首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soluble, C-terminal truncated form of human membrane type 1 matrix metalloproteinase (MT1-MMP) containing the hemopexin-like domain was expressed in Pichia pastoris strain KM71. High levels of secreted protein were detected. Although the c-DNA for the proenzyme (Ala(21)-Glu(523) called DeltaTM-MT1-MMP) was cloned, almost only active MT1-MMP (Tyr(112)-Glu(523)) with identical N-terminus as described for the wild-type enzyme was isolated. This active enzyme was highly purified and characterized with respect to its biochemical properties. The recombinant protein showed high stability against autolysis and proteolysis by yeast proteases, although the calculated in vivo half-life is rather low. The biochemical properties of this new MT1-MMP species were compared with the well-characterized catalytic domain (Ile(114)-Ile(318)) of MT1-MMP. The novel form of MT1-MMP exhibited a higher stability against autolysis than the isolated catalytic domain (Ile(114)-Ile(318)).  相似文献   

2.
Matrix metalloproteinases (MMPs) are widely distributed in vertebrate tissues and form a large family consisting of at least four distinct subfamilies. Higher vertebrate MMP-13 is well-known as collagenase-3, which represents the third member of a collagenase subfamily. In this study, we cloned cDNA coding for a unique fish homologue of human MMP-13 from a rainbow trout fibroblast cDNA library. The cDNA was 2.1 kb long and contained an open reading frame encoding a protein of 475 amino acids. The catalytic domain of the protein was 66% identical to the human counterpart with the greatest degree of identity occurring in the zinc binding site. In addition, it possessed three amino-acid residues (Tyr122, Asp233 and Gly235) characteristic of the collagenase subfamily, together with a six residue insertion which did not occur in the collagenase subfamily. Then the isolated cDNA was expressed in Escherichia coli and the recombinant protein was found to degrade gelatin and skin type I collagen. It is worth noting that rainbow trout type I collagen was more susceptible to proteolysis with the recombinant protein when compared with the calf one. It appeared that the recombinant protein also cleaved the nonhelical regions of rainbow trout muscle type V collagen. These results have revealed that the cDNA encodes a unique MMP-13 of rainbow trout. This is the first report of cDNA coding for fish MMP capable of degrading type I collagen.  相似文献   

3.
Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn(2+)- and Ca(2+)-dependent MMPs. To investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn(2+) and Ca(2+). While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH(2) with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a pro-tumor necrosis factor-alpha converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH(2). Catalytic efficiency with the pro-tumor necrosis factor-alpha converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pK(a3) = 6.2, pK(a2) = 8.3, and pK(a1) = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymatic activity. MT4-MMP is, therefore, a competent Zn(2+)-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A.  相似文献   

4.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a collagenolytic enzyme that has been implicated in normal development and in pathological processes such as cancer metastasis. The activity of MT1-MMP is regulated extensively at the post-translational level, and the current data support the hypothesis that MT1-MMP activity is modulated by glycosylation. Enzymatic deglycosylation, site-directed mutagenesis, and lectin precipitation assays were used to demonstrate that MT1-MMP contains O-linked complex carbohydrates on the Thr(291), Thr(299), Thr(300), and/or Ser(301) residues in the proline-rich linker region. MT1-MMP glycoforms were detected in human cancer cell lines, suggesting that MT1-MMP activity may be regulated by differential glycosylation in vivo. Although the autolytic processing and interstitial collagenase activity of MT1-MMP were not impaired in glycosylation-deficient mutants, cell surface MT1-MMP-catalyzed activation of pro-matrix metalloproteinase-2 (proMMP-2) required proper glycosylation of MT1-MMP. The inability of carbohydrate-free MT1-MMP to activate proMMP-2 was not a result of defective MT1-MMP zymogen activation, aberrant protein stability, or inability of the mature enzyme to oligomerize. Rather, our data support a mechanism whereby glycosylation affects the recruitment of tissue inhibitor of metalloproteinases-2 (TIMP-2) to the cell surface, resulting in defective formation of the MT1-MMP/TIMP-2/proMMP-2 trimeric activation complex. These data provide evidence for an additional mechanism for post-translational control of MT1-MMP activity and suggest that glycosylation of MT1-MMP may regulate its substrate targeting.  相似文献   

5.
Liu CH  Wu PS 《Biotechnology letters》2006,28(21):1725-1730
There is little information available on the proteases expressed by human embryonic kidney (HEK) cells, which are often used for expression of recombinant proteins and production of adenovirus vector. The expression profile of proteases in HEK cell line was investigated using zymography, mRNA analysis, western blotting and protein array. The major protease was gelatinase A [or matrix metalloproteinase (MMP)-2]. Beside, other MMPs, such as MMP-1, -2, -3, -8, -9, -10, -13 and membrane type (MT) 1- and 3−MMP, as well as tissue inhibitors of metalloproteinase (TIMP)-1, -2 and -3, were also expressed by HEK cells. Characterization of MMP and TIMP profiles expressed by HEK cells provides the basis for degradation control of recombinant protein and adenovirus vector during culture and purification processes.  相似文献   

6.
7.
Matrix metalloproteinase 9 (MMP-9), also known as 92-kDa gelatinase/type IV collagenase, is secreted from neutrophils, macrophages, and a number of transformed cells in zymogen form. Here we report that matrix metalloproteinase 3 (MMP-3/stromelysin) is an activator of the precursor of matrix metalloproteinase 9 (proMMP-9). MMP-3 initially cleaves proMMP-9 at the Glu40-Met41 bond located in the middle of the propeptide to generate an 86-kDa intermediate. Cleavage of this bond triggers a change in proMMP-9 that renders the Arg87-Phe88 bond susceptible to the second cleavage by MMP-3, resulting in conversion to an 82-kDa form. alpha 2-Macroglobulin binding studies of partially activated MMP-9 demonstrate that the 82-kDa species is proteolytically active, but not the initial intermediate of 86 kDa. This stepwise activation mechanism of proMMP-9 is analogous to those of other members of the MMP family, but the action of MMP-3 on proMMP-9 is the first example of zymogen activation that can be triggered by another member of the MMP family. The results imply that MMP-3 may be an effective activator of proMMP-9 in vivo.  相似文献   

8.
To investigate the biological role of variants of human insulin-like growth factor II (IGF-II), an extended form designated IGF-IIE21, with a molecular mass of 9.8 kDa, was produced in Escherichia coli as a stable and soluble secreted fusion protein. After site-specific cleavage of the affinity purified fusion protein, followed by purification using ion exchange and reversed phase chromatography, it could be demonstrated that IGF-IIE21 and IGF-II have similar or identical activities according to radioimmunoassay and radioreceptor assay. However, IGF-IIE21 showed only 1% growth promotion activity as compared with IGF-II in a clonal expansion assay using human K562 cells which lacks IGF-I receptors. These results suggest that this extended variant of IGF-II can bind to the receptor but has limited growth promoting activity.  相似文献   

9.
The shedding of membrane-associated proteins has been recognized as a regulatory mechanism to either up-regulate or down-regulate cellular functions by releasing membrane-bound growth factors or removing ectodomains of adhesion molecules and receptors. We have reported previously that the ectoenzyme of membrane type matrix metalloproteinase 5 (MT5-MMP) is shed into extracellular milieu (Pei, D. (1999) J. Biol. Chem. 274, 8925-8932). Here we present evidence that MT5-MMP is shed by a furin-type convertase activity in the trans-Golgi network. Among proteinase inhibitors screened, only decanoyl-Arg-Val-Lys-Arg-chloromethylketone, a known inhibitor for furin-type convertases, blocked the shedding of MT5-MMP in a dose-dependent manner. As expected, decanoyl-Arg-Val-Lys-Arg-chloromethylketone also prevented the activation of MT5-MMP, raising the possibility that the observed shedding could be autolytic. However, an active site mutant devoid of any catalytic activity, is also shed efficiently, thus ruling out the autolytic pathway. The shedding cleavage was subsequently mapped to the stem region immediately upstream of the transmembrane domain, where a cryptic furin recognition site, (545)RRKERR, was recognized. Indeed, MT5-MMP and furin are co-localized in the trans-Golgi network and the shed species could be detected inside the cells. Furthermore, deletion mutations removing this cryptic site prevented MT5-MMP from shedding. The resulting mutants express a gain-of-function phenotype by mediating more robust activation of proMMP-2 than the wild type molecule. Thus, shedding provides a potential mechanism to regulate proteolytic activity of membrane-bound MMPs.  相似文献   

10.
In the normal heart, cardiomyocytes are surrounded by extracellular matrix (ECM) and latent matrix metalloproteinases (MMPs), which are produced primarily by cardiac fibroblasts. An activator of latent MMPs might be induced by ischemic conditions or pressure-induced stretching. To test the hypothesis that an activator of latent MMP is induced in the ischemic heart during transformation of a compensatory hypertrophic response to a decompensatory failing response in cardiac fibroblast cells, we stretched the human cardiac fibroblasts at 25 cycles/min in serum-free or 5% serum culture condition. The membrane type (MT)-MMP activity in stretched cells was measured by zymography and immuno-blot analyses using MT-MMP-2 antibody. The MT-MMP activity was further characterized by transverse-urea gradient (TUG)-zymography. The results suggested that stretch induced a membrane MMP in the fibroblasts that was similar to the MT-MMP induced in ischemic heart. Furthermore, we observed that membrane MMP has distinct mobility in TUG-zymography. To localize the MT-MMP and tissue plasminogen activator (tPA) of latent MMPs, the membrane and cytosol were separated by a method employing a detergent and sedimentation. The MT-MMP and tPA activities of cytosol and membrane fractions were measured by gelatin- and plasminogen-zymography, respectively. Differential-display mRNA analysis was performed on control and stretched cells. In situ immuno-labelling was performed to localize the MT-MMP. The results indicate that induction of MT-MMP occurred in the membrane fractions. The secretion of tPA was elevated in the stretched cells. The MT-MMP activity was inhibited by prior incubation with an antibody generated to membrane MMP. The tPA activity was inhibited by using tPA antibody. These results suggest that, under stretched conditions, neutral transmembrane matrix proteinases are induced in the cardiac fibroblasts. This may lead to activation of adverse ECM remodeling, cardiac dilatation, and failure. J. Cell. Physiol. 176:374–382, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
The inactivation of photolyzed rhodopsin requires phosphorylation of the receptor and binding of a 48-kDa regulatory protein, arrestin. By binding to phosphorylated photolyzed rhodopsin, arrestin inhibits G protein (Gt) activation and blocks premature dephosphorylation, thereby preventing the reentry of photolyzed rhodopsin into the phototransduction pathway. In this study, we isolated a 44-kDa form of arrestin, called p44, from fresh bovine rod outer segments and characterized its structure and function. A partial primary structure of p44 was established by a combination of mass spectrometry and automated Edman degradation of proteolytic peptides. The amino acid sequence was found to be identical with arrestin, except that the C-terminal 35 residues (positions 370-404) are replaced by a single alanine. p44 appeared to be generated by alternative mRNA splicing, because intron 15 interrupts within the nucleotide codon for 369Ser in the arrestin gene. Functionally, p44 binds avidly to photolyzed or phosphorylated and photolyzed rhodopsin. As a consequence of its relatively high affinity for bleached rhodopsin, p44 blocks Gt activation. The binding characteristics of p44 set it apart from tryptic forms of arrestin (truncated at the N- and C-termini), which require phosphorylation of rhodopsin for tight binding. We propose that p44 is a novel splice variant of arrestin that could be involved in the regulation of Gt activation.  相似文献   

12.
Thrombospondins are thought to function as inhibitors of angiogenesis. However, the mechanism(s) of this activity is not well understood. In this study, we have used the yeast two-hybrid system to identify proteins that interact with the thrombospondins 1 (TSP1) and 2 (TSP2) properdin-like type 1 repeats (TSR). One of the proteins identified that interacted with both TSR was matrix metalloproteinase 2 (MMP2). The isolated MMP2 cDNA clone encoded amino acid residues 237-633, which include the fibronectin-like gelatin binding region flanking the catalytic center and the carboxyl hemopexin-like region. Further testing of this clone demonstrated that the TSR interacted with the NH(2)-terminal region of the MMP2 that contains the catalytic domain. The protein interaction observed in yeast was further demonstrated by immunoprecipitation and Western blotting using purified intact TSP1, TSP2, MMP2, and MMP9. Although MMP2 interacted with TSP1 and TSP2 via its gelatin-binding domain or a closely mapping site, neither TSP1 nor TSP2 was degraded by MMP2 in vitro. Tissue culture and in vitro assays demonstrated that the presence of purified TSR and intact TSP1 resulted in inhibition of MMP activity. The ability of TSP1 to inhibit MMP3-dependent activation of pro-MMP9 and thrombin-induced activation of pro-MMP2 suggests that the TSPs may inhibit MMP activity by preventing activation of the MMP2 and MMP9 zymogens.  相似文献   

13.
The transmembrane collagenase MT1-MMP (membrane-type 1 matrix metalloproteinase), also known as MMP-14, has a critical function both in normal development and in cancer progression, and is subject to extensive controls at the post-translational level which affect proteinase activity. As zymogen activation is crucial for MT1-MMP activity, an alpha1-PI (alpha1-proteinase inhibitor)-based inhibitor was designed by incorporating the MT1-MMP propeptide cleavage sequence into the alpha1-PI reactive-site loop (designated alpha1-PI(MT1)) and this was compared with wild-type alpha1-PI (alpha1-PI(WT)) and the furin inhibitory mutant alpha1-PI(PDX). Alpha1-PI(MT1) formed an SDS-stable complex with furin and inhibited proMT1-MMP activation. A consequence of the loss of MT1-MMP activity was the activation of proMMP-2 and the inhibition of MT1-MMP-mediated collagen invasion. alpha1-PI(MT1) expression also resulted in the intracellular accumulation of a glycosylated species of proMT1-MMP that was retained in the perinuclear region, leading to significantly decreased cell-surface accumulation of proMT1-MMP. These observations suggest that both the subcellular localization and the activity of MT1-MMP are regulated in a coordinated fashion, such that proMT1-MMP is retained intracellularly until activation of its zymogen, then proMT1-MMP traffics to the cell surface in order to cleave extracellular substrates.  相似文献   

14.
Y Okada  H Konomi  T Yada  K Kimata  H Nagase 《FEBS letters》1989,244(2):473-476
The degradation of type IX collagen, a minor collagen in cartilage, was examined by treatment with three different types of matrix metalloproteinases (MMPs) purified from the culture medium of rheumatoid synovial cells. Neither MMP-1 (collagenase) nor MMP-2 (so-called 'gelatinase') could digest type IX collagen, but MMP-3 (stromelysin) readily degraded it into smaller fragments. This suggests that MMP-3 may be responsible for the pathological degradation and/or normal turnover of type IX collagen.  相似文献   

15.
Human T lymphoblastoma cells of the CD4+ 8+ Tsup-1 line, that express alpha4 and alpha5 but not alpha6 integrins of the beta1 family, and CD4+ human blood T cells bind vasoactive intestinal peptide (VIP) with high affinity, leading to increased adherence, secretion of matrix metalloproteinases (MMPs), and chemotaxis. VIP-enhanced adherence of T cells to fibronectin was inhibited significantly by neutralizing monoclonal antibodies to beta1 > alpha4 >> alpha5, but not to alpha6. Antibodies to beta1 and alpha4 suppressed to a similarly significant extent VIP stimulation of both MMP-dependent T cell chemotaxis through fibronectin-enriched Matrigel and T cell degradation of 3H-type IV collagen in the Matrigel, without affecting VIP-evoked secretion of MMP by suspensions of T cells. The lesser inhibition of VIP-enhanced adherence of T cells to fibronectin by anti-alpha5 antibody, than antibodies to beta1 or alpha4 chains, was associated with lesser or no suppression of MMP-dependent T cell chemotaxis through Matrigel and T cell degradation of type IV collagen in the Matrigel in response to VIP. Specific beta1 integrins thus mediate interactions of stimulated T cells with basement membranes, including adherence, localized digestion by MMPs, and chemotactic passage, that promote entry of T cells into extravascular tissues. © 1996 Wiley-Liss, Inc.  相似文献   

16.
In the latent pro-form of matrix metalloproteinase 7 (MMP-7), the cysteine residue in the pro-peptide binds the active-site zinc ion. Hence, recombinant active MMP-7 was prepared from pro-MMP-7 by modification of this cysteine residue with a mercuric reagent. In this study, mature MMP-7 was expressed in Escherichia coli as inclusion bodies, solubilized, and refolded with 1 M L-arginine. The purified product was indistinguishable from the one prepared from pro-MMP-7 as assessed by hydrolysis of (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl]-L-Ala-L-Arg-NH(2).  相似文献   

17.
To probe the mechanism of stromelysin (SLN)-catalyzed peptide hydrolysis, we determined the pH dependence of kc/Km and solvent deuterium isotope effects on kc and kc/Km. pH dependencies of kc/Km were determined for the SLN-catalyzed hydrolysis of three peptides: Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Nle-NH2,Arg-Pro-Ala-Pro-Gln-Gln- Phe-Phe - Gly-Leu-NleNH2, and N-acetyl-Arg-Pro-Ala-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Nle-NH2 (cleavage at Gln-Phe bond). The pH dependencies are all bell-shaped with shoulders that extend from pH 7.5 to 8.5. The existence of a shoulder indicates that the reaction mechanism involves at least two routes to products. These curves are governed by three proton ionizations with pKa values of 5.4, 6.1, and 9.5. The solvent isotope effect measurements provided the following values: D(kc/Km) = 0.80 +/- 0.05 and D(kc) = 1.58 +/- 0.05. That D(kc/Km) and D(kc) are different suggests that the rate-limiting transition states for the processes governed by kc/Km and kc cannot be the same. We use these results, together with analogy to thermolysin catalysis, to develop a mechanism for SLN catalysis.  相似文献   

18.
Matrix metalloproteinases (MMPs) including membrane type 1 MMP (MT1-MMP) can degrade extracellular matrix and cell surface receptor molecules and have an essential function in malignancy. Recently, we established a functional link between MT1-MMP and the receptor of complement component 1q (gC1qR). The gC1qR is known as a compartment-specific regulator of diverse cellular and viral proteins. Once released by proliferating cells, soluble gC1qR may inhibit complement component 1q hemolytic activity and play important roles in vivo in assisting tumor cells to evade destruction by complement. Here, we report that gC1qR is susceptible to MT1-MMP proteolysis in vitro and in cell cultures. The major MT1-MMP cleavage site (Gly(79) down arrow Gln(80)) is localized within the structurally disordered loop connecting the beta(3) and the beta(4) strands of gC1qR. The recombinant MT1-MMP construct that included the catalytic domain but lacked the hemopexin-like domain lost the proteolytic capacity; however, it retained the ability to bind gC1qR. Inhibition of MT1-MMP activity by a hydroxamate inhibitor converted the protease into a cell surface receptor of gC1qR and promoted co-precipitation MT1-MMP with the soluble gC1qR protein. It is tempting to hypothesize that these novel mechanisms may play important roles in vivo and have to be taken into account in designing hydroxamate-based cancer therapy.  相似文献   

19.
Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90alpha, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the MMPI, which might be important in drug development as biomarkers or, in preclinical phases, to predict systemic drug actions and adverse side effects. Hence, this approach describes the dynamic pattern of cell membrane ectodomain shedding and its perturbation upon metalloproteinase drug treatment.  相似文献   

20.
The homologous proteinase inhibitors, human alpha 2-macroglobulin (alpha 2M) and chicken ovostatin, have been compared with respect to their "bait" region sequences and interactions with two human matrix metalloproteinases, collagenase and stromelysin. A stretch of 34 amino acid residues of the ovostatin bait region sequence was determined and the matrix metalloproteinase cleavage sites identified. Collagenase cleaved a X-Leu bond where X was unidentified, whereas the major cleavage site by stromelysin was at the Gly-Phe bond, 4 residues on the COOH-terminal side of the collagenase cleavage site. Collagenase cleaved the alpha 2M bait region at the Gly679-Leu680 bond, and stromelysin at Gly679-Leu680 and Phe684-Tyr685 bonds. Sequence similarity in the bait region of members of the alpha-macroglobulin family is strikingly low. The kinetic studies indicate that alpha 2M is a 150-fold better substrate for collagenase than type I collagen. Structural predictions based on the bait region sequences suggest that a collagen-like triple helical structure is not a prerequisite for the efficient binding of tissue collagenase to a substrate. The binding of stromelysin to alpha 2M is slower than that of collagenase. Stromelysin reacts with ovostatin even more slowly. Despite the preference of chicken ovostatin for metalloproteinases, human alpha 2M, a far less selective inhibitor, reacts more rapidly with collagenase and stromelysin. These results suggest that alpha 2M may play an important role in regulating the activities of matrix metalloproteinases in the extracellular space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号