首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xer site-specific recombination in vitro.   总被引:11,自引:6,他引:5       下载免费PDF全文
Two related recombinases, XerC and XerD, belonging to the lambda integrase family of enzymes, are required for Xer site-specific recombination in vivo. In order to understand the roles of these proteins in the overall reaction mechanism, an in vitro recombination system using a synthetic Holliday junction-containing substrate has been developed. Recombination of this substrate is efficient and requires both XerC and XerD. However, only exchange of one pair of strands, the one corresponding to the conversion of the Holliday junction intermediate back to the substrate, has been observed. Recombination reactions using XerC and XerD derivatives that are mutant in their presumptive catalytic residues, or are maltose-binding fusion recombinase derivatives, have demonstrated that this pair of strand exchanges is catalysed by XerC. The site of XerC-mediated cleavage has been located to between the last nucleotide of the XerC binding site and the first nucleotide of the central region. Cleavage at this site generates a free 5'-OH and a covalent complex between XerC and the 3' end of the DNA.  相似文献   

2.
Jung KY  Kodama T  Greenberg MM 《Biochemistry》2011,50(28):6273-6279
Oxidation of the C5'-position of DNA results in direct strand scission. The 3'-fragments produced contain DNA lesions at their 5'-termini. The major DNA lesion contains an aldehyde at its C5'-position, but its nucleobase is unmodified. Excision of the lesion formed from oxidation of thymidine (T-al) is achieved by strand displacement synthesis by DNA polymerase β (Pol β) in the presence or absence of flap endonuclease 1 (FEN1). Pol β displaces T-al and thymidine with comparable efficiency, but less so than a chemically stabilized abasic site analogue (F). FEN1 cleaves the flaps produced during strand displacement synthesis that are two nucleotides or longer. A ternary complex containing T-al is also a substrate for the bacterial UvrABC nucleotide excision repair system. The sites of strand scission are identical in ternary complexes containing T-al, thymidine, or F. UvrABC incision efficiency of these ternary complexes is comparable as well but significantly slower than a duplex substrate containing a bulky substituted thymidine. However, cleavage occurs only on the 5'-fragment and does not remove the lesion. These data suggest that unlike many lesions the redundant nature of base excision and nucleotide excision repair systems does not provide a means for removing the major damage product produced by agents that oxidize the C5'-position. This may contribute to the high cytotoxicity of drugs that oxidize the C5'-position in DNA.  相似文献   

3.
4.
We had earlier characterized the nascent DNA synthesized in permeable cells of Bacillus subtilis in the presence of 5-mercurideoxycytidine triphosphate and 2',3'-dideoxyATP as being substituted at its 5' end with a ribonucleotide moiety of the sequence pApG(pC)1-2 DNA. In this paper, we examine the origin and turnover of the DNA-linked ribonucleotide and its relationship to DNA replication. At least 50% of the RNA-linked nascent DNA chains served as guanylate acceptors when incubated with GTP and the eukaryotic capping enzyme, indicating the presence of 5'-terminal di- or triphosphate groups and suggesting that the RNA moiety is synthesized de novo and is not a degradation product. In nascent DNA produced without limitation of chain growth by dideoxyATP, the degree of terminal ribonucleotide substitution was reduced by 50%, consistent with a linkage between RNA primer removal and DNA chain growth. Such a relationship was demonstrated directly by examining the RNA primer content of nascent DNA synthesized in the absence of dideoxyATP as a function of DNA chain length. As the DNA size increased from 40 to 200 nucleotide residues, the extent of RNA substitution declined from 80% to nearly 0%. Endgroup analysis showed that the loss of RNA was accompanied by a gradual shift from predominantly adenylate residues to 5'-terminal guanylate, consistent with a stepwise removal of ribonucleotides from the 5' end. Evidence that the nascent mercurated DNA synthesized under our experimental conditions was indeed a replicative intermediate came from the study of the time course of DNA chain growth and pulse-chase experiments. In the presence of the DNA ligase inhibitor NMN, mercurated DNA accumulated in two size classes with average length of approximately 750 and 8000 nucleotide residues, presumably representing the mature size of intermediates in discontinuous DNA synthesis. Comparison with the DNA size range at which the loss of the 5'-terminal RNA moiety occurred (40 to 200 residues) indicated that the processing of RNA primers occurred at an early stage during DNA chain elongation, and that moderate size intermediates in discontinuous DNA replication (greater than 200 nucleotides) have already lost their RNA primers.  相似文献   

5.
We describe an in vitro protocol for quickly generating overlapping terminal-labeled restriction fragments for DNA sequence analysis via the Maxam-Gilbert technique. The protocol involves introducing mercurated nucleotides into one end of a region to be sequenced, partial digestion with several restriction enzymes and terminal-labeling, separation of the mercurated restriction enzymes and terminal-labeling, separation of the mercurated restriction fragments from non-mercurated ones on a thiol column and resolution of the different mercurated fragments on one preparative agarose gel. The protocol was used to determine the nucleotide sequence of a 980 base pair cDNA that contains the coding region for a variable surface glycoprotein of Trypanosoma brucei. It could just as quickly and easily be used to obtain many terminal-labeled overlapping restriction fragments covering a region of several kilobases.  相似文献   

6.
Direct covalent mercuration of nucleotides and polynucleotides.   总被引:11,自引:0,他引:11  
Nucleotides of cytosine and uracil are readily mercurated by heating at 37-50 degrees in buffered aqueous solutions (pH 5.0-8.0) containing mercuric acetate. Proton magnetic resonance, elemental, electrophoretic, and chromatographic analyses have shown the products to be 5-mercuricytosine and 5-mercuriuracil derivatives, where the mercury atom is covalently bonded. Polynucleotides can be mercurated under similar conditions. Cytosine and uracil bases are modified in RNA while only cytosine residues in DNA are substituted. There is little, if any, reaction with adenine, thymine, or guanine bases. The rate of polymer mercuration is, unlike that of mononucleotides, markedly influenced by the ionic strength of the reaction mixture: the lower the ionic strength the faster the reaction rate. Pyrimidine residues in single- and double-stranded polymers react at essentially the same rate. Although most polynucleotides can be extensively mercurated at pH 7.0 in sodium or Trisacetate buffers, tRNA undergoes only limited substitution in Tris buffers. The mild reaction conditions give minimal single-strand breakage and, unlike direct iodination procedures, do not produce pyrimidine hydrates. Mercurated polynucleotides can be exploited in a variety of ways, particularly by crystallographic and electron microscopic techniques, as tools for studying polynucleotide structure.  相似文献   

7.
8.
On growing the cells of Bacillus brevis S methionine-auxotroph mutant in the presence of [Me-3H]methionine, practically all the radioactivity incorporated into DNA is found to exist in 5-methylcytosine and N6-methyladenine. The analysis of pyrimidine isopliths isolated from DNA shows that radioactivity only exists in mono- and dinucleotides and the content of 5-methylcytosine in R-m5 C-R and R-m5 C-T-R oligonucleotides is equal. The analysis of dinucleotides isolated from DNA by means of pancreatic DNAase hydrolysis allows the nature of purine residues neighbouring 5-methylcytosine to be identified and shows that 5-methylcytosine localizes in G-m5 C-A and G-m5 C-Tr fragments. B. brevis S DNA methylase modifying cytosine residues recognizes the GCA/TGC degenerate nucleotide sequence which is a part of the following complementary structure with a two-fold rotational axis of symmetry: (5')...N'-G-C-T-G-C-N... (3') (3')...N-C-G-A-C-G-N'... (5') (Methylated cytosine residues are askerisked). Cytosine-modifying DNA methylase activity is isolated from B. brevis cells; it is capable of methylating in vitro homologous and heterologous DNA. Hence DNA in bacterial cells can be undermethylated. This enzyme methylates cytosine residues in native and denatured DNA in the same nucleotide sequences. Specificity of methylation of cytosine residues in vitro and in vivo does not depend on the nature of substrate DNA. DNA methylases of different variants of B. brevis (R, S, P+, P-)) methylate cytosine residues in the same nucleotide sequences. It means that specificity or methylation of DNA cytosine residues in the cells of different variants of B. brevis is the same.  相似文献   

9.
S Panyim  T Ohno    J P Jost 《Nucleic acids research》1978,5(4):1353-1370
Optimal conditions for prolonged in vitro synthesis of RNA in isolated chicken liver nuclei have been described. It is shown by incorporation of gamma32P-GTP into RNA, analysis of the product on sucrose density gradient, and digestion with alkaline phosphatase and ribonuclease A that there is reinitiation of RNA synthesis. Polynucleotide kinase activity has been ruled out as explanation for the incorporation of gamma32P-GTP. alpha-Amanitin inhibits RNA synthesis by about 50%. Nuclei prepared from estradiol-treated chicks have twice the RNA synthesis activity as the controls. RNA is synthesized in the presence of Hg-UTP and the mercurated product separated by affinity chromatography on sulfhydryl-Sepharose column under stringent conditions. Vitellogenin mRNA sequences are measured by hybridization with DNA complementary to vitellogenin mRNA. Estradiol treatment leads to a 10-fold increase in vitellogenin mRNA sequences.  相似文献   

10.
Summary Recombination of T4 phage is not controlled by the host recA gene but by an analogous phage gene, uvsX. We have tested the hypothesis that recA protein is inactive in T4-infected cells because it is unable to catalyze reactions involving single stranded DNA containing glucosyl-hydroxylmethyl-deoxycytidine. We found, however, that with modified and unmodified deoxycytidine containing DNAs, uvsX protein and recA protein catalyze in vitro reactions related to DNA recombination, but in T4-infected cells recA protein fails to promote strand transfer of DNA which contains unmodified deoxycytidine.Abbreviations dC-DNA deoxycytidine containing DNA - dC-T4 T4 phage containing dC-DNA - dHMC-DNA glucosyl-hydroxymethyl-deoxycytidine containing DNA - dsDNA double stranded DNA - gp gene product - ssDNA single stranded DNA  相似文献   

11.
Flap endonucleases (FENs) catalyse the exonucleolytic hydrolysis of blunt-ended duplex DNA substrates and the endonucleolytic cleavage of 5'-bifurcated nucleic acids at the junction formed between single and double-stranded DNA. The specificity and catalytic parameters of FENs derived from T5 bacteriophage and Archaeoglobus fulgidus were studied with a range of single oligonucleotide DNA substrates. These substrates contained one or more hairpin turns and mimic duplex, 5'-overhanging duplex, pseudo-Y, nicked DNA, and flap structures. The FEN-catalysed reaction properties of nicked DNA and flap structures possessing an extrahelical 3'-nucleotide (nt) were also characterised. The phage enzyme produced multiple reaction products of differing length with all the substrates tested, except when the length of duplex DNA downstream of the reaction site was truncated. Only larger DNAs containing two duplex regions are effective substrates for the archaeal enzyme and undergo reaction at multiple sites when they lack a 3'-extrahelical nucleotide. However, a single product corresponding to reaction 1 nt into the double-stranded region occurred with A. fulgidus FEN when substrates possessed a 3'-extrahelical nt. Steady-state and pre-steady-state catalytic parameters reveal that the phage enzyme is rate-limited by product release with all the substrates tested. Single-turnover maximal rates of reaction are similar with most substrates. In contrast, turnover numbers for T5FEN decrease as the size of the DNA substrate is increased. Comparison of the catalytic parameters of the A. fulgidus FEN employing flap and double-flap substrates indicates that binding interactions with the 3'-extrahelical nucleotide stabilise the ground state FEN-DNA interaction, leading to stimulation of comparative reactions at DNA concentrations below saturation with the single flap substrate. Maximal multiple turnover rates of the archaeal enzyme with flap and double flap substrates are similar. A model is proposed to account for the varying specificities of the two enzymes with regard to cleavage patterns and substrate preferences.  相似文献   

12.
13.
A method for isolating picomole quantities of nascent mercurated DNA from a mixture of cellular nucleic acids using affinity chromatography on thiol-agarose is described. Analysis of mercurated DNA (HgDNA) isolated in the presence of in vivo-labeled cellular RNA or in vitro-synthesized RNA showed a low level of RNA contamination, about 0.04-0.16%, in the HgDNA. Comparative binding studies on different thiol matrices showed that the efficiency of binding of HgDNA was related to the nature but not to the SH content of the matrix used. Another important parameter for binding was the structure of HgDNA. The recovery was 98% with large nascent HgDNA sedimenting at about 30 S, whereas for short pulse-labeled single-stranded HgDNA (20-50 nucleotides long), the maximum recovery was 60%. The effect of the structure of HgDNA on the binding to the thiol matrix was probed using a variety of well-defined mercurated structures obtained from phage DNA and their restriction fragments. For DNA containing one 5-mercuricytidine 5'-triphosphate (HgdCMP) residue at each 3'-end, short fragments (size range, 230-510 bp) were bound quantitatively. With larger fragments (size range, 490-1100 bp), the binding decreased progressively with increasing size. DNA fragments larger than 1060 bp did not bind to the matrix. Single-stranded DNA containing only one HgdCMP at one end did not bind to the matrix even in the size range 200-1100 nucleotides. In contrast, continuous stretches of HgdCMP residues in one strand or short stretches of HgdCMP residues at random in both strands permit quantitative binding irrespective of size.  相似文献   

14.
Mercurated nucleic acid probes can be used for non-radioactive in situ hybridization. The principle of the method is based on the reaction of the mercurated pyrimidine residues of the in situ hybridized probe with the sulfhydryl group of a ligand which contains a hapten. Next, the hapten is immunocytochemically detected. Previous experiments showed that stable coupling of the sulfhydryl ligands could only be obtained when positively charged amino groups are present in the ligand. On basis of this finding, ligands were synthesized containing a sulfhydryl group, two lysyl residues and hapten groups such as trinitrophenyl, fluorescyl and biotinyl. The ligands, free or bound to mercurated nucleic acids, were immunochemically characterized in ELISAs. The method was shown to be specific and sensitive in the detection of target DNA in situ on microscopic preparations and in dot-blot hybridization reactions on nitrocellulose.  相似文献   

15.
Computer graphics and energy minimization techniques were used to construct a model of DNA containing cis-thymine glycol, an oxidation product of thymine formed in DNA by ionizing radiation. The model simulated an experimental DNA substrate used to study the effects of this lesion on DNA synthesis in vitro. The results derived from the model indicate that cis-thymine glycol lesions introduce localized perturbations of DNA structure. Specifically the model shows that interactions with the neighboring base pair on the 5' side are significantly destabilized by thymine glycol whereas interactions with the 3' base pair are stabilized by the lesion. The magnitude of these effects is modulated by the nucleotide sequence around the lesion, particularly by the nature of the base on the 3' side. The base pair formed between adenine and thymine glycol is energetically stable and shows minimal distortion, suggesting that this lesion retains the ability to direct the insertion of the correct nucleotide during DNA synthesis.  相似文献   

16.
The oxidation of DNA resulting from reactive oxygen species generated during aerobic respiration is a major cause of genetic damage that, if not repaired, can lead to mutations and potentially an increase in the incidence of cancer and aging. A major oxidation product generated in cells is 8-oxoguanine (oxoG), which is removed from the nucleotide pool by the enzymatic hydrolysis of 8-oxo-2'-deoxyguanosine triphosphate and from genomic DNA by 8-oxoguanine-DNA glycosylase. Finding and repairing oxoG in the midst of a large excess of unmodified DNA requires a combination of rapid scanning of the DNA for the lesion followed by specific excision of the damaged base. The repair of oxoG involves flipping the lesion out of the DNA stack and into the active site of the 8-oxoguanine-DNA glycosylase. This would suggest that thermodynamic stability, in terms of the rate for local denaturation, could play a role in lesion recognition. While prior X-ray crystal and NMR structures show that DNA with oxoG lesions appears virtually identical to the corresponding unmodified duplex, thermodynamic studies indicate that oxoG has a destabilizing influence. Our studies show that oxoG destabilizes DNA (ΔΔG of 2-8 kcal mol(-1) over a 16-116 mM NaCl range) due to a significant reduction in the enthalpy term. The presence of oxoG has a profound effect on the level and nature of DNA hydration indicating that the environment around an oxoG?C is fundamentally different than that found at G?C. The temperature-dependent imino proton NMR spectrum of oxoG modified DNA confirms the destabilization of the oxoG?C pairing and those base pairs that are 5' of the lesion. The instability of the oxoG modification is attributed to changes in the hydrophilicity of the base and its impact on major groove cation binding.  相似文献   

17.
18.
5('),5(')-Adenylyl pyrophosphoryl DNA (AppDNA) contains a high-energy pyrophosphate linkage and can be exploited as an activated DNA substrate to derive new DNA enzymes for carrying out various DNA modification reactions. For this reason, enzymatic synthesis of AppDNA is highly desirable. AppDNA is a known intermediate in DNA ligase mediated DNA ligation reactions, but rarely accumulates under normal reaction conditions. Here we report that T4 DNA ligase can quantitatively convert 5(')-phosphoryl DNA donor into AppDNA in the absence of acceptor DNA but in the presence of a template DNA that contains at least one unpaired nucleotide opposite the 5(')-phosphoryl DNA donor site. This adenylylation behavior of T4 DNA ligase is not observed with Thermus aquaticus (Taq) and Escherichia coli DNA ligases. We further found that a donor-template duplex of 11-bp in length is required by T4 DNA ligase for the formation of AppDNA.  相似文献   

19.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

20.
The role of 2'-hydroxyl groups in a model substrate for RNase P from Escherichia coli was studied using mixed DNA/RNA derivatives of such a substrate. The presence of the 2'-hydroxyl groups of nucleotides at positions -1 and -2 in the leader sequence and at position 1, as well as at the first C in the 3'-terminal CCA sequence, are important but not absolutely essential for efficient cleavage of the substrate by RNase P or its catalytic RNA subunit, M1 RNA. The 2'-hydroxyl groups in the substrate that are important for efficient cleavage also participate in the binding of Mg2+. An all-DNA external guide sequence (EGS) can efficiently render a potential substrate, derived from the model substrate, susceptible to cleavage by the enzyme or its catalytic RNA subunit. Furthermore, both DNA and RNA EGSs turn over during the reaction with RNase P in vitro. The identity of the nucleotide at position 1 in the substrate, the adjacent Mg(2+)-binding site in the leader sequence, and the junction of the single and double-stranded regions are the important elements in the recognition of model substrates, as well as in the identification of the sites of cleavage in those model substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号