首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An instrument package carrying pH and oxygen electrodes and a thermister was floated across a reef flat. Using equations associated with the alkalinity anomaly technique, and by making certain assumptions, the productivity and calcification rates of the reef flat were calculated. At an average light intensity of 800 μE · m?2 · s?1, the average net oxygen production was 21.5 mmol O2 · m?2 · h?1 and the average rate of calcification was 11.0 mmol CaCO3 · m?2 · h?1. Results showed three metabolic zones within the transect which corresponded to zonation seen in an aerial photograph and confirmed by benthic surveys.  相似文献   

2.
There is an interest in developing approaches to “ecosystem-based” management for coral reefs. One aspect of ecosystem performance is to monitor carbon metabolism of whole communities. In an effort to explore robust techniques to monitor the metabolism of fringing reefs, especially considering the possible effects of ocean acidification, a yearlong study of the carbonate chemistry of a nearshore fringing reef in Hawaii was conducted. Diurnal changes in seawater carbonate chemistry were measured once a week in an algal-dominated and a coral-dominated reef flat on the Waimanalo fringing reef, Hawaii, from April of 2010 until May of 2011. Calculated rates of gross primary production (GPP) and net community calcification (G) were similar to previous estimates of community metabolism for other coral reefs (GPP 971 mmol C m?2 d?1; G 186 mmol CaCO3 m?2 d?1) and indicated that this reef was balanced in terms of organic metabolism, exhibited net calcification, and was a net source of CO2 to the atmosphere. Average slopes of total alkalinity versus dissolved inorganic carbon (TA–DIC slope) for the coral-dominated reef flat exhibited a greater calcification-to-net photosynthesis ratio than for the algal-dominated reef flat (coral slope vs. algal slope). Over the course of the time series, TA–DIC slopes remained significantly different between sites and were not correlated with diurnal averages in reef-water residence time or solar irradiance. These characteristic slopes for each reef flat reflect the relationship between carbon and carbonate community metabolism and can be used as a tool to monitor ecosystem function in response to ocean acidification.  相似文献   

3.
The rate of emergence of micropredatory gnathiid isopods from the benthos, the proportion of emerging gnathiids potentially eaten by Labroides dimidiatus, and the volume of blood that gnathiids potentially remove from fishes (using gnathiid gut volume) were determined. The abundance (mean ±s.e .) of emerging gnathiids was 41·7 ± 6·9 m?2 day?1 and 4552 ± 2632 reef?1 day?1 (reefs 91–125 m2). The abundance of emerging gnathiids per fish on the reef was 4·9 ± 0·8 day?1; but excluding the rarely infested pomacentrid fishes, it was 20·9 ± 3·8 day?1. The abundance of emerging gnathiids per patch reef was 66 ± 17% of the number of gnathiids that all adult L. dimidiatus per reef eat daily while engaged in cleaning behaviour. If all infesting gnathiids subsequently fed on fish blood, their total gut volume per reef area would be 17·4 ± 5·6 mm3 m?2 day?1; and per fish on the reefs, it would be 2·3 ± 0·5 mm?3 fish?1 day?1 and 10·3 ± 3·1 mm3 fish?1 day?1 (excluding pomacentrids). The total gut volume of gnathiids infesting caged (137 mm standard length, LS) and removed from wild (100–150 mm LS) Hemigymnus melapterus by L. dimidiatus was 26·4 ± 24·6 mm3 day?1 and 53·0 ± 9·6 mm3 day?1, respectively. Using H. melapterus (137 mm LS, 83 g) as a model, gnathiids had the potential to remove, 0·07, 0·32, 0·82 and 1·63% of the total blood volume per day of each fish, excluding pomacentrids, caged H. melapterus and wild H. melapterus, respectively. In contrast, emerging gnathiids had the potential of removing 155% of the total blood volume of Acanthochromis polyacanthus (10·7 mm LS, 0·038 g) juveniles. That L. dimidiatus eat more gnathiids per reef daily than were sampled with emergence traps suggests that cleaner fishes are an important source of mortality for gnathiids. Although the proportion of the total blood volume of fishes potentially removed by blood‐feeding gnathiids on a daily basis appeared to be low for fishes weighing 83 g, the cumulative effects of repeated infections on the health of such fish remains unknown; attacks on small juvenile fishes, may result in possibly lethal levels of blood loss.  相似文献   

4.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

5.
Summary In a fringing reef at Aqaba at the northern end of the Gulf of Aqaba (29°26′N) growth rates, density, and the calcification rate ofPorites were investigated in order to establish calculations of gross carbonate production for the reefs in this area. Colony accretion ofPorites decreases with depth as a function of decreasing growth rates. The calcification rate ofPorites is highest in shallow water (0–5 m depth) with 0.9 g·cm−2·yr−1 and falls down to 0.5 g·cm−2·yr−1 below 30 m. Scleractinian coral gross production is calculated from potential productivity and coral coverage. It is mainly dependent on living coral cover and to a lesser extent on potential productivity. Total carbonate production on the reef ranged from 0 to 2.7 kg/m2 per year, with a reef-wide average of 1.6 kg/m2 perycar. Maximum gross carbonate production by corals at Aqaba occurs at the reef crest and in the middle fore-reef from 10 to 15 m water depth. Production is low in sandy reef parts. Below 30 m depth values still reach ca. 50% of shallow water values. Mean potential production of colonies and gross carbonate production of the whole reef community at Aqaba is lower than in tropical reefs. However, carbonate production is higher than in reef areas at the same latitude in the Pacific, indicating a northward shift of reef production in the Red Sea.  相似文献   

6.
The effects of diurnal variations in light intensity on the biomass characteristics and the efficiency of daily growth of Skeletonema costatum (Grev.) Cleve were evaluated. The relative importance of changes in carbon specific rates of respiration and organic release to the efficiency of growth was determined. Light intensity was either constant at 130 μE · m?2 · s?1 during the light period or fluctuated throughout the light period from 500 to 10 μE · m?2 · s?1 at rates of either 1 or 12 cycles · day?1. Total daily light was equivalent for all light regimes at 5.6 E · m?2 · day?1.Daily rates of growth remained comparable at ≈ 1 · day?1 under constant and fluctuating light regimes. Cell size as daily mean carbon · cell?1, nitrogen · cell?1 and cellular volume was decreased under diurnally varying light whereas daily mean chlorophyll a · cell?1 was unaffected.Rates of respiration, organic release and gross production were elevated several fold under diurnally varying light in comparison to constant light. Net growth efficiency decreased from 0.69 under constant light to values of 0.50 and 0.38 under 1 and 12 cycles · day?1, respectively. Decreased efficiency of growth under diurnally fluctuating light resulted mostly from greater respiratory activity while organic release remained < 10% of gross production. Increased rates of gross production reflected enhancement in the efficiency of carbon fixation with fluctuating light.  相似文献   

7.
A routine sampling technique has been developed using artificial styrofoam substrate to estimate benthic algal productivity in the littoral zone of lakes. Estimation of maximum carbon fixed in Lake Tahoe ranged from 11.1 mg C·m?2· day?1 at 0.5 m to 17.1 mg C·m?2· day?1 at 1.0 m. Estimates were made for communities composed of both diatom and green algal populations in water between 0.5 and 3.0 m. Maximum productivity occurred between 1–2 m. The technique developed can give comparable estimates of productivity if adequate replication is undertaken to decrease problems associated with periphytic heterogeneity.  相似文献   

8.
β‐Carotene is overproduced in the alga Dunaliella salina in response to high light intensities. We have studied the effects of a sudden light increase on carotenoid and fatty acid metabolism using a flat panel photobioreactor that was run in turbidostat mode to ensure a constant light regime throughout the experiments. Upon the shift to an increased light intensity, β‐carotene production commenced immediately. The first 4 h after induction were marked by constant intracellular levels of β‐carotene (2.2 g LCV?1), which resulted from identical increases in the production rates of cell volume and β‐carotene. Following this initial phase, β‐carotene productivity continued to increase while the cell volume productivity dropped. As a result, the intracellular β‐carotene concentration increased reaching a maximum of 17 g LCV?1 after 2 days of light stress. Approximately 1 day before that, the maximum β‐carotene productivity of 30 pg cell?1 day?1 (equivalent to 37 mg LRV?1 day?1) was obtained, which was about one order of magnitude larger than the average productivity reported for a commercial β‐carotene production facility, indicating a vast potential for improvement. Furthermore, by studying the light‐induced changes in both β‐carotene and fatty acid metabolism, it appeared that carotenoid overproduction was associated with oil globule formation and a decrease in the degree of fatty acid unsaturation. Our results indicate that cellular β‐carotene accumulation in D. salina correlates with accumulation of specific fatty acid species (C16:0 and C18:1) rather than with total fatty acid content. Biotechnol. Bioeng. 2010;106: 638–648. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
The immobilisation of cells in a perfusion culture allows to obtain a high cell concentration and an efficient removal of the catabolites without cell loss. A disadvantage of this system is that the cell density cannot be directly monitored. The cellular metabolism is just followed by online measurements of pH and dissolved oxygen (DO) and off-line determinations of residual metabolites. In this article, we report a high cell density achieved by the cultivation of a hybridoma in a bubble-column bioreactor filled with hollow glass cylinders. The parameters monitored during the cultivation were pH, temperature, DO, glucose, lactate and monoclonal antibody. The glucose uptake rate was used to estimate the cell concentration along the time. The maximum cell concentration calculated for the considered cultivation time was 2.7?×?107 cell?·?ml?1. The glucose concentration in the media decreased stepwise twice, causing a decrease on the specific growth rate, while maintaining high antibody productivity levels. Maximum monoclonal antibody productivity was 503?μg?·?l?1?·?day?1 and specific productivity, considering calculated cell density, was 0.019?ng?·?cell?1?·?day?1.  相似文献   

10.
Cuet  P.  Atkinson  M. J.  Blanchot  J.  Casareto  B. E.  Cordier  E.  Falter  J.  Frouin  P.  Fujimura  H.  Pierret  C.  Susuki  Y.  Tourrand  C. 《Coral reefs (Online)》2011,30(1):45-55

Productivity, nutrient input, nutrient uptake, and release rates were determined for a coral-dominated reef flat at La Réunion, France, to assess the influence of groundwater nitrogen on carbon and nutrient budgets. Water samples were collected offshore in the ocean, at the reef crest and back reef for nutrients, picoplankton, pH, and total alkalinity. Volume transport of ocean water across the reef flat was measured using both current meters and drogues. Groundwater advected onto the reef flat and mixed with incoming ocean water. Metabolic rates for the reef community were determined to be: gross primary production = 1,000 mmol C m−2 d−1, community respiration = 960 mmol C m−2 d−1, and community calcification = 210 mmol C m−2 d−1. Across the reef flat, silicate behaved conservatively, there was net uptake of phosphate (0.06 mmol P m−2 d−1) and net release of nitrate, ammonia, dissolved and particulate organic nitrogen (total 7.0 mmol N m−2 d−1). Groundwater nitrate contributed 37% of the increase in nitrate plus ammonia. The first-order mass transfer coefficient of phosphate was 3.3 m d−1, and for nitrate plus ammonia, 5.9 m d−1. Gross N and P uptake from estimates of mass transfer and uptake of particles were 0.37 mmol P m−2 d−1 and 7.2 mmol N m−2 d−1, respectively giving an N:P uptake ratio of 20:1. Thus, the elevation of nitrogen across the reef flat maintains a high N:P flux, enhancing algal growth downstream of the transect. We conclude that net community production (40 mmol C m−2 d−1) was sustained by net uptake of phosphate from the ocean and net uptake of new nitrogen from groundwater.

  相似文献   

11.
Cryptomonas erosa Skuja, a planktonic alga, was grown in batch culture at different combinations of light intensity and temperature, under nutrient saturation. Growth was maximal (1.2 divisions · day?1) at 23.5 C and 0.043 ly · min?1, declining sharply with temperature (0.025 divisions-day?1 at 1 C). With decreasing temperature, the cells showed both light saturation and inhibition at much reduced light intensities. At the same time the compensation light intensity for growth declined towards a minimum of slightly above 0.4 × 10?4 ly · min?1 (~1 ft-c) at 1 C or <0.1 ly · day?1 (PAR). Cell division was more adversely affected by low temperature than carbon uptake, and the resulting excess production of photosynthate was both stored and excreted. Extreme storage of carbohydrates resulted in cell volumes and carbon content ca. 22 and 30 × greater, respectively, than the maxima observed for cells incubated in the dark, whereas, at growth inhibitory light levels, as much as 57% of the total assimilated carbon was excreted. A marked increase in cell pigment was observed at the lowest light levels (<10?3 ly · min?1), at high temperature. The growth response of C. erosa in culture provides insight into the abundance and distribution of cryptomonads and other small algal flagellates in nature.  相似文献   

12.
Fluctuations in plant and frond characteristics are described for Macrocystis pyrifera (L.) C. Agardh (Laminariales, Phaeophyta) forming a fringing zone in the Falkland Islands. Giant kelp plants were sampled along a transect in the austral autumn (May 1986) and late spring (December 1986) which, according to previous frond weight analysis, were the times when extremes in population parameters were expected. Plant density and holdfast wet weights were similar for both seasons, but plants had more fronds and the fronds weighed more in spring than in autumn. Consequently, in autumn the frond biomass (1·1 wet kg m?2) and productivity (34·1 wet g m?2 d?1) were lower than in spring, when a biomass of 5·0 wet kg m?2 and a productivity of 72·4 wet g m?2 d?1 were recorded. Production of new fronds and loss of old fronds were determined at monthly intervals between April 1986 and March 1987. New frond production rates followed fluctuations in the quantity of light and varied between 0·08 and 0·48 fronds per plant per day. Frond loss rates did not show a seasonal pattern and fluctuated between 0·05 and 0·42 fronds per plant per day. It is suggested that the Falkland Islands Macrocystis population is more stable than most other giant kelp beds at high latitudes, because of the absence of winter storms.  相似文献   

13.
Crustose coralline algae (CCA) are important components of reef ecology contributing to reef framework construction. However, little is known about how seasonal upwelling systems influence growth and calcification of tropical CCA. We assessed marginal and vertical growth and net calcification rates of two dominant but morphologically different reef-building CCA, Porolithon antillarum and Lithophyllum cf. kaiseri, in a shallow coral reef of the Colombian Caribbean during upwelling and non-upwelling seasons. Growth and calcification rates varied seasonally with higher values during the upwelling compared to the non-upwelling (rainy) season. Annual vertical growth showed rates of 4.48 ± 1.58 and 4.31 ± 2.17 mm · y−1, net calcification using crust growth estimates of 0.75 ± 0.30 g and 0.68 ± 0.60 g CaCO3 · cm−2 · y−1 and net calcification using the buoyant weight method of 1.49 ± 0.57 and 0.52 ± 0.11 g CaCO3 · cm−2 · y−1 in P. antillarum and L. kaiseri, respectively. Seawater temperature was inversely related with growth and calcification; however, complex oceanographic interactions between temperature and resource availability (e.g., light, nutrients, and CO2) are proposed to modulate CCA vital rates. Although CCA calcification rates are comparable to hard corals, CCA vertical accretion is much lower, suggesting that the main contribution of CCA to reef construction is via cementation processes. These results provide baseline data on CCA in the region and generate useful information for monitoring the impacts of environmental changes on tropical upwelling environments.  相似文献   

14.
Sediments are a ubiquitous feature of all coral reefs, yet our understanding of how they affect complex ecological processes on coral reefs is limited. Sediment in algal turfs has been shown to suppress herbivory by coral reef fishes on high-sediment, low-herbivory reef flats. Here, we investigate the role of sediment in suppressing herbivory across a depth gradient (reef base, crest and flat) by observing fish feeding following benthic sediment reductions. We found that sediment suppresses herbivory across all reef zones. Even slight reductions on the reef crest, which has 35 times less sediment than the reef flat, resulted in over 1800 more herbivore bites (h−1 m−2). The Acanthuridae (surgeonfishes) were responsible for over 80 per cent of all bites observed, and on the reef crest and flat took over 1500 more bites (h−1 m−2) when sediment load was reduced. These findings highlight the role of natural sediment loads in shaping coral reef herbivory and suggest that changes in benthic sediment loads could directly impair reef resilience.  相似文献   

15.
The influences of urea, nitrate and glycine with four concentration levels on attached culture of Nannochloropsis oculata were investigated. The organic nitrogen source glycine was effective on improving not only adhesion biomass productivity but also adhesion rate. The maximum adhesion biomass productivity of 15.76 ± 0.52 g m?2 day?1 with adhesion rate of 76.67 ± 0.42 % was achieved with 18 mM glycine. To increase the lipid production, three lipid enhancing strategies were conducted afterwards, including nitrogen starvation, high light, and the combination of nitrogen starvation and high light. In nitrogen starvation situation, although the lipid content was greatly increased, the adhesion biomass productivity dropped probably due to the low cell viability. Increasing light intensity was effective on enhancing both adhesion biomass productivity and lipid content. The results indicated that nitrogen starvation was effective on improving both lipid content and adhesion rate when high light was applied. The maximum lipid yield of 4.32 ± 0.14 g m?2 day?1 with adhesion biomass productivity of 21.32 ± 0.65 g m?2 day?1, adhesion rate of 86.81 ± 0.10 % and lipid content of 20.24 ± 0.06 % was achieved with the combination strategy.  相似文献   

16.
We examined the importance of picoplankton and virioplankton to reef trophodynamics at Ningaloo Reef, (north-western Australia), in May and November 2008. Picophytoplankton (Prochlorococcus, Synechococcus and picoeukaryotes), bacterioplankton (inclusive of bacteria and Archaea), virioplankton and chlorophyll a (Chl a) were measured at five stations following the consistent wave-driven unidirectional mean flow path of seawater across the reef and into the lagoon. Prochlorococcus, Synechococcus, picoeukaryotes and bacterioplankton were depleted to similar levels (~40% on average) over the fore reef, reef crest and reef flat (=‘active reef’), with negligible uptake occurring over the sandy bottom lagoon. Depletion of virioplankton also occurred but to more variable levels. Highest uptake rates, m, of picoplankton occurred over the reef crest, while uptake coefficients, S (independent of cell concentration), were similarly scaled over the reef zones, indicating no preferential uptake of any one group. Collectively, picophytoplankton, bacterioplankton and virioplankton accounted for the uptake of 29 mmol C m−2 day−1, with Synechococcus contributing the highest proportion of the removed C. Picoplankton and virioplankton accounted for 1–5 mmol N m−2 day−1 of the removed N, with bacterioplankton estimated to be a highly rich source of N. Results indicate the importance of ocean–reef interactions and the dependence of certain reef organisms on picoplanktonic supply for reef-level biogeochemistry processes.  相似文献   

17.
Semi-continuous algal cultivation was completed in outdoor flat-panel photobioreactors (panels) and open raceway ponds (raceways) from February 17 to May 7, 2015 for side-by-side comparison of areal productivities at the Arizona Center for Algae Technology and Innovation in Mesa, AZ, USA. Experiments used two strains of Scenedesmus acutus (strains LB 0414 and LB 0424) to assess productivity, areal density, nutrient removal, and harvest volume across cultivation systems and algal strains. Panels showed an average biomass productivity of 19.0?±?0.6 g m?2 day?1 compared to 6.62?±?2.3 g m?2 day?1 for raceways. Photosynthetic efficiency ranged between 1.32 and 2.24 % for panels and between 0.30 and 0.68 % for raceways. Panels showed an average nitrogen consumption rate of 38.4?±?8.6 mg N L?1 day?1. Cultivation in raceways showed a consumption rate of 3.8?±?2.5 and 7.1?±?4.2 mg N L?1 day?1 for February/March and April/May, respectively, due to increase in biomass productivity. Excess nutrients were required to prevent a decrease in productivity. Daily biomass harvest volumes between 18 and 36 % from panels did not affect culture productivity, but density decreased with increased harvest volume. High cultivation temperatures above 30 °C caused strain LB 0414 to lyse and crash. Strain LB 0424 did not show any difference in biomass productivity when peak temperatures reached 34, 38, or 42 °C, but showed decreased productivity when the peak temperature during cultivation was 30 °C. Using algal strains with different temperature tolerances can generate increased annual biomass productivity.  相似文献   

18.
To date, no direct measurements of primary production were taken in the Amundsen Sea, which is one of the highest primary productivity regions in the Antarctic. Phytoplankton carbon and nitrogen uptake experiments were conducted at 16 selected stations using a 13C–15N dual isotope tracer technique. We found no statistically significant depletions of major inorganic nutrients (nitrate?+?nitrite, ammonium, and silicate) although the concentrations of these nutrients were markedly reduced in the surface layer of the polynya stations where large celled phytoplankton (>20?μm) predominated (ca. 64?%). The average chl-a concentration was significantly higher at polynya stations than at non-polynya stations (p?<?0.01). Average daily carbon and nitrogen uptake rates by phytoplankton at polynya stations were 2.2?g?C?m?2?day?1 (SD?=?±1.4?g?C?m?2?day?1) and 0.9?g?N?m?2?day?1 (SD?=?±0.2?g?N?m?2?day?1), respectively, about 5–10 times higher than those at non-polynya stations. These ranges are as high as those in the Ross Sea, which has the highest productivity among polynyas in the Antarctic Ocean. The unique productivity patterns in the Amundsen Sea are likely due to differences in iron limitation, phytoplankton productivity, the timing of phytoplankton growing season, or a combination of these factors.  相似文献   

19.
For the design of a large field of vertical flat plate photobioreactors (PBRs), the effect of four design parameters—initial biomass concentration, optical path length, spacing, and orientation of PBRs—on the biochemical composition and productivity of Chlorella zofingiensis was investigated. A two-stage batch process was assumed in which inoculum is generated under nitrogen-sufficient conditions, followed by accumulation of lipids and carbohydrates in nitrogen-deplete conditions. For nitrogen-deplete conditions, productivity was the most sensitive to initial biomass concentration, as it affects the light availability to individual cells in the culture. An initial areal cell concentration of 50 g m?2 inoculated into 3.8-cm optical path PBR resulted in the maximum production of lipids (2.42?±?0.02 g m?2 day?1) and carbohydrates (3.23?±?0.21 g m?2 day?1). Productivity was less sensitive to optical path length. Optical path lengths of 4.8 and 8.4 cm resulted in similar areal productivities (biomass, carbohydrate, and lipid) that were 20 % higher than a 2.4-cm optical path length. Under nitrogen-sufficient conditions, biomass productivity was 48 % higher in PBRs facing north–south during the winter compared to east–west, but orientation had little influence on biomass productivity during the spring and summer despite large differences in insolation. An optimal spacing could not be determined based on growth alone because a tradeoff was observed in which volumetric and PBR productivity increased as space between PBRs increased, but land productivity decreased.  相似文献   

20.
The biomass productivity of Scenedesmus obliquus was investigated outdoors during all seasons in solar tracked flat panel photobioreactors (PBR) to evaluate key parameters for process optimization. CO2 was supplied by flue gas from an attached combined block heat and power plant. Waste heat from the power plant was used to heat the culture during winter. The parameters pH, CO2, and inorganic salt concentrations were automatically adjusted to nonlimiting levels. The optimum biomass concentration increased directly with the photosynthetic active radiation (PAR) from 3 to 5 g dry weight (DW)?L?1 for a low PAR of 10 mol photons m?2 day?1 and high PAR of 40–60 mol photons m?2 day?1, respectively. The annual average biomass yield (photosynthetic efficiency) was 0.4?±?0.5 g DW mol?1 photons. However, biomass yields of 1.5 g DW mol?1 photons close to the theoretical maximum were obtained at low PAR. The productivity (including the night biomass losses) ranged during all seasons from ?5 up to 30 g DW m?2 day?1 with a mean productivity of 9?±?7 g DW m?2 day?1. Low night temperatures of the culture medium and elevated day temperatures to the species-specific optimum increased the productivity. Thus, continuous regulation of the biomass concentration and the culture temperature with regard to the fluctuating weather conditions is essential for process optimization of outdoor microalgal production systems in temperate climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号