共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jobst Pfaender Renny K. Hadiaty Ulrich K. Schliewen Fabian Herder 《Proceedings. Biological sciences / The Royal Society》2016,283(1822)
Strong disruptive ecological selection can initiate speciation, even in the absence of physical isolation of diverging populations. Species evolving under disruptive ecological selection are expected to be ecologically distinct but, at least initially, genetically weakly differentiated. Strong selection and the associated fitness advantages of narrowly adapted individuals, coupled with assortative mating, are predicted to overcome the homogenizing effects of gene flow. Theoretical plausibility is, however, contrasted by limited evidence for the existence of rugged adaptive landscapes in nature. We found evidence for multiple, disruptive ecological selection regimes that have promoted divergence in the sympatric, incipient radiation of ‘sharpfin’ sailfin silverside fishes in ancient Lake Matano (Sulawesi, Indonesia). Various modes of ecological specialization have led to adaptive morphological differences between the species, and differently adapted morphs display significant but incomplete reproductive isolation. Individual fitness and variation in morphological key characters show that disruptive selection shapes a rugged adaptive landscape in this small but complex incipient lake fish radiation. 相似文献
3.
Caroline M. Thow John M. Eadie Caitlin P. Wells Bruce E. Lyon 《Molecular ecology resources》2022,22(1):180-198
Modern genetic parentage methods reveal that alternative reproductive strategies are common in both males and females. Under ideal conditions, genetic methods accurately connect the parents to offspring produced by extra-pair matings or conspecific brood parasitism. However, some breeding systems and sampling scenarios present significant complications for accurate parentage assignment. We used simulated genetic pedigrees to assess the reliability of parentage assignment for a series of challenging sampling regimes that reflect realistic conditions for many brood-parasitic birds: absence of genetic samples from sires, absence of samples from brood parasites and female kin-structured populations. Using 18 microsatellite markers and empirical allele frequencies from two populations of a conspecific brood parasite, the wood duck (Aix sponsa), we simulated brood parasitism and determined maternity using two widely used programs, cervus and colony . Errors in assignment were generally modest for most sampling scenarios but differed by program: cervus suffered from false assignment of parasitic offspring, whereas colony sometimes failed to assign offspring to their known mothers. Notably, colony was able to accurately infer unsampled parents. Reducing the number of markers (nine loci rather than 18) caused the assignment error to slightly worsen with colony but balloon with cervus . One potential error with important biological implications was rare in all cases—few nesting females were incorrectly excluded as the mother of their own offspring, an error that could falsely indicate brood parasitism. We consider the implications of our findings for both a retrospective assessment of previous studies and suggestions for best practices for future studies. 相似文献
4.
5.
De Mársico MC Reboreda JC 《Proceedings. Biological sciences / The Royal Society》2008,275(1650):2499-2506
Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity. 相似文献
6.
The importance of sympatric speciation – the evolution of reproductive isolation between codistributed conspecific individuals – in generating biodiversity is highly controversial. Allochrony, or differences in breeding time (phenology) between conspecific individuals, has the potential to lead to reproductive isolation and therefore speciation. We critically review the literature to test the importance of allochronic speciation over the three timescales over which allochrony can occur – over the day, between seasons or between years – and explore what is known about genomic mechanisms underlying allochrony in the diverse taxa in which it is found. We found that allochrony can be a key contributor to reproductive isolation, especially if populations have little overlap in breeding time and therefore little potential for gene flow, and may sometimes be the initial or key driver of speciation. Shifts in phenology can be caused by several factors, including a new ecological opportunity, environmental change, or reinforcement. The underlying genomic basis of allochrony has been studied mostly in insects, highlighting the need for genomic studies in other taxa; nonetheless, results to date indicate that several cases of allochrony involve changes in circadian genes. This review provides the first comprehensive discussion of the role of allochrony in speciation and demonstrates that allochrony as a contributor to divergence may be more widespread than previously thought. Understanding genomic changes and adaptations allowing organisms to breed at new times may be key in the light of phenological changes required under climate change. 相似文献
7.
Patrik Nosil Zach Gompert Timothy E. Farkas Aaron A. Comeault Jeffrey L. Feder C. Alex Buerkle Thomas L. Parchman 《Proceedings. Biological sciences / The Royal Society》2012,279(1749):5058-5065
Diverse geographical modes and mechanisms of speciation are known, and individual speciation genes have now been identified. Despite this progress, genome-wide outcomes of different evolutionary processes during speciation are less understood. Here, we integrate ecological and spatial information, mating trials, transplantation data and analysis of 86 130 single nucleotide polymorphisms (SNPs) in eight populations (28 pairwise comparisons) of Timema cristinae stick insects to test the effects of different factors on genomic divergence in a system undergoing ecological speciation. We find patterns consistent with effects of numerous factors, including geographical distance, gene flow, divergence in host plant use and climate, and selection against maladaptive hybridization (i.e. reinforcement). For example, the number of highly differentiated ‘outlier loci’, allele-frequency clines and the overall distribution of genomic differentiation were recognizably affected by these factors. Although host use has strong effects on phenotypic divergence and reproductive isolation, its effects on genomic divergence were subtler and other factors had pronounced effects. The results demonstrate how genomic data can provide new insights into speciation and how genomic divergence can be complex, yet predictable. Future work could adopt experimental, mapping and functional approaches to directly test which genetic regions are affected by selection and determine their physical location in the genome. 相似文献
8.
Lynne M. Mullen Sacha N. Vignieri Jeffery A. Gore Hopi E. Hoekstra 《Proceedings. Biological sciences / The Royal Society》2009,276(1674):3809-3818
A major goal in evolutionary biology is to understand how and why populations differentiate, both genetically and phenotypically, as they invade a novel habitat. A classical example of adaptation is the pale colour of beach mice, relative to their dark mainland ancestors, which colonized the isolated sandy dunes and barrier islands on Florida''s Gulf Coast. However, much less is known about differentiation among the Gulf Coast beach mice, which comprise five subspecies linearly arrayed on Florida''s shoreline. Here, we test the role of selection in maintaining variation among these beach mouse subspecies at multiple levels—phenotype, genotype and the environments they inhabit. While all beach subspecies have light pelage, they differ significantly in colour pattern. These subspecies are also genetically distinct: pair-wise Fst-values range from 0.23 to 0.63 and levels of gene flow are low. However, we did not find a correlation between phenotypic and genetic distance. Instead, we find a significant association between the average ‘lightness’ of each subspecies and the brightness of the substrate it inhabits: the two most genetically divergent subspecies occupy the most similar habitats and have converged on phenotype, whereas the most genetically similar subspecies occupy the most different environments and have divergent phenotypes. Moreover, allelic variation at the pigmentation gene, Mc1r, is statistically correlated with these colour differences but not with variation at other genetic loci. Together, these results suggest that natural selection for camouflage—via changes in Mc1r allele frequency—contributes to pigment differentiation among beach mouse subspecies. 相似文献
9.
Alan G. Hudson Pascal Vonlanthen Ole Seehausen 《Proceedings. Biological sciences / The Royal Society》2011,278(1702):58-66
The Alpine lake whitefish (Coregonus lavaretus) species complex is a classic example of a recent radiation, associated with colonization of the Alpine lakes following the glacial retreat (less than 15 kyr BP). They have formed a unique array of endemic lake flocks, each with one to six described sympatric species differing in morphology, diet and reproductive ecology. Here, we present a genomic investigation of the relationships between and within the lake flocks. Comparing the signal between over 1000 AFLP loci and mitochondrial control region sequence data, we use phylogenetic tree-based and population genetic methods to reconstruct the phylogenetic history of the group and to delineate the principal centres of genetic diversity within the radiation. We find significant cytonuclear discordance showing that the genomically monophyletic Alpine whitefish clade arose from a hybrid swarm of at least two glacial refugial lineages. Within this radiation, we find seven extant genetic clusters centred on seven lake systems. Most interestingly, we find evidence of sympatric speciation within and parallel evolution of equivalent phenotypes among these lake systems. However, we also find the genetic signature of human-mediated gene flow and diversity loss within many lakes, highlighting the fragility of recent radiations. 相似文献
10.
Although homoploid hybrid speciation in plants is probably more common than previously realized, there are few well-documented cases of homoploid hybrid origin in conifers. We examined genetic divergence between two currently widespread pines in Northeast China, Pinus sylvestris var. mongolica and Pinus densiflora, and also whether two narrowly distributed pines in the same region, Pinus funebris and Pinus takahasii, might have originated from the two widespread species by homoploid hybrid speciation. Our results, based on population genetic analysis of chloroplast (cp), mitochondrial (mt) DNA, and nuclear gene sequence variation, showed that the two widespread species were divergent for both cp- and mtDNA variation, and also for haplotype variation at two of eight nuclear gene loci surveyed. Our analysis further indicated that P. sylvestris var. mongolica and P. densiflora remained allopatric during the most severe Quaternary glacial period that occurred in Northeast China, but subsequently exhibited rapid range expansions. P. funebris and P. takahasii, were found to contain a mixture of chlorotypes and nuclear haplotypes that distinguish P. sylvestris var. mongolica and P. densiflora, in support of the hypothesis that they possibly originated via homoploid hybrid speciation following secondary contact and hybridization between P. sylvestris var. mongolica and P. densiflora. 相似文献
11.
Ecological divergence among populations may be strongly influenced by their genetic background. For instance, genetic admixture through introgressive hybridization or hybrid speciation is likely to affect the genetic variation and evolvability of phenotypic traits. We studied geographic variation in two beak dimensions and three other phenotypic traits of the Italian sparrow (Passer italiae), a young hybrid species formed through interbreeding between house sparrows (P. domesticus) and Spanish sparrows (P. hispaniolensis). We found that beak morphology was strongly influenced by precipitation regimes and that it appeared to be the target of divergent selection within Italian sparrows. Interestingly, however, the degree of parental genetic contribution in the hybrid species had no effect on phenotypic beak variation. Moreover, beak height divergence may mediate genetic differentiation between populations, consistent with isolation-by-adaptation within this hybrid species. The study illustrates how hybrid species may be relatively unconstrained by their admixed genetic background, allowing them to adapt rapidly to environmental variation. 相似文献
12.
Nadeau NJ Whibley A Jones RT Davey JW Dasmahapatra KK Baxter SW Quail MA Joron M ffrench-Constant RH Blaxter ML Mallet J Jiggins CD 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1587):343-353
Heliconius butterflies represent a recent radiation of species, in which wing pattern divergence has been implicated in speciation. Several loci that control wing pattern phenotypes have been mapped and two were identified through sequencing. These same gene regions play a role in adaptation across the whole Heliconius radiation. Previous studies of population genetic patterns at these regions have sequenced small amplicons. Here, we use targeted next-generation sequence capture to survey patterns of divergence across these entire regions in divergent geographical races and species of Heliconius. This technique was successful both within and between species for obtaining high coverage of almost all coding regions and sufficient coverage of non-coding regions to perform population genetic analyses. We find major peaks of elevated population differentiation between races across hybrid zones, which indicate regions under strong divergent selection. These 'islands' of divergence appear to be more extensive between closely related species, but there is less clear evidence for such islands between more distantly related species at two further points along the 'speciation continuum'. We also sequence fosmid clones across these regions in different Heliconius melpomene races. We find no major structural rearrangements but many relatively large (greater than 1 kb) insertion/deletion events (including gain/loss of transposable elements) that are variable between races. 相似文献
13.
Uniparental maternal brood care often coincides with multiple paternity and single maternity of broods, possibly reflecting benefits of polyandry and costs of uniparental care. Genetic data from the maternally mouthbrooding cichlid fish Simochromis pleurospilus revealed the opposite pattern--low polyandry and allomaternal care. More than 70% of the investigated females had mated with a single male, and 14% of the females had unrelated fry in their broods. Broods with foreign fry were in the late stage of brood care, in which females guard free-swimming fry and recall the broods into their mouths for protection. With one exception, fostering females were related to their adopted fry at the level of first cousins (R(QG) > 0.12), but relatedness between fosters and adopted fry was not significantly higher than between fosters and fry tended by other females. Relatedness among breeders extended to the level of first-order relatives. Mean relatedness among contemporaneously breeding dams (R(QG) = 0.08) was significantly higher than among dams breeding in different seasons (R(QG) = -0.04), which suggests a temporal or spatial concentration of mouthbrooding relatives. Indeed, females sometimes brood in small groups. This behaviour may reduce brood predation but will increase the risk of brood mixing, which is possibly mitigated by low costs of brood care and indirect benefits accrued by relatedness among the breeders in the group. Remarkably, the apparent inbreeding potential did not give rise to bet-hedging polyandry or active avoidance of relatives, as half of the mated individuals were related at R(QG) > 0.13 and polyandry did not coincide with high within-pair relatedness. 相似文献
14.
Tucker MA Gerhardt HC 《Proceedings. Biological sciences / The Royal Society》2012,279(1733):1583-1587
For polyploid species to persist, they must be reproductively isolated from their diploid parental species, which coexist at the same time and place at least initially. In a complex of biparentally reproducing tetraploid and diploid tree frogs in North America, selective phonotaxis--mediated by differences in the pulse-repetition (pulse rate) of their mate-attracting vocalizations--ensures assortative mating. We show that artificially produced autotriploid females of the diploid species (Hyla chrysoscelis) show a shift in pulse-rate preference in the direction of the pulse rate produced by males of the tetraploid species (Hyla versicolor). The estimated preference function is centred near the mean pulse rate of the calls of artificially produced male autotriploids. Such a parallel shift, which is caused by polyploidy per se and whose magnitude is expected to be greater in autotetraploids, may have facilitated sympatric speciation by promoting reproductive isolation of the initially formed polyploids from their diploid parental forms. This process also helps to explain why tetraploid lineages with different origins have similar advertisement calls and freely interbreed. 相似文献
15.
Hypotheses for divergence and speciation in rainforests generally fall into two categories: those emphasizing the role of geographic isolation and those emphasizing the role of divergent selection along gradients. While a majority of studies have attempted to infer mechanisms based on the pattern of species richness and congruence of geographic boundaries, relatively few have tried to simultaneously test alternative hypotheses for diversification. Here we discuss four examples, taken from our work on diversification of tropical rainforest vertebrates, in which we examine patterns of genetic and morphological variation within and between biogeographic regions to address two alternative hypotheses. By estimating morphological divergence between geographically contiguous and isolated populations under similar and different ecological conditions, we attempt to evaluate the relative roles of geographic isolation and natural selection in population divergence. Results suggest that natural selection, even in the presence of appreciable gene flow, can result in morphological divergence that is greater than that found between populations isolated for millions of years and, in some cases, even greater than that found between congeneric, but distinct, species. The relatively small phenotypic divergence that occurs among long-term geographic isolates in similar habitats suggests that morphological divergence via drift may be negligible and/or that selection is acting to produce similar phenotypes in populations occupying similar habitats. Our results demonstrate that significant phenotypic divergence: (1) is not necessarily coupled with divergence in neutral molecular markers; and (2) can occur without geographic isolation in the presence of gene flow. 相似文献
16.
Recent divergence with gene flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies 总被引:2,自引:1,他引:2
Cave organisms occupy a special place in evolutionary biology because convergent morphologies of many species demonstrate repeatability in evolution even as they obscure phylogenetic relationships. The origin of specialized cave-dwelling species also raises the issue of the relative importance of isolation vs. natural selection in speciation. Two alternative hypotheses describe the origin of subterranean species. The 'climate-relict' model proposes allopatric speciation after populations of cold-adapted species become stranded in caves due to climate change. The 'adaptive-shift' model proposes parapatric speciation driven by divergent selection between subterranean and surface habitats. Our study of the Tennessee cave salamander complex shows that the three nominal forms (Gyrinophilus palleucus palleucus, G. p. necturoides, and G. gulolineatus) arose recently and are genealogically nested within the epigean (surface-dwelling) species, G. porphyriticus. Short branch lengths and discordant gene trees were consistent with a complex history involving gene flow between diverging forms. Results of coalescent-based analysis of the distribution of haplotypes among groups reject the allopatric speciation model and support continuous or recurrent genetic exchange during divergence. These results strongly favour the hypothesis that Tennessee cave salamanders originated from spring salamanders via divergence with gene flow. 相似文献
17.
A. S. T. Papadopulos Z. Price C. Devaux H. Hipperson C. M. Smadja I. Hutton W. J. Baker R. K. Butlin V. Savolainen 《Journal of evolutionary biology》2013,26(4):733-745
On Lord Howe Island, speciation is thought to have taken place in situ in a diverse array of distantly related plant taxa (Metrosideros, Howea and Coprosma; Proc. Natl Acad. Sci. USA 108 , 2011, 13188). We now investigate whether the speciation processes were driven by divergent natural selection in each genus by examining the extent of ecological and genetic divergence. We present new and extensive, ecological and genetic data for all three genera. Consistent with ecologically driven speciation, outlier loci were detected using genome scan methods. This mechanism is supported by individual‐based analyses of genotype–environment correlations within species, demonstrating that local adaptation is currently widespread on the island. Genetic analyses show that prezygotic isolating barriers within species are currently insufficiently strong to allow further population differentiation. Interspecific hybridization was found in both Howea and Coprosma, and species distribution modelling indicates that competitive exclusion may result in selection against admixed individuals. Colonization of new niches, partly fuelled by the rapid generation of new adaptive genotypes via hybridization, appears to have resulted in the adaptive radiation in Coprosma – supporting the ‘Syngameon hypothesis’. 相似文献
18.
Luis Fernando de León Eldredge Bermingham Jeffrey Podos Andrew P. Hendry 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1543):1041-1052
Divergence and speciation can sometimes proceed in the face of, and even be enhanced by, ongoing gene flow. We here study divergence with gene flow in Darwin''s finches, focusing on the role of ecological/adaptive differences in maintaining/promoting divergence and reproductive isolation. To this end, we survey allelic variation at 10 microsatellite loci for 989 medium ground finches (Geospiza fortis) on Santa Cruz Island, Galápagos. We find only small genetic differences among G. fortis from different sites. We instead find noteworthy genetic differences associated with beak. Moreover, G. fortis at the site with the greatest divergence in beak size also showed the greatest divergence at neutral markers; i.e. the lowest gene flow. Finally, morphological and genetic differentiation between the G. fortis beak-size morphs was intermediate to that between G. fortis and its smaller (Geospiza fuliginosa) and larger (Geospiza magnirostris) congeners. We conclude that ecological differences associated with beak size (i.e. foraging) influence patterns of gene flow within G. fortis on a single island, providing additional support for ecological speciation in the face of gene flow. Patterns of genetic similarity within and between species also suggest that interspecific hybridization might contribute to the formation of beak-size morphs within G. fortis. 相似文献
19.
LETITIA M. REICHART SOFIA ANDERHOLM VIOLETA MUÑOZ‐FUENTES MICHAEL S. WEBSTER 《Molecular ecology》2010,19(2):401-413
In many taxa, females lay eggs in the nests of other conspecifics. To determine the conditions under which conspecific brood parasitism develops, it is necessary to identify parasitic offspring and the females who produce them; however, for most systems parasitism can be difficult to observe and most genetic approaches have relatively low resolving power. In this study, we used protein fingerprinting from egg albumen and 10 microsatellite loci to genetically match parasitic ducklings to their mothers in a population of ruddy ducks (Oxyura jamaicensis). We found that 67% of nests contained parasitic offspring, and we successfully identified their mothers in 61% of the cases. Of the parasitic females identified, 77% also had nests of their own (i.e. a dual tactic, where females both nest and lay parasitically), and we found no evidence that parasitic females pursued a specialist (parasitism only) tactic. We also found that parasitic egg laying was not influenced by nest loss, predation or female condition. Thus, in contrast to most waterfowl studied to date, female ruddy ducks appear to lay parasitic eggs whenever the opportunity arises. 相似文献
20.
M Thomasset T R Hodkinson G Restoux N Frascaria-Lacoste G C Douglas J F Fernández-Manjarrés 《Heredity》2014,112(6):596-606
The risks of gene flow between interfertile native and introduced plant populations are
greatest when there is no spatial isolation of pollen clouds and phenological patterns
overlap completely. Moreover, invasion probabilities are further increased if introduced
populations are capable of producing seeds by selfing. Here we investigated the mating
system and patterns of pollen-mediated gene flow among populations of native ash
(Fraxinus excelsior) and mixed plantations of non-native ash (F.
angustifolia and F. excelsior) as well as hybrid ash (F.
excelsior × F. angustifolia) in Ireland. We analysed the flowering
phenology of the mother trees and genotyped with six microsatellite loci in progeny arrays
from 132 native and plantation trees (1493 seeds) and 444 potential parents. Paternity
analyses suggested that plantation and native trees were pollinated by both native and
introduced trees. No signs of significant selfing in the introduced trees were observed
and no evidence of higher male reproductive success was found for introduced trees
compared with native ones either. A small but significant genetic structure was found
(φft=0.05) and did not correspond to an isolation-by-distance
pattern. However, we observed a significant temporal genetic structure related to the
different phenological groups, especially with early and late flowering native trees; each
phenological group was pollinated with distinctive pollen sources. Implications of these
results are discussed in relation to the conservation and invasiveness of ash and the
spread of resistance genes against pathogens such as the fungus Chalara fraxinea
that is destroying common ash forests in Europe. 相似文献