首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
1. Phenobarbitone injection did not affect the concentration of phospholipids in the liver endoplasmic reticulum, but it increased the rate of incorporation of [(32)P]orthophosphate into the phospholipids. 20-Methylcholanthrene caused a transient increase in total phospholipid but a decrease in the turnover rate of the phospholipids. 2. Incorporation of [(32)P]orthophosphate into phosphatidylcholine, compared with that into phosphatidylethanolamine, was increased by phenobarbitone injection but decreased by 20-methylcholanthrene injection. 3. The activity of S-adenosylmethionine-phosphatidylethanolamine methyltransferase increased 12h after phenobarbitone injection, when incorporation of [(32)P]orthophosphate into phosphatidylcholine was a maximum, but at other times, and after 20-methylcholanthrene injection, the activity of the enzyme did not correlate with the rate of phosphatidylcholine synthesis. 4. [(14)C]Glycerol was incorporated more rapidly into phosphatidylcholine than into phosphatidylethanolamine, whereas [(32)P]orthophosphate and [(14)C]ethanolamine were incorporated more rapidly into phosphatidylethanolamine than into phosphatidylcholine. 5. Incorporation of [(32)P]orthophosphate into phosphatidylethanolamine of liver slices incubated in vitro was much more rapid than into phosphatidylcholine, and incorporation into phosphatidylcholine was markedly stimulated by addition of methionine to the medium. Changes in the incorporation of [(32)P]orthophosphate into phospholipids observed in vivo after injection of phenobarbitone or methylcholanthrene could not be reproduced in slices incubated in vitro. 6. It is concluded that phenobarbitone injection causes an increased rate of turnover of total phospholipids in the endoplasmic reticulum and an increased conversion of phosphatidylethanolamine into phosphatidylcholine, whereas 20-methylcholanthrene injection depresses both the turnover rate of total phospholipids and the formation of phosphatidylcholine.  相似文献   

4.
5.
Earlier studies have evidenced a particular kind of biochemical hetero-geneity within the endoplasmic reticulum of liver cells. Enzymes upon which quantitative data are available are present in the same membranes, in both the rough and smooth portions. However, there are two different distribution patterns: NADPH cytochrome c reductase is more concentrated in the smooth membranes; glucose-6-phosphatase is more uniformly distributed through the rough and smooth portions; the other enzyme distributions conform to one of these patterns designated b and c, respectively. We consider a plausible explanation about this heterogeneity, postulating that enzymes in solution in the cisternal medium and integral membrane proteins of the lumenal aspect are randomly distributed through the whole endoplasmic reticulum (type c enzymes), whereas membrane proteins which expose a large segment at the cytoplasmic aspect are heterogeneously distributed. This latter aspect would consist of two distinct, homogeneous domains; one corresponding to the membrane surfaces in close association with ribosomes; the other containing the enzymes of type b. These domains extensively interpenetrate, accounting for the presence of a significant fraction of the enzymes of type b in the rough microsomes. Experimental data concerning the transmembrane asymmetry of enzymes categorized in groups b and c are briefly reviewed. Relationships between the distributions of NADPH cytochrome c reductase, glucose-6-phosphatase and ribosomes in density gradient analysis are deduced from the assumptions made and confronted with actual density distributions obtained.  相似文献   

6.
Rat liver microsomal sphingomyelin synthetase (CDPcholine: N-acylspingosine choline phosphotransferase (EC 2.7.8.3)) has been shown to be markedly stimulated by ATP and pantothenic acid derivatives such as CoA, pantethine, pantetheine and 4'-phosphopantetheine.  相似文献   

7.
Phosphatidylethanolamine from mitochondria and microsomes of guinea pig liver was separated by thin-layer chromatography into eight different classes differing in degree of unsaturation. The fatty acid compositions and molar proportions of each class isolated from microsomes were very similar to the corresponding class in mitochondria. In both organelles about half of the total was dienoic species while tetraenes comprised approximately 20%. Stearic acid was the major saturated fatty acid and in each membrane a greater selectivity for stearate over palmitate was found in each sub-class of phosphatidylcholine. Following the intraperitoneal injection of [2 minus-3 H]glycerol, the labelling of each molecular class of phosphatidylethanolamine showed very similar progressions in microsomes and mitochondria over a 3 h interval. In both organelles the highest relative specific activity was attained by penta-plus hexaenoic classes, while the large dienoic class had the lowest relative activity, which, however, increased with time. Analysis of the dienoic class of phosphatidyl-ethanolamine from whole liver showed it to be constituted by a rapidly turning over palmitoyl-linoleoyl fraction and a slowly labelled stearoyl-linoleoyl fraction, a pattern also exhibited by dienoic phosphatidylcholines. The similarities in profile of molecular classes of phosphatidylethanolamine and in the kinetics of labelling in vivo point to a close metabolic relation between the lipids of both organelles, suggestive of a transfer of different molecular classes at comparable rates from the endoplasmic reticulum, the site of synthesis, to the mitochondria. This is consistent with numerous other studies in vitro that have demonstrated inter-organelle exchange of lipids.  相似文献   

8.
The biosynthesis of phosphatidylcholine in rat liver microsomal preparations catalysed by CDP-choline-1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) was inhibited by a combination of ATP and CoA or ATP and pantetheine. ATP alone at high concentrations (20 mM) inhibits phosphatidylcholine formation to the extent of 70%. In the presence of 0.1 mM-CoA, ATP (2 mM) inhibits to the extent of 80% and in the presence of 1 mM-pantetheine to the extent of 90%. ADP and other nucleotide triphosphates in combination with either CoA or pantetheine are only 10-30% as effective in inhibiting phosphatidylcholine synthesis. AMP(CH2)PP [adenosine 5'-(alphabeta-methylene)triphosphate] together with CoA inhibits to the extent of 59% and with pantetheine by 48%. AMP-P(CH2)P [adenosine 5'-(betagamma-methylene)triphosphate] together with either CoA or pantetheine had no significant effect on phosphatidylcholine formation. Other closely related derivatives of pantothenic acid were without effect either alone or in the presence of ATP, as were thiol compounds such as cysteine, homocysteine, cysteamine, dithiothreitol and glutathione. Several mechanisms by which this inhibition might take place were ruled out and it is concluded that ATP together with either CoA or pantetheine interacts reversibly with phosphatidylcholine synthetase to cause temporarily the inhibition of phosphatidylcholine formation.  相似文献   

9.
The relationship between the neutral lipid and phospholipid metabolism and some structure-function peculiarities of regenerating rat liver endoplasmic reticulum membranes (13 hours after surgery, i.e., corresponding to the G1-period of the cell cycle) was studied. There was an increase in the degree of the endoplasmic reticulum membrane development and the nonesterified fatty acid (NFA) and triglyceride (TG) content in regenerating rat liver microsomes. The relative specific radioactivity of neutral lipid and phospholipid fractions in regenerating rat liver microsomes was lower than in control animals, presumably due to the high rate of the microsomal lipid exchange in the regenerating liver with other cell organelles. The changes in the lipid content and rate of their metabolism in the regenerating rat liver were associated with the increase in the membrane microviscosity and the decrease in the activity of the membrane-bound enzyme (glucose-6-phosphatase). The differences in the time-dependent changes in the synthesis and metabolism of lipids in the NFA and TG fractions may be regarded as an endogenous factor determining the structure-function peculiarities of endoplasmic reticulum membranes.  相似文献   

10.
The concentration and composition of phospholipids and mitotic activity in regenerating rat liver were studied. (1) The total amount of liver phospholipid increased approximately linearly during 48h after operation but without change in the relative concentrations of individual phospholipids. (2) The appearance of mitoses 30h after operation was accompanied by an increased incorporation of (32)P into the liver phospholipids. (3) The regenerating livers incorporated a higher percentage of the label into the phosphatidylserine+phosphatidylinositol fraction than those of control rats. The percentage of the label incorporated into phosphatidylethanolamine in these livers increased but decreased in the phosphatidylcholine.  相似文献   

11.
The effects of freezing of microsomes in liquid nitrogen and those of storage of microsomal suspensions at 2-4 degrees C and -3 - -5 degrees C for 24 hrs, on the enzymatic activities and hydrophobicity of membranes were studied. The hydrophobicity was determined by fluorescence of bound 1,8-anilino-naphthalene sulfonate. Rapid freezing of the microsomal suspension in liquid nitrogen followed by rapid warming did not change the hydrophobicity of the membranes, the rate of enzymatic lipid peroxidation, the level of cytochrome P-450 and the activity of NADH- and NADPH-cytochrome c reductase. A considerable decrease in the rate of enzymatic lipid peroxidation and membrane hydrophobicity was observed in the microsomes stored for 24 hrs at 2-4 degrees C. The 24-hr storage at -3 - -5 degrees C with subsequent thawing resulted in a rapid aggregation of the microsomes.  相似文献   

12.
Endoplasmic-reticulum phospholipids were measured during the first hour after carbon tetrachloride administration to male Sprague–Dawley rats and compared with carbon tetrachloride challenge of microsomes from control animals in vitro. The extracted lipids were separated by high-pressure liquid chromatography. No significant differences in the abundance of phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol or phosphatidylcholine were found after either treatment when compared with untreated controls. Diene conjugate formation in each separated phospholipid was determined by measuring A232 and expressed on the basis of lipid phosphorus. Phosphatidylserine was peroxidized 6-fold greater than in controls after challenge in vivo, reaching maximal change after 15min, whereas the other phospholipids showed little or no alteration. Fatty acid composition analysis was performed by g.l.c. after transesterification of individual phospholipids. Phosphatidylserine revealed two types of response: an abrupt decrease in relative abundance of oleic acid (C18:1) and linoleic acid (C18:2) without further loss and a slower, linear decrease in arachidonic acid (C20:4) over the first hour. Similar changes were not seen in other phospholipids. In the `in vitro' model, the relative amounts of the phospholipids do not change. The extent of peroxidation was greater in all the phospholipids than found in vivo, with phosphatidylserine peroxidized to the greatest extent. These data suggest that carbon tetrachloride injury in vivo produces an early peroxidative event and that a specific phospholipid (phosphatidylserine) is selectively modified, although maintaining its relative concentration in the membrane. Dissection of this process in vitro will require refinement of existing systems to reduce the non-specific changes associated with the model system.  相似文献   

13.
The iodothyronine-deiodinating enzymes (iodothyronine-5- and 5'-deiodinase) of rat liver were found to be located in the parenchymal cells. Differential centrifugation of rat liver homogenate revealed that the deiodinases resided mainly in the microsomal fraction. The subcellular distribution pattern of these enzymes correlated best with glucose-6-phosphatase, a marker enzyme of the endoplasmic reticulum. Plasma membranes, prepared by discontinuous sucrose gradient centrifugation, were found to contain very little deiodinating activity. Analysis of fractions obtained during the course of plasma membrane isolation showed that the deiodinases correlated positively with glucose-6-phosphatase (r larger than or equal to 0.98) and negatively with the plasma membrane marker 5'-nucleotidase (r ranging between -0.88 and -0.97). It is concluded that the iodothyronine-deiodinating enzymes of rat liver are associated with the endoplasmic reticulum.  相似文献   

14.
15.
The mechanism of ascorbate oxidation was studied in rat liver microsomes. A continuous consumption of the added ascorbate was observed, which was accompanied with a prompt appearance of ascorbyl free radical and dehydroascorbate. Microsomes sustained steady-state level of ascorbyl free radical and dehydroascorbate till ascorbate was present in the medium. Ascorbyl free radical formation was diminished when microsomes had been pretreated with heat or trypsine. It was also decreased by addition of quercetin, econazole or metal chelators, including the copper specific neocuproine. Enzymatic (superoxide dismutase, catalase) and nonenzymatic (dimethyl sulfoxide, mannitol) antioxidants did not modify the microsomal production of ascorbyl free radical. Investigation of the subcellular distribution of ascorbate oxidation showed that the microsomal fraction of liver had the highest activity. The decrease of ascorbate oxidation after protease treatment and the negligible increase upon permeabilization of microsomal vesicles showed that a membrane protein is responsible for the activity, which is exposed to the outer surface of the endoplasmic reticulum. The results indicate the presence of a primary enzymatic ascorbate oxidation in rat liver endoplasmic reticulum which is able to generate dehydroascorbate, an important source of the oxidizing environment in the endoplasmic reticulum.  相似文献   

16.
High affinity ryanodine binding sites in rat liver endoplasmic reticulum   总被引:2,自引:0,他引:2  
The binding of [3H]ryanodine to liver microsomal subfractions was investigated. The smooth microsomal membranes were enriched with ryanodine binding sites and also with a polypeptide of 360 kDa. Caffeine completely inhibited [3H]ryanodine binding. Ryanodine also affected the membrane Ca2+ permeability. At low concentrations (less than 10 microM) ryanodine stimulated Ca2+ efflux and at higher concentrations (greater than 50 microM) it blocked Ca2+ efflux. These results suggest that hepatic microsomes contain ryanodine binding sites which can modify the membrane permeability for Ca2+.  相似文献   

17.
Evidence for an alpha-mannosidase in endoplasmic reticulum of rat liver   总被引:24,自引:0,他引:24  
An alpha-mannosidase activity has been identified in a preparation of rat liver endoplasmic reticulum and shown to be distinct from the previously described Golgi alpha-mannosidases I and II and the lysosomal alpha-mannosidase. The enzyme was solubilized with deoxycholate and separated from other alpha-mannosidases by passage over concanavalin A-Sepharose to which it does not bind. The endoplasmic reticulum alpha-mannosidase cleaves alpha-1,2-linked mannoses from high mannose oligosaccharides and, unlike Golgi alpha-mannosidase I, is active against p-nitrophenyl-alpha-D-mannoside (Km = 0.17 mM). It has no activity toward GlcNAc-Man5GlcNAc2 peptide, the specific substrate of the Golgi alpha-mannosidase II. The endoplasmic reticulum alpha-mannosidase activity toward p-nitrophenyl-alpha-D-mannoside is relatively insensitive to swainsonine, an inhibitor of both the lysosomal alpha-mannosidase and Golgi alpha-mannosidase II. We propose that the endoplasmic reticulum alpha-mannosidase is responsible for the removal of mannose residues from asparagine-linked high mannose type oligosaccharides prior to their entry into the Golgi.  相似文献   

18.
Low-speed centrifugation (640 g) of rat liver homogenates, prepared with a standard ionic medium, yielded a pellet from which a rapidly sedimenting fraction of rough endoplasmic reticulum (RSER) was recovered free of nuclei. This fraction contained 20-25% of cellular RNA and approximately 30% of total glucose-6-phosphatase (ER marker) activity. A major portion of total cytochrome c oxidase (mitochondrial marker) activity was also recovered in this fraction, with the remainder sedimenting between 640 and 6,000 g. Evidence is provided which indicates that RSER may be intimately associated with mitochondria. Complete dissociation of ER from mitochondria in the RSER fraction required very harsh conditions. Sucrose density gradient centrifugation analysis revealed that 95% dissociation could be achieved when the RSER fraction was first resuspended in buffer containing 500 mM KCl and 20 mM EDTA, and subjected to shearing. Excluding KCl, EDTA, or shearing from the procedure resulted in incomplete separation. Both electron microscopy and marker enzyme analysis of mitochondria purified by this procedure indicated that some structural damage and leakage of proteins from matrix and intermembrane compartments had occurred. Nevertheless, when mitochondria from RSER and postnuclear 6,000-g pellet fractions were purified in this way fromanimals injected with [35S]methionine +/- cycloheximide, mitochondria from the postnuclear 6,000-g pellet were found to incorporate approximately two times more cytoplasmically synthesized radioactive protein per milligram mitochondrial protein (or per unit cytochrome c oxidase activity) than did mitochondria from the RSER fraction. Mitochondria-RSER associations, therefore, do not appear to facilitate enhanced incorporation of mitochondrial proteins which are newly synthesized in the cytoplasm.  相似文献   

19.
A rapidly sedimenting fraction of rat liver endoplasmic reticulum   总被引:13,自引:0,他引:13  
  相似文献   

20.
Calciferol 25-hydroxylase activity of vitamin D-deficient rats was measured in both liver microsomes and submicrosomal fractions. The smooth and rough-surfaced microsomes were prepared by a density gradient centrifugation technique in the presence of cesium chloride. Purity of the isolated microsomal membranes was ascertained by electron microscopy, RNA determination, measurement of enzyme markers, and by labeling of the cytoplasmic RNA with [5-3H]orotic acid. Calciferol 25-hydroxylase activity was present in both smooth and rough-surfaced microsomes. The specific activity of the enzyme was greater in the rough fraction. There was a linear relation between enzymic activity and the concentration of enzyme for both total and submicrosomal fractions. These data show the presence of calciferol 25-hydroxylase activity in both smooth and rough-surfaced microsomes isolated from livers of vitamin D-deficient rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号