capacity was also examined. Using this technique, the removal efficacy for the initial ρ-CP concentration of 20 mg L?1 increased up to 94 %.  相似文献   

3.
Small juveniles (0.3–3 mg live weight) of three clam species, Tapes semidecussata Reeve, T. decussata L., and Mercenaria mercenaria L., were fed eight single-species algal diets at a range of temperatures. Nutritional value of the algae tested was in the order: Isochrysis aff galbana (T. ISO) = Skeletonema costatum >Chaetoceros calcitrans = Chroomonas salina = Thalassiosira pseudonana >Tetraselmis suecica >Phaeodactylum tricornutum >Chlamydomonas coccoides, when the same weight of these species was given in the diet to each clam species. Reasons for differences in nutritional value are discussed with reference to the biochemical content of the algae and the relative growth efficiency of the animals. Respiration rate, food cell clearance rate, and growth (as increase in organic weight) of M. mercenaria and T. semidecussata increased with temperature from 10 to 25 °C. Growth rates decreased at > 25 °C. T. decussata showed only a slightly increased growth response at > 15 °C.  相似文献   

4.
There has been considerable interest on cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. The ideal microalga characteristics are that it must grow well even under high cell density and under varying outdoor environmental conditions and be able to have a high biomass productivity and contain a high oil content (~25–30 %). The main advantage of Chlorophyta is that their fatty acid profile is suitable for biodiesel conversion. Tetraselmis suecica CS-187 and Chlorella sp. were grown semi-continuously in bag photobioreactors (120 L, W?×?L?=?40?×?380 cm) over a period of 11 months in Melbourne, Victoria, Australia. Monthly biomass productivity of T. suecica CS-187 and Chlorella sp. was strongly correlated to available solar irradiance. The total dry weight productivity of T. suecica and Chlorella sp. was 110 and 140 mg L?1 d?1, respectively, with minimum 25 % lipid content for both strains. Both strains were able to tolerate a wide range of shear produced by mixing. Operating cultures at lower cell density resulted in increasing specific growth rates of T. suecica and Chlorella sp. but did not affect their overall biomass productivity. On the other hand, self shading sets the upper limit of operational maximum cell density. Several attempts in cultivating Dunaliella tertiolecta CS-175 under the same climatic conditions were unsuccessful.  相似文献   

5.
Three methods of algal quantification (direct cell counts, chlorophyll a extraction, in vivo fluorescence) were used to evaluate the response of the unicellular green flagellate Tetraselmis suecica to nutrients and grazers. Nutrient enrichment enhanced total cell counts, chlorophyll a concentration and in vivo and DCMU-fluorescence. Photosynthetic efficiency was reduced in the complete F2 medium as indicated by the high level of in vivo fluorescence, whereas photosynthetic efficiency was increased by the introduction of mussels to the F2 medium. The addition of mussels significantly increased the proportion of non-motile cells, but did not reduce the total cell count. The effect of mussel grazing on algae could be underestimated if only total cells were counted or only the chlorophyll a concentration was measured. The results indicate that these three methods measure different properties of an algal culture and are complementary to each other in assessing the quality and quantity of an algal population. Direct algal counting offers a reliable numerical assessment for cell population abundance. Chlorophyll a concentration was closely correlated to the total cell count. In the presence of mussels, in vivo fluorescence did not correlate with either algal cell counts or chlorophyll a concentration, indicating that the measurement of in vivo fluorescence may be misleading for estimating algal abundance under different culture conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Synopsis The nanoflagellateTetraselmis suecica was tested both as the sole food source and as a diet complement toArtemia nauplii for grunion,Leuresthes tenuis, larvae. A total of 4800 grunion larvae, obtained through artificial insemination and incubation, were cultivated under laboratory conditions. Growth and survival rates were registered for 14 days in two experimental series. In the first series the nanoflagellateT. suecica was offered as the sole food source at five different concentrations. Survival and growth increased in agreement with the increase inT. suecica concentration. In the second series,Artemia nauplii were offered at six concentration levels. This series was divided into two groups: the nanoflagellateT. suecica was added to one group at a concentration of 5000 cells ml–1; the other group was maintained without nanoflagellates. In this series, survival and growth were directly related to nauplii concentration, but significant effects of the nanoflagellates were evident only in relation to the survival; the greatest difference (58% without nanoflagellates vs. 69% with nanoflagellates) was observed at anArtemia concentration of 1000 nauplii 1–1. The mechanism responsible for increased survival ofL. tenuis larvae in presence of phytoplankton is unclear.  相似文献   

7.
ABSTRACT

Bacteria associated with microalgae strongly affect algal biomass and derived product yield and quality. Nevertheless, only a few studies have addressed the detailed phylogenetic characterization of bacterial communities associated with microalgae. In this study, the phycospheric bacterial communities associated with different Tetraselmis suecica F&M-M33 cultures, a green marine microalga with several industrial applications, were analysed using a metagenomic approach. The T. suecica F&M-M33 cultures used originated from the same ancestral microalgal non-axenic culture but were physically and geographically separated for years and maintained under different growing conditions. Despite the different history of the cultures, a ‘core’ bacterial community was identified, accounting for 70% of the total bacterial community and formed by at least 13 families. Among the ‘core’ operational taxonomic units (OTUs), 24 different genera were identified. Nevertheless, there was a high variability in the relative proportions of the taxa forming the ‘core’ community, indicating that the growing conditions and/or external contamination influence the relative abundance of these microorganisms. Our study allowed the identification of persistent taxa that may be used to deepen the knowledge of the complex relationship between T. suecica and its associated bacteria.  相似文献   

8.
The influence of metal contamination on the marine alga Tetraselmis suecica was investigated at physiological and ultrastructural levels. For this analysis, the growth response of this microalga was studied after the addition of various concentrations of heavy metals (Cd, Cu). The concentration corresponding to 50% growth inhibition (IC50) and the number of days per cell cycle (Td) studied, revealed that the toxic effects of copper are heavier than those of cadmium. In the case of copper contamination, the Td grows with increasing metal concentration in the culture medium, while it remains unchanged during the cadmium contamination. The toxicity of cadmium, only observed in the latency phase of growth, suggests an adaptation phenomenon of T suecica to this metal. Ultrastructural changes in response to pollutants were investigated; copper induced cytoplasmic vacuolisation, organelle changes, appearance of cells with multilayered cell walls and excretion of organic matter. In the case of cadmium contamination, ultrastructural changes mainly affected the osmiophilic vesicles, of which both number and volume increased with increasing metal concentration in the culture medium. The results of X-ray microanalysis revealed that Cd and Cu were strongly present in excreted organic matter and osmiophilic vesicles. The latter can be excreted during cell division, thus participating in detoxification processes. Intracellular cadmium incorporation proved that some toxic effects of this metal are a result of interaction with endogenous cellular constituents. In the case of copper contamination, the presence of copper in walls of a multilayered cell suggests that these structures constitute an additionnal adsorbing area for this element, reducing metal free concentration in the medium. Mechanisms of metal detoxification of Tetraselmis suecica are discussed.  相似文献   

9.
Vitamin analysis was carried out on five microalgae used in aquaculture:Tetraselmis suecica, Isochrysis galbana, Pavlova lutheri, Skeletonema costatum andChaetoceros calcitrans and one macroalga,Sargassum muticum, which is invasive on the Atlantic shores of France. Both liposoluble (provitamin A, E, K) and hydrosoluble (B1, B2, B6, B12, C, PP) vitamins were quantified. For most of them, greater amounts were obtained in the algal products than in the usual sources. On a dry weight basis,Tetraselmis suecica contained 4280 μg g?1 provitamin A and 6323 μg g?1 vitamin E,Pavlova lutheri 1162 μg g?1 vitamin B12 and 837 μg g?1 vitamin C,Isochrysis galbana 2690 μg g?1 vitamin PP and 183 μg g?1 vitamin B6, andSkeletonema costatum 710 μg g?1 vitamin B1.  相似文献   

10.
The marine phytoplanktonic algae, Tetraselmis chui Stein and Hymenomonas carterae (Braarud and Fagerland) Braarud, were grown in media containing various concentrations of arsenate or arsenite. The effects of arsenic on the algae varied with the oxidation state of the element, its concentration, and the degree of illumination. Arsenate affected mainly algal growth but also cell morphology, whereas arsenite caused only morphological changes. Studies on the incorporation of 74As-arsenate into cells grown in artificial sea water indicated that arsenate was incorporated and later partially released by both T. chui and H. carterae. Both arsenate influx and efflux seemed to be energy-dependent phenomena, because they varied with the degree of illumination. Differences between the rates of uptake and release of arsenic suggested that arsenate undergoes chemical changes after having been transported into the algal cells.  相似文献   

11.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

12.

One of the main effluents from fishmeal plants is stickwater (STW) that causes a considerable number of environmental hazards. This study aimed to replace standard growth medium (F/2; as an enriched solution for growing most of the marine microalgae) of Tetraselmis suecica with different ratios of STW from a kilka fishmeal plant including 0% (control), 10%, 25%, 50%, 75%, and 100%. Results showed that the highest nutrient removal efficacy was obtained in 75% STW treatment, followed by the highest algal cell density (1.23 × 107 cells mL?1) (P <0.05). A significant increase in the concentrations of photosynthetic pigments (chlorophyll a, b) and lipid productivity was recorded in 75% STW treatment compared to others (P <0.05). The maximum contents of carotenoids and crude protein were obtained in 100% and 50% STW groups, respectively. The levels of saturated and monosaturated fatty acids were significantly increased by increasing the inclusion ratio of STW from 50 to 100% (P <0.05). However, the lowest level of polyunsaturated fatty acids was measured in 100% STW treatment. Overall, replacing F/2 with STW up to 75% is feasible to culture T. suecica with the highest biomass and lipid productivity.

  相似文献   

13.
Three putative beneficial unicellular organisms, the marine bacterium Roseobacter sp, the yeast Saccharomyces cerevisiae mnn9 strain (SC-mnn9) and the microalga Tetraselmis suecica were cooked and offered separately as diets to developing germ-free (GF) Artemia larvae, in order to analyze their alimentary and protective effects. GF Artemia larvae were able to grow with cooked Tetraselmis and SC-mnn9 but failed with cooked Roseobacter. In spite of its high dietary quality, Tetraselmis failed to provide protection against Vibrio proteolyticus infection, while Roseobacter failed as food as well to provide protection. Cooked SC-mnn9 appeared to possess both values, dietary for growth and protective against Vibrio infection. GF Artemia larvae were apparently rapid adapted to dietary swaps; from yeast to algal and from algal to yeast. While the diets swap from algal or yeast, to bacterial diet appeared to be detrimental. Phenoloxidase-L (PO-L) and trypsin-L were used as biochemical indicators of defense and digestive functions, respectively. Developmental trypsin-L patterns were similar when fed on yeast and microalgae diets, suggesting a good digestive adaptation to plant or fungal substrates at early stages. On the contrary, diets swap or Vibrio infection affected PO-L and trypsin-L suggesting a sort of ‘alteration’ of digestive and defense functions.  相似文献   

14.
Microalgae contain lipid bodies (LBs) composed of triacylglycerols, which can be converted to biodiesel. Here we demonstrate a method to study the accumulation patterns of LBs in different microalgae strains and culture conditions utilizing laser scanning confocal microscopy (LSCM) with BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) staining, in parallel with Nile Red (9-diethylamino-5H-benzo-a-phenoxazine-5-one) fluorescence analysis of intracellular lipids in microplates. Phaeodactylum tricornutum and Tetraselmis suecica were selected as model organisms and monitored throughout the growth phases in standard and nitrogen-deficient growth conditions. Utilizing image quantification techniques, the number and morphology of LBs suggest that P. tricornutum accumulates lipids by merging with existing LBs, while T. suecica synthesizes new LBs. We observed that T. suecica accumulates a higher number of LBs and total volume of lipids per cell, while P. tricornutum accumulates only 1–2 LBs with a larger volume per LB. LSCM analysis complements Nile Red (NR) methods because LSCM provides three-dimensional images of lipid accumulation at a cellular level, while NR analysis can quickly monitor the total levels of intracellular lipids for phenotypic screening. Using NR analysis, we have observed that the optimal harvest date for P. tricornutum and T. suecica in standard cultivation conditions is 24 and 42 days, respectively. Comparison with nitrogen-deficient growth conditions is utilized as a model to confirm that LSCM and NR analysis can be used to study lipid storage and productivity for diverse growth conditions and various strains of microalgae.  相似文献   

15.
The contents of fecal ribbons from Mytilus edulis L. fed either the unicellular flagellate Tetraselmis suecica (Kylin) Butch., or the diatom Thalassiosira pseudonana (Hasle and Heimdal) were examined for their particle size spectra. Contents of fecal ribbons were dispersed by shaking in filtered sea water and analyzed by a Coulter Counter. The flagellate can pass through the mussel's gut without any significant volume changes, implying that its digestion is largely intracellular (after phagocytosis). In contrast, the diatom does undergo volume changes, probably a result of disintegration of cells and aggregation of cells and cell fragments. Undigested flagellate cells can become resuspended in significant quantities after their defecation by the mussel.  相似文献   

16.
Yoldia hyperborea (Loven) is a deposit feeder species living in muddy sediments of Conception Bay (Newfoundland, Canada) where it is exposed to a seasonal input of sinking phytoplankton during spring. Data field indicates that this species exhibits an increasing gonad development shortly after the sinking of phytodetritus event, suggesting a close relationship between this food pulse and reproduction. Laboratory experiments carried out with a mixture of laboratory-grown senescent algae Isochrysis galbana, Tetraselmis suecica and Chaetoceros affinis were able to mimic the reproductive response described for Yoldia individuals inhabiting Conception Bay.A dual marker experiment using 14C and 68Ge radiolabelled Thalassiosira nordenskioldii demonstrated that Y. hyperborea fed on T. nordenskioldii and 14C was incorporated into the gonad tissue. Consequently experimental individuals periodically supplied with senescent algae concentrate produced more and larger oocytes than control individuals. These results would help to understand the influence of the sinking phytodetritus in the reproductive activity of Y. hyperborea at Conception Bay.  相似文献   

17.
The ability to feed on suspended and dissolved organic nutrients may have been retained in predatory gastropods during evolution. The carnivorous muricid neogastropod Thais clavigera feeds on prey by boring through their shells, followed by extracellular digestion and suction of the nutrient-rich fluid of the prey's body tissues. This study reports on the effect of feeding on suspended and soluble organic nutrients (SSONs) on the survival, growth, and various physiological activities including scope for growth and glycogen stores of T. clavigera. Juvenile T. clavigera of similar shell length (23.8±1.7 mm) were either starved, fed with mussel Septifer virgatus, fed with SSONs from homogenized mussel flesh (S. virgatus), or fed with both mussels and SSONs, and kept in artificial seawater (salinity: 30‰) for 50 days. Ingestion of SSONs by the animals was significant. Feeding with the “soup” (i.e., SSONs) reduced tissue wastage and improved condition index of the snails. T. clavigera fed in this manner were intermediates between the starved and the mussel-fed groups in terms of mortality, growth, food consumption, respiration, scope for growth, and glycogen content measurements. Furthermore, T. clavigera fed with both mussels and SSONs exhibited an identical energy requirement and similar values of various physiological measurements as that of those fed solely on mussel flesh. Feeding of SSONs contributed >10% of the overall energy requirement when both SSONs and mussel prey were available. The results indicate that energy from suspended and dissolved organic nutrients can contribute to the maximization of energy input in T. clavigera, which may favor better survivorship and thus lifetime fitness.  相似文献   

18.
The addition of bicarbonate (NaHCO3; 0, 1, or 2 g L?1) to microalgal cultures has been evaluated for two species (Tetraselmis suecica and Nannochloropsis salina) in respect of growth and biochemical composition. In batch cultures, addition of bicarbonate (1 g L?1) resulted in significantly (P?<?0.05) higher final mean cell abundances for both species. No differences in specific growth rates (SGRs) were recorded for T. suecica between treatments; however, increasing bicarbonate addition decreased SGR values in N. salina cultures. Bicarbonate addition (1 g L?1) significantly improved nitrate utilisation from the external media and photosynthetic efficiency (F v /F m ) in both species. For both T. suecica and N. salina, bicarbonate addition significantly increased the cellular concentrations of total pigments (3,432–3,587 and 19–37 fg cell?1, respectively) compared to cultures with no additional bicarbonate (1,727 and 11 fg cell?1, respectively). Moreover, final concentrations of total cellular fatty acids in T. suecica and N. salina cultures supplemented with 2 g L?1 bicarbonate (7.6?±?1.2 and 1.8?±?0.1 pg cell?1, respectively) were significantly higher than those cells supplemented with 0 or 1 g L?1 bicarbonate (3.2–3.5 and 0.9–1.0 pg cell?1, respectively). In nitrate-deplete cultures, bicarbonate addition caused species-specific differences in the rate of cellular lipid production, rates of change in fatty acid composition and final lipid levels. In summary, the addition of sodium bicarbonate is a viable strategy to increase cellular abundance and concentrations of pigments and lipids in some microalgae as well as the rate of lipid accumulation in nitrate-deplete cultures.  相似文献   

19.
The brown algaFucus vesiculosus formamytili (Nienburg) Nienhuis covered about 70% of mussel bed (Mytilus edulis) surface area in the lower intertidal zone of Königshafen, a sheltered sandy bay near the island of Sylt in the North Sea. Mean biomass in dense patches was 584 g ash-free dry weight m?2 in summer. On experimental mussel beds, fucoid cover enhanced mud accumulation and decreased mussel density. The position of mussels underneath algal canopy was mainly endobenthic (87% of mussels with >1/3 of shell sunk into mud). In the absence of fucoids, mussels generated epibenthic garlands (81% of mussels with <1/3 of shell buried in mud). Mussel density underneath fucoid cover was 40 to 73% of mussel density without algae. On natural beds, barnacles (Balanidae), periwinkles (Littorina littorea) and crabs (particularly juveniles ofCarcinus maenas) were significantly less abundant in the presence of fucoids, presumably because most of the mussels were covered with sediment, whereas in the absence of fucoids, epibenthic mussel clumps provided substratum as well as interstitial hiding places. The endobenthic macrofauna showed little difference between covered and uncovered mussel beds. On the other hand, grazing herbivores — the flat periwinkleLittorina mariae, the isopodJaera albifrons and the amphipodsGammarus spp. — were more abundant at equivalent sites with fucoid cover. The patchy growth ofFucus vesiculosus on mussel beds in the intertidal Wadden Sea affects mussels and their epibionts negatively, but supports various herbivores and increases overall benthic diversity.  相似文献   

20.
Juvenile or adult Artemia sp. are often used as live prey for the rearing of early life stages of some crustacean, fish and cephalopod species. The improvements of both Artemia growth and its biochemical composition are key issues for the suitable use of Artemia biomass in these rearing processes. In this study we evaluated the growth and survival rates of Artemia fed with the cryptophyte Rhodomonas lens in comparison with different microalgal species commonly used in aquaculture: the prasinophyte Tetraselmis suecica, the prymnesiophyte Isochrysis galbana Parke, and the eustigmatophyte Nannochloropsis gaditana. Microalgae were cultured semi-continuously in nutrient saturated conditions and with a daily renewal rate of 30% of the volume of cultures, to obtain biomass of controlled and optimized composition. Considerable differences in Artemia growth were observed, as well as in the survival rate. At day 8 of rearing, Artemia fed R. lens had the highest length (4.9 ±0.6 mm, P < 0.001), followed by individuals fed T. suecica (4.2 ± 0.7 mm), I. galbana (3.6 ± 0.7 mm) and finally those fed N. gaditana (1.5 ± 0.2 mm). The survival rate of Artemia fed N. gaditana (18 ± 3%) was much lower (P < 0.001) than values found for the remaining groups (69 to 88%). The growth rate of Artemia obtained with R. lens was in general much higher than with other microalgal diets previously reported in the literature. The higher protein content of R. lens could explain the higher growth obtained with this species, but differences of Artemia growth with the different diets could not be explained solely on the basis of the gross composition of microalgae. Factors such as cell size and digestibility all seem to contribute to the results observed. Another trial was carried out to investigate differences in Artemia growth and on its biochemical composition when fed the best two diets: R. lens or T. suecica. The fatty acid (FA) and total amino acid (AA) composition of both microalgal species and the composition of Artemia were assessed as well. As found in the first experiment individuals fed R. lens (group ARHO) grew faster than those fed T. suecica (group ATET), attaining 3.6 ± 0.3 mm and 3.2 ± 0.4 mm (P < 0.001), respectively, after 5 days of rearing. The much higher AA content obtained in R. lens may be on the basis of the higher growth obtained with this species. Protein and carbohydrate levels in Artemia juveniles were very similar in both groups (64-68% of dry weight, and 8-10%, respectively). Lipid was slightly lower in ARHO (12%) than in ATET (15%, P < 0.01). Regarding the FA composition, juveniles from group ARHO contained higher levels of eicosapentaenoic acid (EPA, 6.2%) than juveniles from ATET (4.1%, P < 0.01), whereas docosahexaenoic acid (DHA) was only found in juveniles from ARHO (1.1%). Taking into account that the daily productivity of R. lens culture was higher than, or at least equal, the remaining microalgal species this cryptophyte is confirmed as an excellent diet to optimize the growth of Artemia, as well as to improve its biochemical composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号