首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of human alpha-thrombin in complex with LY178550, a nonpeptidyl, active site-directed inhibitor, has been solved to 2.07 A resolution by the method of X-ray crystallography. The final model of the complex has a crystallographic R-value of 21.5% (Rfree = 23.1%) with 0.014 A and 2.4 degrees standard deviation from ideal bond lengths and angles, respectively. Well-defined electron density was observed for the inhibitor in the active site. The inhibitor binds to the active site in an L-shaped manner, mimicking the bound conformation of the tripeptide arginal series of thrombin inhibitors (Chirgadze NY et al., 1992, American Crystallographic Association Meeting 20: 116 [Abstr. PB311]). The basic amidine of LY178550 forms a salt bridge with Asp 189 within the specificity pocket, while the 4-benzylpiperidine side chain engages in a number of hydrophobic interactions at the S2 and S3 binding sites. The inhibitor does not interact in any fashion with the active site sequence Ser 214-Gly 216, as occurs with many of the inhibitors studied previously. The indole N-H of the inhibitor forms a hydrogen bond to the gamma-oxygen of the catalytic serine (Ser 195).  相似文献   

2.
A novel class of synthetic, multisite-directed thrombin inhibitors, known as hirunorms, has been described recently. These compounds were designed to mimic the binding mode of hirudin, and they have been proven to be very strong and selective thrombin inhibitors. Here we report the crystal structure of the complex formed by human alpha-thrombin and hirunorm V, a 26-residue polypeptide containing non-natural amino acids, determined at 2.1 A resolution and refined to an R-factor of 0.176. The structure reveals that the inhibitor binding mode is distinctive of a true hirudin mimetic, and it highlights the molecular basis of the high inhibitory potency (Ki is in the picomolar range) and the strong selectivity of hirunorm V. Hirunorm V interacts through the N-terminal tetrapeptide with the thrombin active site in a nonsubstrate mode; at the same time, this inhibitor specifically binds through the C-terminal segment to the fibrinogen recognition exosite. The backbone of the N-terminal tetrapeptide Chg1"-Val2"-2-Nal3"-Thr4" (Chg, cyclohexyl-glycine; 2-Nal, beta-(2-naphthyl)-alanine) forms a short beta-strand parallel to thrombin main-chain residues Ser214-Gly219. The Chg1" side chain fills the S2 subsite, Val2" is located at the entrance of S1, whereas 2-Nal3" side chain occupies the aryl-binding site. Such backbone orientation is very close to that observed for the N-terminal residues of hirudin, and it is similar to that of the synthetic retro-binding peptide BMS-183507, but it is opposite to the proposed binding mode of fibrinogen and of small synthetic substrates. Hirunorm V C-terminal segment binds to the fibrinogen recognition exosite, similarly to what observed for hirudin C-termninal tail and related compounds. The linker polypeptide segment connecting hirunorm V N-and C-terminal regions is not observable in the electron density maps. The crystallographic analysis proves the correctness of the design and it provides a compelling proof on the interaction mechanism for this novel class of high potency multisite-directed synthetic thrombin inhibitors.  相似文献   

3.
The X-ray crystal structure of the human alpha-thrombin-hirunorm IV complex has been determined at 2.5 A resolution, and refined to an R-factor of 0.173. The structure reveals an inhibitor binding mode distinctive of a true hirudin mimetic, which justifies the high inhibitory potency and the selectivity of hirunorm IV. This novel inhibitor, composed of 26 amino acids, interacts through the N-terminal end with the alpha-thrombin active site in a nonsubstrate mode, and binds specifically to the fibrinogen recognition exosite through the C-terminal end. The backbone of the N-terminal tripeptide Chg1"-Arg2"-2Na13" (Chg, cyclohexyl-glycine; 2Na1, beta-(2-naphthyl)-alanine) forms a parallel beta-strand to the thrombin main-chain segment Ser214-Gly216. The Chg1" side chain occupies the S2 site, Arg2" penetrates into the S1 specificity site, while the 2Na13" side chain occupies the aryl binding site. The Arg2" side chain enters the S1 specificity pocket from a position quite apart from the canonical P1 site. This notwithstanding, the Arg2" side chain establishes the typical ion pair with the carboxylate group of Asp189.  相似文献   

4.
Factor Xa plays a critical role in the formation of blood clots. This serine protease catalyzes the conversion of prothrombin to thrombin, the first joint step that links the intrinsic and extrinsic coagulation pathways. There is considerable interest in the development of factor Xa inhibitors for the intervention in thrombic diseases. This paper presents the structure of the inhibitor ZK-807834, also known as CI-1031, bound to factor Xa and provides the details of the protein purification and crystallization. Results from mass spectrometry indicate that the factor Xa underwent autolysis during crystallization and the first EGF-like domain was cleaved from the protein. The crystal structure of the complex shows that the amidine of ZK-807834 forms a salt bridge with Asp189 in the S1 pocket and the basic imidazoline fits snugly into the S4 site. The central pyridine ring provides a fairly rigid linker between these groups. This rigidity helps minimize entropic losses during binding. In addition, the structure reveals new interactions that were not found in the previous factor Xa/inhibitor complexes. ZK-807834 forms a strong hydrogen bond between an ionized 2-hydroxy group and Ser195 of factor Xa. There is also an aromatic ring-stacking interaction between the inhibitor and Trp215 in the S4 pocket. These interactions contribute to both the potency of this compound (K(I) = 0.11 nM) and the >2500-fold selectivity against homologous serine proteases such as trypsin.  相似文献   

5.
The coagulation cascade enzymes thrombin and factor Xa are known to have specificity pockets very similar to those of trypsin and plasmin. However, comparative molecular modeling analysis of the crystal structures of benzamidine–thrombin and benzamidine–trypsin, in conjunction with a docking analysis of 5‐amidinoindole and related inhibitors in both enzymes reveals subtle differences between the specificity sites of the two types of enzymes. Specifically, thrombin and factor Xa, which have an alanine residue at position 190, exhibit increased activities for the rigid and more bulky bicyclic derivatives of benzamidine (e.g. amidinobenzofuran, amidinothiophene and amidinoindole), because of additional hydrophobic and H‐bond interactions between the inhibitors and the specificity sites, whereas enzymes with a serine residue at position 190, like trypsin and plasmin, exhibit little difference in activity among the same set of compounds because of the orientational restriction imposed on the inhibitors by Ser190, which forms an additional H‐bond with the amidino group of the inhibitors. Enzymes of both groups show similar responses to the flexible aminobenzamidine since the smaller size and the rotatable anilino group of the inhibitor would allow the inhibitor to achieve favorable electrostatic interactions with both groups of enzymes. 5‐Amidinoindole is the most dramatic example of the rigid bicyclic type inhibitor. Based on our docking analysis, we propose that a selective H‐bond with the hydroxyl group of the catalytic Ser195 and the subtle differences in steric fit imposed by Ala/Ser at position 190 explain the high potency and selectivity of 5‐amidinoindole for thrombin and factor Xa. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Bivalent peptidic thrombin inhibitors consisting of an N-terminal d-cyclohexylalanine-Pro-N(alpha)(Me)Arg active-site fragment, a flexible polyglycine linker, and a C-terminal hirugen-like segment directed towards the fibrinogen recognition exosite inhibit thrombin with K(i) values in the picomolar range, remaining stable in buffered solution at pH 7.8 for at least 15 hours. In order to investigate the structural basis of this increased stability, the most potent of these inhibitors, I-11 (K(i)=37pM), containing an N(alpha)(Me)Arg-Thr bond, was crystallized in complex with human alpha-thrombin. X-ray data were collected to 1.8A resolution and the crystal structure of this complex was determined. The Fourier map displays clear electron density for the N-terminal fragment and for the exosite binding segment. It indicates, however, that in agreement with Edman sequencing, the peptide had been cleaved in the crystal, presumably due to the long incubation time of 14 days needed for crystallization and data collection. The N(alpha)(Me) group is directed toward the carbonyl oxygen atom of Ser214, pushing the Ser195 O(gamma) atom out of its normal site. This structure suggests that upon thrombin binding, the scissile peptide bond of the intact peptide and the Ser195 O(gamma) are separated from each other, impairing the nucleophilic attack of the Ser195 O(gamma) toward the N(alpha)(Me)Arg carbonyl group. In the time-scale of two weeks, however, cleavage geometries favoured by the crystal allow catalysis at a slow rate.  相似文献   

7.
We describe a new serine protease inhibition motif in which binding is mediated by a cluster of very short hydrogen bonds (<2.3 A) at the active site. This protease-inhibitor binding paradigm is observed at high resolution in a large set of crystal structures of trypsin, thrombin, and urokinase-type plasminogen activator (uPA) bound with a series of small molecule inhibitors (2-(2-phenol)indoles and 2-(2-phenol)benzimidazoles). In each complex there are eight enzyme-inhibitor or enzyme-water-inhibitor hydrogen bonds at the active site, three of which are very short. These short hydrogen bonds connect a triangle of oxygen atoms comprising O(gamma)(Ser195), a water molecule co-bound in the oxyanion hole (H(2)O(oxy)), and the phenolate oxygen atom of the inhibitor (O6'). Two of the other hydrogen bonds between the inhibitor and active site of the trypsin and uPA complexes become short in the thrombin counterparts, extending the three-centered short hydrogen-bonding array into a tetrahedral array of atoms (three oxygen and one nitrogen) involved in short hydrogen bonds. In the uPA complexes, the extensive hydrogen-bonding interactions at the active site prevent the inhibitor S1 amidine from forming direct hydrogen bonds with Asp189 because the S1 site is deeper in uPA than in trypsin or thrombin.Ionization equilibria at the active site associated with inhibitor binding are probed through determination and comparison of structures over a wide range of pH (3.5 to 11.4) of thrombin complexes and of trypsin complexes in three different crystal forms. The high-pH trypsin-inhibitor structures suggest that His57 is protonated at pH values as high as 9.5. The pH-dependent inhibition of trypsin, thrombin, uPA and factor Xa by 2-(2-phenol)benzimidazole analogs in which the pK(a) of the phenol group is modulated is shown to be consistent with a binding process involving ionization of both the inhibitor and the enzyme. These data further suggest that the pK(a) of His57 of each protease in the unbound state in solution is about the same, approximately 6.8. By comparing inhibition constants (K(i) values), inhibitor solubilities, inhibitor conformational energies and corresponding structures of short and normal hydrogen bond-mediated complexes, we have estimated the contribution of the short hydrogen bond networks to inhibitor affinity ( approximately 1.7 kcal/mol). The structures and K(i) values associated with the short hydrogen-bonding motif are compared with those corresponding to an alternate, Zn(2+)-mediated inhibition motif at the active site. Structural differences among apo-enzymes, enzyme-inhibitor and enzyme-inhibitor-Zn(2+) complexes are discussed in the context of affinity determinants, selectivity development, and structure-based inhibitor design.  相似文献   

8.
Synthesis and anti-uPA activity of a series of Nalpha-triisopropyl-phenylsulfonyl-protected 3-amidinophenylalanine amides are described. We have explored SAR around the C-terminal amide part for inhibition of uPA, plasmin and trypsin. Modification of the amide part has been found to affect potency but not selectivity. With a Ki of 0.41 microM 2r-L is one of the most potent uPA inhibitors described so far. The X-ray crystal structure of 2r-L was solved in complex with trypsin, superimposed with uPA and the results suggest an unique binding mode of this inhibitor type.  相似文献   

9.
X-ray crystallographic data to 2.57 A resolution (1 A = 0.1 nm) have been measured for the complex of a peptidyl trifluoromethylketone inhibitor with porcine pancreatic elastase (PPE); R = 0.14. The inhibitor forms a stable complex with the enzyme by means of a covalent attachment to active site Ser195O gamma, resulting in a hemiketal moiety with tetrahedral geometry. The tripeptide protion binds as an antiparallel beta-sheet, with four hydrogen bonds augmenting the active-site covalent linkage, Ki = 9.5 microM. His57 exhibits a bifurcated H-bond to both Ser195O gamma and an F atom of the inhibitor. This study is one of a series which explores the binding geometry of a variety of small substrates and inhibitors to PPE. This peptidyl-PPE complex affords insight into the binding geometry of a novel trifluoromethylketone moiety to a serine proteinase.  相似文献   

10.
Discovery and optimization of potency and selectivity of a non-Zn-chelating MMP-13 inhibitor with the aid of protein co-crystal structural information is reported. This inhibitor was observed to have a binding mode distinct from previously published MMP-13 inhibitors. Potency and selectivity were improved by extending the hit structure out from the active site into the S1′ pocket.  相似文献   

11.
The crystal structures of four active site-directed thrombin inhibitors, 1-4, in a complex with human alpha-thrombin have been determined and refined at up to 2.0 A resolution using X-ray crystallography. These compounds belong to a structurally novel family of inhibitors based on a 2,3-disubstituted benzo[b]thiophene structure. Compared to traditional active-site directed inhibitors, the X-ray crystal structures of these complexes reveal a novel binding mode. Unexpectedly, the lipophilic benzo[b]thiophene nucleus of the inhibitor appears to bind in the S1 specificity pocket. At the same time, the basic amine of the C-3 side chain of the inhibitor interacts with the mostly hydrophobic proximal, S2, and distal, S3, binding sites. The second, basic amine side chain at C-2 was found to point away from the active site, occupying a location between the S1 and S1' sites. Together, the aromatic rings of the C-2 and C-3 side chains sandwich the indole ring of Trp60D contained in the thrombin S2 insertion loop defined by the sequence "Tyr-Pro-Pro-Trp." [The thrombin residue numbering used in this study is equivalent to that reported for chymotrypsinogen (Hartley BS, Shotton DM, 1971, The enzymes, vol. 3. New York: Academic Press. pp 323-373).] In contrast to the binding mode of more classical thrombin inhibitors (D-Phe-Pro-Arg-H, NAPAP, Argatroban), this novel class of benzo[b]thiophene derivatives does not engage in hydrogen bond formation with Gly216 of the thrombin active site. A detailed analysis of the three-dimensional structures not only provides a clearer understanding of the interaction of these agents with thrombin, but forms a foundation for rational structure-based drug design. The use of the data from this study has led to the design of derivatives that are up to 2,900-fold more potent than the screening hit 1.  相似文献   

12.
A series of pseudo-peptides with general formula X-l-Glu-NH(2) (with X corresponding to an acyl moiety with a long aryl-alkyl side chain) have been synthesized, evaluated as inhibitors of matrix metalloproteases (MMPs), and found to display remarkable nanomolar affinity. The loss in potency associated with a substitution of the P(2)' l-glutamate by a l-glutamine corroborates the importance of a carboxylate at this position. The binding mode of some of these inhibitors was characterized in solution and by x-ray crystallography in complex with various MMPs. The x-ray crystal structures reveal an unusual binding mode with the glutamate side chain chelating the active site zinc ion. Competition experiments between these inhibitors and acetohydroxamic acid, a small zinc-binding molecule, are in accord with the crystallographic results. One of these pseudo-dipeptides displays potency and selectivity toward MMP-12 similar to the best MMP-12 inhibitors reported to date. This novel family of pseudo peptides opens new opportunities to develop potent and selective inhibitors for several metzincins.  相似文献   

13.
Hydrophobic urethanyl derivatives of 3-amidinophenylalanine methyl ester were found to be relatively potent and selective factor Xa inhibitors. These compounds consist of the arginine-mimetic 3-benzamidino group as P1 residue and of hydrophobic residues as potential interaction partners for the S3/S4 aryl binding site of the enzyme. Attempts to possibly identify their binding mode to factor Xa via the X-ray crystal structure of a trypsin/inhibitor complex and analogy modeling on the crystal structure of factor Xa failed. However, synthesis of enantiomerically pure (R)- and (S)-derivatives, combined with modeling experiments, led to an hypothetical non-substrate like binding mode, which was fully confirmed by the remarkably enhanced inhibitory potency of derivatives in which the methyl ester was replaced by arylamides for interactions with the S3/S4 enzyme binding subsites. With adamantyloxycarbonyl-(R)-3-amidinophenylalanine-phenethylamide+ ++ a nanomolar inhibiton was obtained, thus indicating this new class of factor Xa inhibitors as a highly promising lead structure.  相似文献   

14.
Peptidomimetic inhibitors of thrombin lacking the important Ser195–carbonyl interaction have been prepared. The binding energy lost after the removal of the activated carbonyl was recaptured through a series of modifications of the P1 residues of the bicyclic lactam inhibitors. Selected substituted compounds displayed useful pharmacological profiles both in vitro and in vivo.  相似文献   

15.
《Biophysical journal》2022,121(20):3940-3949
Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases produced during the coagulation cascade and inflammation. Previous studies showed that NM was a highly safe drug for the treatment of different cancers, but the precise functions and mechanisms of NM are not clear. In this study, we determined a series of crystal structures of NM and its hydrolysates in complex with a serine protease (urokinase-type plasminogen activator [uPA]). These structures reveal that NM was cleaved by uPA and that a hydrolyzed product (4-guanidinobenzoic acid [GBA]) remained covalently linked to Ser195 of uPA, and the other hydrolyzed product (6-amidino-2-naphthol [6A2N]) released from uPA. Strikingly, in the inactive uPA (uPA-S195A):NM structure, the 6A2N side of intact NM binds to the specific pocket of uPA. Molecular dynamics simulations and end-point binding free-energy calculations show that the conf1 of NM (6A2N as P1 group) in the uPA-S195A:NM complex may be more stable than conf2 of NM (GBA as P1 group). Moreover, in the structure of uPA:NM complex, the imidazole group of His57 flips further away from Ser195 and disrupts the stable canonical catalytic triad conformation. These results not only reveal the inhibitory mechanism of NM as an efficient serine protease inhibitor but also might provide the structural basis for the further development of serine protease inhibitors.  相似文献   

16.
Guided by X-ray crystallography of thrombin-inhibitor complexes and molecular modeling, alkylation of the N1 nitrogen of the imidazole P1 ligand of the pyridinoneacetamide thrombin inhibitor 1 with various acetamide moieties furnished inhibitors with significantly improved thrombin potency, trypsin selectivity, functional in vitro anticoagulant potency and in vivo antithrombotic efficacy. In the pyrazinoneacetamide series, oral bioavailability was also improved.  相似文献   

17.
Refined structure of the hirudin-thrombin complex   总被引:26,自引:0,他引:26  
The structure of a recombinant hirudin (variant 2, Lys47) human alpha-thrombin complex has been refined using restrained least-squares methods to a crystallographic R-factor of 0.173. The hirudin structure consists of an N-terminal domain folded into a globular unit and a long 17-peptide C-terminal in an extended chain conformation. The N-terminal domain binds at the active-site of thrombin where Ile1' to Tyr3' penetrates to the catalytic triad. The alpha-amino group of Ile1' of hirudin makes a hydrogen bond with OG of Ser195 of thrombin, the side-chains of Ile1' and Tyr3' occupy the apolar site, Thr2' is at the entrance to, but does not enter, the S1 specificity site and Ile1' to Tyr3' form a parallel beta-strand with Ser214 to Gly219. The latter interaction is antiparallel in all other serine proteinase-protein inhibitor complexes. The extended C-terminal segment of hirudin, which is abundant in acidic residues, makes many electrostatic interactions with the fibrinogen binding exosite while the last five residues are in a 3(10) helical turn residing in a hydrophobic patch on the thrombin surface. The precision of the complementarity displayed by these two molecules produces numerous interactions, which although independently generally weak, together are responsible for the high degree of affinity and specificity. Although hirudin-thrombin and D-Phe-Pro-Arg-chloromethyl ketone-thrombin differ in conformation in the autolysis loop (Lys145 to Gly150), this is most likely due to different crystal packing interactions and changes in circular dichroism between the two are probably due to the inherent flexibility of the loop. An RGD sequence, which is generally known to be involved in cell surface receptor interactions, occurs in thrombin and is associated with a long solvent channel filled with water molecules leading to the surface from the end of the S1 site. However, the RGD triplet does not appear to be able to interact in concert in a surface binding mode.  相似文献   

18.
Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1) pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1) residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.  相似文献   

19.
A new series of 1-(1,3-benzodioxol-5-ylmethyl)-3-[4-(1H-Imidazol-1-yl)phenoxy]-piperidine analogs were designed and identified as potent and selective inhibitors of NO formation based both on the crystal structure of a murine iNOS Delta114 monomer domain/ inhibitor complex and inhibition of the NO formation in human A172 cell assays. Compound 12S showed high potency and high iNOS selectivity versus nNOS and eNOS.  相似文献   

20.
Synthesis of thrombin inhibitors and their binding mode to thrombin is described. Modification of the P1 moiety leads to an increased selectivity versus trypsin. The observed selectivity is discussed in view of their thrombin-inhibitor complex X-ray structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号