首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mortality of larval, pupal, and adult western cherry fruit fly, Rhagoletis indifferens (Tephritidae) exposed to the steinernematid nematodes Steinernema carpocapsae, Steinernema feltiae, and Steinernema intermedium, was determined in the laboratory and field. Larvae were the most susceptible stage, with mortality in the three nematode treatments ranging from 62 to 100%. S. carpocapsae and S. feltiae were equally effective against larvae at both 50 and 100 infective juveniles (IJs)/cm2. S. intermedium was slightly less effective against larvae than the other two species. Mortalities of R. indifferens larvae at 0, 2, 4, and 6 days following their introduction into soil previously treated with S. carpocapsae and S. feltiae at 50 IJs/cm2 were 78.6, 92.5, 95.0, and 77.5% and 87.5, 52.5, 92.5, and 70.0%, respectively, and at 100 IJs/cm2 were 90.0, 92.0, 100.0, and 84.0% and 90.0, 50.0, 42.0, and 40.0%, respectively. There was no decline in mortality caused by S. carpocapsae as time progressed, whereas there was in one test with S. feltiae. Larval mortalities caused by the two species were the same in a 1:1:1 vermiculite:peat moss:sand soil mix and a more compact silt loam soil. In the field, S. carpocapsae and S. feltiae were equally effective against larvae. Pupae were not infected, but adult flies were infected by all three nematode species in the laboratory. S. carpocapsae was the most effective species at a concentration of 100 IJs/cm2 and infected 11–53% of adults that emerged. The high pathogenicity of S. carpocapsae and S. feltiae against R. indifferens larvae and their persistence in soil as well as efficacy in different soil types indicate both nematodes hold promise as effective biological control agents of flies in isolated and abandoned lots or in yards of homeowners.  相似文献   

2.
Our objective was to estimate the biocontrol potential of the recently discovered entomopathogenic nematode species Heterorhabditis georgiana (Kesha strain). Additionally, we conducted a phylogenetic characterization of the nematode’s symbiotic bacterium. In laboratory experiments, we compared H. georgiana to other entomopathogenic nematodes for virulence, environmental tolerance (to heat, desiccation, and cold), and host seeking ability. Virulence assays targeted Acheta domesticus, Agrotis ipsilon, Diaprepes abbreviatus, Musca domestica, Plodia interpunctella, Solenopsis invicta, and Tenebrio molitor. Each assay included H. georgiana and five or six of the following species: Heterorhabditis floridensis, Heterorhabditis indica, Heterorhabditis mexicana, Steinernema carpocapsae, Steinernema feltiae, Steinernema rarum, and Steinernema riobrave. Environmental tolerance assays included Heterorhabditis bacteriophora, H. georgiana, H. indica, S. carpocapsae, S. feltiae, and S. riobrave (except cold tolerance did not include S. carpocapsae or S. riobrave). Host seeking ability was assessed in H. bacteriophora, H. georgiana, S. carpocapsae, and Steinernema glaseri, all of which showed positive orientation to the host with S. glaseri having greater movement toward the host than S. carpocapsae (and the heterorhabditids being intermediate). Temperature range data (tested at 10, 13, 17, 25, 30 and 35 °C) indicated that H. georgiana can infect Galleria mellonella between 13 and 35 °C (with higher infection at 17–30 °C), and could reproduce between 17 and 30 °C (with higher nematode yields at 25 °C). Compared with other nematode species, H. georgiana expressed low or intermediate capabilities in all virulence and environmental tolerance assays indicating a relatively low biocontrol potential. Some novel observations resulted from comparisons among other species tested. In virulence assays, H. indica caused the highest mortality in P. interpunctella followed by S. riobrave; S. carpocapsae caused the highest mortality in A. domesticus followed by H. indica; and S. riobrave was the most virulent nematode to S. invicta. In cold tolerance, S. feltiae exhibited superior ability to cause mortality in G. mellonella (100%) at 10 °C, yet H. bacteriophora and H. georgiana exhibited the ability to produce attenuated infections at 10 °C, i.e., the infections resumed and produced mortality at 25 °C. In contrast, H. indica did not show an ability to cause attenuated infections. Based on the phylogenetic analysis, the bacterium associated with H. georgiana was identified as Photorhabdus luminescens akhurstii.  相似文献   

3.
Infectivity of six entomopathogenic nematode (EPNs) species against Bactrocera oleae was compared. Similar infection levels were observed when third-instar larvae were exposed to infective juveniles (IJs) on a sand-potting soil substrate. When IJs were sprayed over naturally infested fallen olives, many larvae died within treated olives as well as in the soil; Steinernema feltiae caused the highest overall mortality of 67.9%. In addition, three laboratory experiments were conducted to optimize a time period for S. feltiae field application. (1) Abundance of fly larvae inside fallen olives was estimated over the 2006–2007 season with the highest number of susceptible larvae (3 mm and larger) per 100 olives being observed during December, 2006. (2) S. feltiae efficacy against fly larvae dropped to the soil post-IJ-application was determined. B. oleae added to the substrate before and after nematode application were infected at similar levels. (3) Effect of three temperature regimes (min–max: 10–27, 6–18, and 3–12 °C) corresponding to October through December in Davis, California on S. feltiae survival and infectivity was determined. After 8 weeks, the IJs at the 3–12 °C treatment showed the highest survival rate. However, the cold temperature significantly limited S. feltiae infectivity. Our results demonstrate that B. oleae mature larvae are susceptible to EPN infection both in the soil and within infested olives. Being the most effective species, S. feltiae may have the potential to suppress overwintering populations of B. oleae. We suggest that November is the optimal time for S. feltiae field application in Northern California.  相似文献   

4.
The effect of reduced application rate, soil temperature at shallow depth (2.5 cm), and soil type on the efficacy of Steinernema carpocapsae against the navel orangeworm, Amyelois transitella, was evaluated in six field trials employing 1 m2 plots conducted from November 2003 through December 2004 in Madera and Kern Counties, California. Nematodes were applied at a concentration of 100,000 infective juveniles (IJs)/m2 (109/ha) in a volume of 187 ml water/m2 (1870 L/ha) with a post-application irrigation in all trials. Mortality ranged from 7.9 to 64.9% in successful trials and percent reduction in live larvae per plot was as high as 74.6%. Percent reduction and mortality were highly correlated (r2 = 0.78) and larval reduction typically was 10–11% greater than mortality for any treatment. In one trial, although nematode treatment significantly increased mortality compared to the controls, the treatment was deemed unsatisfactory because mortality was <15%. Soil temperature in this trial rose to 39 °C within 5 h after application. Nematodes failed in two other trials when soil temperature fell below freezing (minimum temperatures −3.0, −5.5 °C, respectively) several times in a 5-day period. We conclude that a commercially feasible application volume of 1870 L water/ha followed by post-application irrigation at this same rate was effective, and that soil maximum temperature at or below 32 °C during the first 24 h after application is necessary for treatment success.  相似文献   

5.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

6.
Marine invasions are a worldwide problem that involves changes in communities and the acclimation of organisms to them. The invasive Chlorophyte Caulerpa racemosa var. cylindracea is widespread in the Mediterranean and colonises large areas from 0 to 70 m in depth. The omnivorous fish Spondyliosoma cantharus presents a high frequency of occurrence of C. racemosa in the stomach contents at invaded areas (76.3%) while no presence of C. racemosa was detected in control areas. The isotopic composition of muscle differed significantly between invaded and non-invaded sites for δ13C (− 16.67‰ ± 0.09 and − 17.67‰ ± 0.08, respectively), δ15N (10.22‰ ± 0.22 and 9.32‰ ± 0.18, respectively) and the C:N ratio (2.01 ± 0.0002 and 1.96 ± 0.009, respectively). Despite the high frequency of occurrence of C. racemosa in the stomach contents of S. cantharus and its important contribution to the δ13C source (20.7% ± 16.2), the contribution of C. racemosa to the δ15N in S. cantharus food sources was very low (6.6% ± 5.8). Other invertebrate prey such as decapods and polychaetes were more important contributors to the δ15N source at both invaded and non-invaded sites. Activation of enzymatic pathways (catalase, superoxide dismutase, glutathione-s-tranferase, 7-ethoxy resorufin O-de-ethylase) but not a significant increase in lipid peroxidation MDA (0.49 ± 0.01 nmol/mg prot at non-invaded and 0.53 ± 0.01 nmol/mg prot at invaded sites) was observed in S. cantharus individuals living in C. racemosa-invaded sites compared with control specimens. The low δ15N contribution values of C. racemosa by S. cantharus together with the toxicity demonstrated by the activation of the antioxidant defences and the important contribution of invertebrate prey to the δ15N could mean that the ingestion of C. racemosa by S. cantharus might be unintentional during the predation of invertebrate preys living underneath the entanglement of the C. racemosa fronds and stolons mats.  相似文献   

7.
You Wang  Xuexi Tang   《Harmful algae》2008,7(1):65-75
Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III, two species of causative bloom dinoflagellates in China, were investigated using bi-algal cultures under controlled laboratory conditions. The growth of P. donghaiense and S. trochoidea were significantly suppressed when the initial cell densities were set at 1.9 × 104 cells mL−1 or 1.9 × 105 cells mL−1 for P. donghaiense and 1.0 × 104 cells mL−1 for S. trochoidea when the initial size/density ratio was 1:1 or 10:1, respectively, but no out-competement was observed in either bi-algal culture by the end. The simultaneous assay on the culture filtrate showed that P. donghaiense filtrate prepared at a lower initial density (1.9 × 104 cells mL−1) stimulated the co-cultured S. trochoidea at a density of 1.0 × 104 cells mL−1, but filtrate at a higher density (1.9 × 105 cells mL−1) depressed its growth. Differently, the filtrate of S. trochoidea at a density of 1.0 × 104 cells mL−1 significantly suppressed the growth of P. donghaiense at a density of 1.9 × 104 cells mL−1, but had little stimulatory effect on P. donghaiense at a density of 1.9 × 105 cells mL−1compared to the control (P > 0.05). It is likely that these two species of microalgae interact with each other mainly by releasing allelochemical substance(s) into the culture medium, and a direct cell-to-cell contact was not necessary for their mutual interaction. We then quantify their interactions in the bi-algal culture by using a mathematical model. The estimated parameters from the model showed that the inhibition exerted by S. trochoidea on P. donghaiense was about 43 and 24 times stronger than the inhibitory effect that P. donghaiense exerted on S. trochoidea when the initial size/density were 1:1 and 10:1, respectively. S. trochoidea seemed to have a survival strategy that was superior to P. donghaiense in the bi-algal culture under controlled laboratory conditions. We also observed a closely positive relationship between the initial cell density and its effect on the co-cultured microalga by measuring the fluorenscence: filtrate prepared from higher initial cell density had stronger interference on the co-cultured microalga. Moreover, pre-treated under different temperature conditions (30 °C, 60 °C and 100 °C) would significantly changed the effect of culture filtrate on the co-cultured microalga. Result inferred that P. donghaiense or S. trochoidea would release allelochemicals into the bi-algal culture medium and the allelochemicals might be a mixture with temperature-sensitive components in it.  相似文献   

8.
Field and laboratory tests were conducted from 2001 through 2007 to assess the effectiveness of entomopathogenic nematode Heterorhabditis bacteriophora strain GPS11 applications targeted against different instars of the Japanese beetle, Popillia japonica. During summer flight, P. japonica adults were trapped and caged on turfgrass plots for oviposition. Larval development was monitored for the occurrence of each instar. Nematodes were applied in the field against each developing instar at 2.5 × 109 infective juveniles/ha. In 2001, field data obtained in October resulted in 75%, 53%, and 33% control with the applications targeted against the first, second, and third instars, 69, 28, and 9 days after treatment (DAT), respectively. In 2002 field trial, data obtained in October indicated 97%, 88%, and 0% control when the applications were targeted against the first, second, and third instars at 66, 43, and 14 DAT, respectively. Additional plots established in 2002 to determine efficacy against each instar at 14 DAT showed control of the first, second, and third instars to be 55%, 53%, and 0%, respectively. In laboratory tests conducted in 2002, 2004, and 2007, P. japonica collected from the field at the occurrence of each instar were exposed to H. bacteriophora at concentrations of 0, 10, 33, 100, 330, or 1000 infective juveniles/grub. Probit analysis of the mortality from three of the four sets of tests conducted showed the first instar to be significantly more susceptible to H. bacteriophora than the third instar at the LC50 level and all tests showed the first instar to be significantly more susceptible than the third instar at the LC90 level. In addition to the observed decrease in the third instar susceptibility to H. bacteriophora, soil temperatures in the mid-western United States during late September and October rapidly decline often reaching below 15 °C by the beginning of October when grubs are in the third instar stage of development. Therefore, we conclude that the applications of the nematodes made in August or September will provide higher control than those made in October, due to the more appropriate temperature for nematode activity and the presence of more susceptible larval stages. Early nematode applications may also provide an opportunity for nematodes to recycle and cause secondary infections.  相似文献   

9.
The influence of light and temperature on the cylindrospermopsin (CYN) production of two Aphanizomenon flos-aquae strains, isolated from North-eastern German lakes, was investigated with semi-continuously growing cultures. A light gradient from 10 to 60 μE m−2 s−1 in combination with temperatures of 16, 20, and 25 °C was tested.CYN concentrations varied by a maximum factor of 2.7 in strain 10E9 with a significant decrease with increasing temperature. Strain 22D11 showed less pronounced changes, i.e. by a factor of 1.6, and without clear relationship to temperature.Reaction patterns of CYN production to changing light intensities are different at different temperatures. In both strains CYN concentrations increase significantly at 20 °C between 10 and 60 μE m−2 s−1, whereas they decrease significantly at 25 °C in the same light gradient. The amount of synthesised CYN is not reflected by growth rates of the strains in a uniform manner. Nonetheless several temperature–light combinations which constitute physiological stress seem to trigger CYN production and particularly CYN release from cells. The lowest growth rate observed at 16 °C and 60 μE m−2 s−1 of strain 22D11 may reflect photoinhibition due to the lower temperature and related limited CO2-fixation. Under these conditions, extracellular CYN concentrations increased to 58% of total CYN, while the share of extracellular CYN of all other light and temperature regimes was 11–26%. From the results and the experimental design we conclude an active release of the toxin into medium to be more likely than mere leakage from cells.  相似文献   

10.
Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360   总被引:1,自引:0,他引:1  
Galactomyces geotrichum MTCC 1360 can decolorize triphenylmethane, azo and reactive high exhaust textile dyes. At shaking condition this strain showed 100% decolorization of a toxic azo dye Methyl red (100 m gl−1) within 1 h in deionized water at 30 °C. The degradation of Methyl red was possible through a broad pH (3–12) and temperature (5–50 °C) range. Glucose and mycelium concentration had increased the decolorization rate, but the addition of 1 gl−1 molasses in deionized water made decolorization possible in only 10 min. Induction in the NADH–dichloro phenol indophenol (NADH–DCIP) reductase, Malachite green reductase, laccase and lignin peroxidase (Lip) activities were observed in the cells obtained after complete decolorization, showing that there is direct involvement in the degradation of Methyl red. The absence of N-N′-dimethyl-p-phenylenediamine (DMPD) in 5 °C, 2-aminobenzoic acid (ABA) in 50 °C and both the compounds in 30 °C sample have shown the differences in the metabolic fate of Methyl red at different temperatures. The untreated dye at 300 mg l−1 concentration showed 88% germination inhibition in Sorghum bicolor, whereas it was 72% in Triticum aestivum. There was no germination inhibition for both the plants by Methyl red metabolites at 300 mg l−1 concentration.

The scientific relevance of the paper

The azo dye Methyl red (100 mg l−1) was decolorized by G. geotrichum MTCC 1360 within 1 h at shaking condition in deionized water. This organism could decolorize Methyl red at wide pH and temperature ranges. Decolorization time was reduced to 10 min by the addition of molasses to deionized water. There was induction in laccase and Lip, NADH–DCIP reductase and Malachite green reductase activities. The metabolic fate of Methyl red changes with temperature which can be evidenced by the formation of 2-ABA at 5 °C, N-N′-DMPD at 50 °C and both the compounds were absent at 30 °C. Phytotoxicity showed that metabolites of dye had induced shoot and root length of both the tested plants.  相似文献   

11.
The effect of five commercial potting media, peat, bark, coir, and peat blended with 10% and 20% compost green waste (CGW) on the virulence of six commercially available entomopathogenic nematodes (EPN), Heterorhabditis bacteriophora UWS1, Heterorhabditis megidis, Heterorhabditis downesi, Steinernema feltiae, Steinernema carpocapsae, and Steinernema kraussei was tested against third-instar black vine weevil (BVW), Otiorhynchus sulcatus. Media type was shown to significantly affect EPN virulence. Heterorhabditis species caused 100% larval mortality in all media whereas Steinernema species caused 100% larval mortality only in the peat blended with 20% CGW. A later experiment investigated the effect of potting media on the virulence of EPN species against BVW by comparing the vertical dispersal of EPN in the presence and absence of BVW larva. Media type significantly influenced EPN dispersal. Dispersal of H. bacteriophora was higher than H. megidis, H. downesi, or S. kraussei in all media, whereas, S. feltiae and S. carpocapsae dispersal was much reduced and restricted to peat blended with 20% CGW and coir, respectively. In the absence of larvae, most of the EPN species remained in the same segment they were applied in, suggesting that the larvae responded to host volatile cues. Greenhouse trials were conducted to evaluate the efficacy of most virulent strain, H. bacteriophora in conditions more representative of those in the field, using 2.5 × 109 infective juveniles/ha. The efficacy of H. bacteriophora UWS1 against third-instar BVW was 100% in peat, and peat blended with 10% and 20% CGW but only 70% in bark and coir, 2 weeks after application. These studies suggest that potting media significantly affects the efficacy and dispersal of EPN for BVW control.  相似文献   

12.
The rhabditid nematodes Steinernema carpocapsae and Steinernema feltiae are used in biological control of insect pests. Mass production is done in liquid culture media pre-incubated with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, before nematode dauer juveniles (DJs) are inoculated. As a response to food signals produced by the bacterial symbionts, the DJs exit from the developmentally arrested dauer stage (they recover development) and grow to adults, which produce DJ offspring. Variable DJ recovery after inoculation often causes process failure due to non-synchronous population development and low numbers of adult nematodes. This contribution investigated the influence of the bacterial cell density on DJ recovery and development to adults. At higher density of 1010 bacterial cells ml−1, a higher percentage of DJ recovery was induced, and adults occurred earlier in both Steinernema spp. than at lower density of 109 and 108 cells ml−1. Xenorhabdus symbionts produce phase variants. Recovery in bacteria-free supernatants was lower than in supernatants containing bacterial cells for both primary and secondary phase Xenorhabdus spp. and lower in secondary than in primary phase supernatants or cell suspensions. In general, recovery was lower for Steinernema feltiae and the time at which 50% of the population had recovered after exposure to the food signal was longer (RT50 = 17.1 h) than for Steinernema carpocapsae (RT50 = 6.6 h). Whereas >90% S. carpocapsae DJs recovered in hemolymph serum of the lepidopteran insect Galleria mellonella, recovery of S. feltiae only reached 31%. Penetration into a host insect prior to exposure to the insect’s food signal did not enhance DJ recovery. Consequences for liquid culture mass production of the nematodes and differences between species of the genera Steinernema and Heterorhabditis are discussed.  相似文献   

13.
The susceptibility of pupating larvae of pollen beetles, Meligethes spp. Stephens (Coleoptera: Nitidulidae) and brassica pod midges, Dasyneura brassicae Winnertz (Diptera: Cecidomyidae) to entomopathogenic nematodes (Nematoda: Rhabditida) was studied in the laboratory. The results showed that brassica pod midge larvae were almost unaffected by the tested nematodes (Steinernema bicornutum, S. feltiae and Heterorhabditis bacteriophora) whereas successful pupation of pollen beetle larvae was reduced with increasing number of nematodes (S. bicornutum, S. carpocapsae, S. feltiae and H. bacteriophora). The exposed larvae had been collected in the field and some of the pollen beetle larvae were parasitised by parasitoid wasps. It appeared that parasitised larvae were less affected by nematodes than non-parasitised larvae.  相似文献   

14.
Recent novel mixed blooms of several species of toxic raphidophytes have caused fish kills and raised health concerns in the highly eutrophic Inland Bays of Delaware, USA. The factors that control their growth and dominance are not clear, including how these multi-species HAB events can persist without competitive exclusion occurring. We compared and contrasted the relative environmental niches of sympatric Chattonella subsalsa and Heterosigma akashiwo isolates from the bays using classic Monod-type experiments. C. subsalsa grew over a temperature range from 10 to 30 °C and a salinity range of 5–30 psu, with optimal growth occurring from 20 to 30 °C and 15 to 25 psu. H. akashiwo had similar upper temperature and salinity tolerances but also lower limits, with growth occurring from 4 to 30 °C and 5 to 30 psu and optimal growth between 16 and 30 °C and 10 and 30 psu. These culture results were confirmed by field observations of bloom occurrences in the Inland Bays. Maximum nutrient-saturated growth rates (μmax) for C. subsalsa were 0.6 d−1 and half-saturation concentrations for growth (Ks) were 9 μM for nitrate, 1.5 μM for ammonium, and 0.8 μM for phosphate. μmax of H. akashiwo (0.7 d−1) was slightly higher than C. subsalsa, but Ks values were nearly an order of magnitude lower at 0.3 μM for nitrate, 0.3 μM for ammonium, and 0.2 μM for phosphate. H. akashiwo is able to grow on urea but C. subsalsa cannot, while both can use glutamic acid. Cell yield experiments at environmentally relevant levels suggested an apparent preference by C. subsalsa for ammonium as a nitrogen source, while H. akashiwo produced more biomass on nitrate. Light intensity affected both species similarly, with the same growth responses for each over a range from 100 to 600 μmol photons m−2 s−1. Factors not examined here may allow C. subsalsa to persist during multi-species blooms in the bays, despite being competitively inferior to H. akashiwo under most conditions of nutrient availability, temperature, and salinity.  相似文献   

15.
We used a double germination phenology or “move-along” experiment (sensu Baskin and Baskin, 2003) to characterize seed dormancy in two medicinal woodland herbs, Collinsonia canadensis L. (Lamiaceae) and Dioscorea villosa L. (Dioscoreaceae). Imbibed seeds of both species were moved through the following two sequences of simulated thermoperiods: (a) 30/15 °C→20/10 °C→15/6 °C→5 °C→15/6 °C→20/10 °C→30/15 °C, and (b) 5 °C→15/6 °C→20/10 °C→30/15 °C→20/10 °C→15/6 °C→5 °C. In each sequence, seeds of both species germinated to high rates (>85%) at cool temperatures (15/6 and 20/10 °C) only if seeds were previously exposed to cold temperatures (5 °C). Seeds kept at four control thermoperiods (5, 15/6, 20/10, 30/15 °C) for 30 d showed little or no germination. Seeds of both species, therefore, have physiological dormancy that is broken by 12 weeks of cold (5 °C) stratification. Morphological studies indicated that embryos of C. canadensis have “investing” embryos at maturity (morphological dormancy absent), whereas embryos of D. villosa are undeveloped at maturity (morphological dormancy present). Because warm temperatures are required for embryo growth and cold stratification breaks physiological dormancy, D. villosa seeds have non-deep simple morphophysiological dormancy (MPD). Neither species afterripened in a 6-month dry storage treatment. Cold stratification treatments of 4 and 8 weeks alleviated dormancy in both species but C. canadensis seeds germinated at slower speeds and lower rates compared to seeds given 12 weeks of cold stratification. In their natural habitat, both species disperse seeds in mid- to late autumn and germinate in the spring after cold winter temperatures alleviate endogenous dormancy.  相似文献   

16.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09 ± 0.02 μmol O2 h− 1 g− 1; summer: 0.31 ± 0.06 μmol O2 h− 1 g− 1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content / ascorbate content ratio (A / AH). The A / AH ratio showed minimum values in winter (3.7 ± 0.2 10− 5 AU) and increased in summer (18 ± 5 10− 5 AU). A similar pattern was observed for lipid radical content (122 ± 29 pmol mg− 1 fresh mass [FW] in winter and 314 ± 45 pmol mg− 1 FW in summer), iron content (0.99 ± 0.07 and 2.7 ± 0.6 nmol mg− 1 FW in winter and summer, respectively) and catalase activity (2.9 ± 0.2 and 7 ± 1 U mg− 1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe–MGD–NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

17.
Large blooms of the marine cyanobacterium Lyngbya majuscula in Moreton Bay, Australia (27°05′S, 153°08′E) have been re-occurring for several years. A bloom was studied in Deception Bay (Northern Moreton Bay) in detail over the period January–March 2000. In situ data loggers and field sampling characterised various environmental parameters before and during the L. majuscula bloom. Various ecophysiological experiments were conducted on L. majuscula collected in the field and transported to the laboratory, including short-term (2 h) 14C incorporation rates and long-term (7 days) pulse amplitude modulated (PAM) fluorometry assessments of photosynthetic capacity. The effects of L. majuscula on various seagrasses in the bloom region were also assessed with repeated biomass sampling. The bloom commenced in January 2000 following usual December rainfall events, water temperatures in excess of 24 °C and high light conditions. This bloom expanded rapidly from 0 to a maximum extent of 8 km2 over 55 days with an average biomass of 210 gdw−1 m−2 in late February, followed by a rapid decline in early April. Seagrass biomass, especially Syringodium isoetifolium, was found to decline in areas of dense L. majuscula accumulation. Dissolved and total nutrient concentrations did not differ significantly (P > 0.05) preceding or during the bloom. However, water samples from creeks discharging into the study region indicated elevated concentrations of total iron (2.7–80.6 μM) and dissolved organic carbon (2.5–24.7 mg L−1), associated with low pH values (3.8–6.7). 14C incorporation rates by L. majuscula were significantly (P < 0.05) elevated by additions of iron (5 μM Fe), an organic chelator, ethylenediaminetetra-acetic acid (5 μM EDTA) and phosphorus (5 μM PO4−3). Photosynthetic capacity measured with PAM fluorometry was also stimulated by various nutrient additions, but not significantly (P > 0.05). These results suggest that the L. majuscula bloom may have been stimulated by bioavailable iron, perhaps complexed by dissolved organic carbon. The rapid bloom expansion observed may then have been sustained by additional inputs of nutrients (N and P) and iron through sediment efflux, stimulated by redox changes due to decomposing L. majuscula mats.  相似文献   

18.
Biological control potential of nine entomopathogenic nematodes, Heterorhabditis bacteriophora CLO51 strain (HbCLO51), H. megidis VBM30 strain (HmVBM30), H. indica, Steinernema scarabaei, S. feltiae, S. arenarium, S. carpocapsae Belgian strain (ScBE), S. glaseri Belgian strain (SgBE) and S. glaseri NC strain (SgNC), was tested against second-, and third-instar larvae and pupae of Hoplia philanthus in laboratory and greenhouse experiments. The susceptibility of the developmental stages of H. philanthus differed greatly among tested nematode species/strains. In the laboratory experiments, SgBE, SgNC, HbCLO51 and HmVBM30 were highly virulent to third-instar larvae and pupae while SgBE was only virulent to second-instar larvae. Pupae were highly susceptible to HbCLO51, HmVBM30, SgBE and SgNC (57–100%) followed by H. indica and S. scarabaei (57–76%). In pot experiments, HbCLO51, SgBE and S. scarabaei were highly virulent to the third-instar larvae compared to the second-instar larvae. Our observations, combined with those of previous studies on other nematode and white grub species, show that nematode virulence against white grub developmental stages varies with white grub and nematode species.  相似文献   

19.
Eight formulations of Penicillium oxalicum (FOR1 to FOR8) were obtained by the addition of various ingredients, in two separate steps of the production and drying of P. oxalicum conidia. These formulations were then evaluated against tomato wilt in three glasshouse (G1 to G3) and two field (F1 and F2) experiments. All formulations were applied to seedlings in seedbeds 7 days before transplanting at a rate of 107 spores g−1 seedbed substrate. The conidial viability of each formulation was estimated by measuring germination just after fluid bed-drying, before seedbed application and after 1 and 2 years of storage at 4 °C under vacuum. The densities of P. oxalicum were estimated in the seedbed substrate and in the rhizosphere of three plants per treatment just before transplanting. Initial conidial viability of formulations just after fluid bed-drying was approx. 80%, except for FOR1, FOR4, and FOR7 which were 60%. The initial viability was maintained up to 40–50% for 2 years of storage at 4 °C under vacuum, except for FOR1. All formulations had 50% viability at application time. Populations of P. oxalicum in the seedbed substrate just before transplanting were >106 cfu g−1 soil in G3 and F2; populations in rhizosphere were also >106 cfu g−1 fresh root, except for FOR3, FOR5, and FOR6 in G2. A range of 22–64% of disease reduction was observed with all formulations, although these reductions were not significant (p = 0.05) for FOR1, FOR4, and FOR5 in any experiment. Contrast analysis showed significant differences between biological treatments and untreated control (p = 0.05) in all experiments, but no significant differences between biological and chemical treatments. Initial conidial viability of P. oxalicum in formulations and populations of P. oxalicum in the seedbed substrate explained 78.26% of the variability in P. oxalicum populations in tomato rhizosphere before transplanting. Disease incidence in untreated plants was negatively correlated (r = −0.54) with the percentage of disease control. The relationship between the viability of formulations, the populations of P. oxalicum in seedbed and rhizosphere, and the control of tomato wilt is discussed.  相似文献   

20.
The insecticidal effect of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreaes) in combination with three diatomaceous earth (DE) formulations against adults of the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae) was tested in the laboratory. The three DEs were Insecto™, SilicoSec® and PyriSec®. The fungus was applied at 400 ppm alone, or in combination with 200 ppm of each of the three DEs. Mortality was measured after 7 d of exposure. Bioassays were conducted at three temperatures 20, 25 and 30 °C and two relative humidities (rh) 55% and 75%. On wheat treated with B. bassiana alone, mortality was higher at 55% than at 75% rh. Also, the fungus alone was less effective at 20 °C than at the other two temperatures tested, but mortality did not exceed 52% for any of the conditions tested. Similar mortality levels were also noted on wheat treated with each of the three DEs alone. The simultaneous presence of B. bassiana and DE increased weevil mortality. In this combination, mortality was higher at high temperatures and low rh, and this effect was similar for all DEs tested. Progeny production on wheat treated with B. bassiana was higher that the respective progeny counts in the DE-treated wheat. The results indicate that a combination of B. bassiana and DEs is effective against S. granarius, under a broad range of temperature and rh levels in stored wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号