首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When used alone, both vanadate and hydrogen peroxide (H2O2) are weakly insulin-mimetic, while in combination they are strongly synergistic due to the formation of aqueous peroxovanadium species pV(aq). Administration of these pV(aq) species leads to activation of the insulin receptor tyrosine kinase (IRK), autophosphorylation at tyrosine residues and inhibition of phosphotyrosine phosphatases (PTPs). We therefore undertook to synthesize a series of peroxovanadium (pV) compounds containing one or two peroxo anions, an oxo anion and an ancillary ligand in the inner co-ordination sphere of vanadium, whose properties and insulin-mimetic potencies could be assessed. These pV compounds were shown to be the most potent inhibitors of PTPs yet described. Their PTP inhibitory potency correlated with their capacity to stimulate IRK activity. Some pV compounds showed much greater potency as inhibitors of insulin receptor (IR) dephosphorylation than epidermal growth factor receptor (EGFR) dephosphorylation, implying relative specificity as PTP inhibitors. Replacement of vanadium with either molybdenum or tungsten resulted in equally potent inhibition of IR dephosphorylation. However IRK activation was reduced by greater than 80% suggesting that these compounds did not access intracellular PTPs. The insulin-like activity of these pV compounds were demonstrablein vivo. Intra venous (i.v.) administration of bpV(pic) and bpV(phen) resulted in the lowaring of plasma glucose concentrations in normal rats in a dose dependent manner. The greater potency of bpV(pic) compared to bpV(phen) was explicable, in part, by the capacity of the former but not the latter to act on skeletal muscle as well as liver. Finally administration of bpV(phen) and insulin led to a synergism, where tyrosine phosphorylation of the IR -subunit increased by 20-fold and led to the appearance of four insulin-dependentin vivo substrates. The insulin-mimetic properties of they pV compounds raises the possibility for their use as insulin replacements in the management of diabetes mellitus.  相似文献   

2.
Vanadium compounds show insulin-like effects in vivo and in vitro. Several clinical studies have shown the efficacy of vanadium compounds in type 2 diabetic subjects. However, a major concern is safety, which calls for the development of more potent vanadium compounds. For that reason different laboratories develop strategies to decrease the therapeutic dose of vanadate. One of these strategies use substrates of semicarbazide-sensitive amine oxidase (SSAO)/vascular adhesion protein-1 (VAP-1), a bifunctional protein with amine oxidase activity and adhesive properties implicated in lymphocyte homing at inflammation sites. Substrates of SSAO combined with low concentrations of vanadate strongly stimulate glucose transport and GLUT4 glucose transporter recruitment to the plasma membrane in 3T3-L1 adipocytes and in rat adipocytes. This combination also shows anti-diabetic effects in various animal models of type 1 and type 2 diabetes. Benzylamine/vanadate administration generates peroxovanadium locally in pancreatic islets, which stimulates insulin secretion, and also produces peroxovanadium in adipose tissue, thereby activating glucose metabolism in adipocytes and in neighboring muscle. This opens up the possibility of using the SSAO/VAP-1 activity as a local generator of protein tyrosine phosphatase inhibitors in anti-diabetic therapy. More recently a novel class of arylalkylaminevanadium salts have shown potent insulin-mimetic effects downstream of the insulin receptor. Administration of these compounds lowers glycemia and normalizes the plasma lipid profile in type 1 and type 2 models of diabetes. The combination of different approaches to decrease vanadium doses, among them chelating agents and SSAO substrates, should permit to develop safe and efficient vanadium based agents safe for diabetes treatment.  相似文献   

3.
Cardiac ultrastructure was studied in spontaneously diabetic BB rats maintained on two different regimens of insulin daily. For 3 months from the onset of overt diabetes, one diabetic group was well controlled with daily subcutaneous administration of sufficient insulin to prevent glycosuria (9.0-13.0 U/kg). Approximately half of this dose (4.5 U/kg) of insulin was given daily to a second group of diabetic rats. Normal Wistar rats and nondiabetic BB rats were used as controls. Blood glucose values were three- to four-fold higher with respect to these controls in the diabetic BB rats receiving the smaller dose of insulin but were significantly lower than controls in diabetic animals receiving the higher insulin dose. A 30% difference in body weight with respect to the Wistar controls, obvious hyperliposis, and some nerve degeneration were seen in the low dose insulin group of diabetics. Such changes did not occur in the well-controlled insulin-treated group. Electron microscopic examination of the left ventricular tissue revealed mild damage in both groups of diabetics consisting of small focal lesions and mild edema along the sarcoplasmic reticulum and sometimes adjacent to the sarcolemma. Thus, insulin treatment, which prevented glycosuria, resulted in normal tissue lipid levels and prevented nerve damage but had little effect on the other diabetes-induced ultrastructural alterations in the myocardium of these rats.  相似文献   

4.
Hon-Chi was used for anti-hyperglycemic activity screening in streptozotocin-induced diabetic rats (STZ-diabetic rats) in an attempt to develop new substances for handling diabetes. Mandarin Hon-Chi is red yeast rice fermented with Monascus pilous and Monascus purpureus. Single oral administration of Hon-Chi decreased plasma glucose in STZ-diabetic rats in a dose-dependent manner from 50 mg/kg to 350 mg/kg. Similar treatment with Hon-Chi also lowered the plasma glucose in normal rats as effectively as that produced in STZ-diabetic rats. In addition, oral administration of Hon-Chi at the highest dose (350 mg/kg) attenuated the elevation of plasma glucose induced by an intravenous glucose challenge test in normal rats. Moreover, mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) in liver from STZ-diabetic rats were reversed in a dose-dependent manner by the repeated oral treatment of Hon-Chi three times daily for two weeks. Otherwise, hyperphagia in STZ-diabetic rats was markedly reversed by similar repeated treatment of Hon-Chi. The obtained results suggest that oral administration of Hon-Chi could decrease hepatic gluconeogenesis to lower plasma glucose in diabetic rats lacking insulin.  相似文献   

5.
The intake of dietary fructose has undergone a marked increase around the world, especially the developed countries, in recent times. Stevioside, a glycoside contained in the leaves of Stevia rebaudiana Bertoni (Compositae), was used to screen the effect induced by a diet containing 60% fructose on insulin resistance in rats. Single oral administration of stevioside for 90 min decreased plasma glucose concentrations in a dose-dependent manner in rats receiving fructose-rich chow for four weeks. In addition, insulin action on glucose disposal rate was measured using the glucose-insulin index, the product of the areas under the curve of glucose, and insulin during the intraperitoneal glucose tolerance test. Oral administration of stevioside (5.0 mg/kg) in rats given four weeks of fructose-rich chow for 90 min reversed the value of glucose-insulin index, indicating that stevioside has the ability to improve insulin sensitivity in this insulin-resistant animal model. Time for the loss of plasma glucose lowering response to tolbutamide (10.0 mg/kg, i. p.) in fructose-rich chow fed rats was also markedly delayed by repeated stevioside treatment three times daily compared to the vehicle-treated group. The plasma glucose-lowering activity of tolbutamide was introduced to account for varying levels of endogenous insulin secretion, and is widely used as the indicator of insulin resistance development. Thus, it provided the supportive data that repeated oral administration of stevioside delayed the development of insulin resistance in rats on a high-fructose diet. Increased insulin sensitivity by stevioside administration was further identified using the plasma glucose-lowering action of exogenous insulin in streptozotocin-induced diabetic rats (STZ-diabetic rats). Oral administration of stevioside at 0.2 mg/kg three times daily into STZ-diabetic rats for ten days increased the response to exogenous insulin. Taken together, this demonstrated that oral administration of stevioside improves insulin sensitivity, and seems suitable as an adjuvant for diabetic patients and/or those that consume large amounts of fructose.  相似文献   

6.
Ginsenoside Rh2, one of the ginsenosides contained in the Panax ginseng root, was employed to screen the effect on insulin resistance of rats induced by a diet containing 60% fructose. Single intravenous injection of ginsenoside Rh2 decreased the plasma glucose concentrations in 60 minutes in a dose-dependent manner from 0.1 mg/kg to 1 mg/kg in rats with insulin resistance induced by fructose-rich chow. Repeated intravenous injection of ginsenoside Rh2 (1 mg/kg per injection, 3 times daily) into rats which received fructose-rich chow for 3 consecutive days decreased the value of glucose-insulin index, the product of the areas under the curve of glucose and insulin during the intraperitoneal (i.p.) glucose tolerance test. This means that ginsenoside Rh2 has an ability to improve insulin action on glucose disposal. The plasma glucose lowering action of tolbutamide, induced by the secretion of endogenous insulin, is widely used to characterize the formation of insulin resistance. Time for the loss of plasma glucose lowering response to tolbutamide (10 mg/kg, i.p.) in rats during insulin resistance induction by fructose-rich chow was also markedly delayed by the repeated treatment of ginsenoside Rh2, as compared to the vehicle-treated control. Thus, the repeated treatment of ginsenoside Rh2 delayed the development of insulin resistance in high fructose feeding rats. Increase of insulin sensitivity by ginsenoside Rh2 was further identified using the plasma glucose lowering action of exogenous insulin in streptozotocin-induced diabetic rats (STZ-diabetic rats). Repeated injection of ginsenoside Rh2 at the same dosing (1 mg/kg, 3 times daily) into STZ-diabetic rats for 10 days made an increase of the responses to exogenous insulin. Taken together, it can be concluded that ginsenoside Rh2 has an ability to improve insulin sensitivity and it seems suitable to use ginsenoside Rh2 as an adjuvant for diabetic patients and/or the subjects wishing to increase insulin sensitivity.  相似文献   

7.
Ketogenesis, inferred by the production of acetoacetate plus ß‐hydroxybutyrate, in isolated perfused livers from 24‐h fasted diabetic rats submitted to short‐term insulin‐induced hypoglycemia (IIH) was investigated. For this purpose, alloxan‐diabetic rats that received intraperitoneal regular insulin (IIH group) or saline (COG group) injection were compared. An additional group of diabetic rats which received oral glucose (gavage) (100 mg kg?1) 15 min after insulin administration (IIH + glucose group) was included. The studies were performed 30 min after insulin (1.0 U kg?1) or saline injection. The ketogenesis before octanoate infusion was diminished (p < 0.05) in livers from rats which received insulin (COG vs. IIH group) or insulin plus glucose (COG vs. IIH + glucose group). However, the liver ketogenic capacity during the infusion of octanoate (0.3 mM) was maintained (COG vs. IIH group and COG vs. IIH + glucose group). In addition, the blood concentration of ketone bodies was not influenced by the administration of insulin or insulin plus glucose. Taken together, the results showed that inspite the fact that insulin and glucose inhibits ketogenesis, livers from diabetic rats submitted to short‐term IIH which received insulin or insulin plus glucose showed maintained capacity to produce acetoacetate and ß‐hydroxybutyrate from octanoate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In an attempt to probe a new target for handling insulin resistance, we used Panax ginseng root to screen the effect on insulin resistance induced by fructose-rich chow in rats. Insulin action on glucose disposal rate was measured using the glucose-insulin index, which is the product of the areas under the curve of glucose and insulin during the intraperitoneal glucose tolerance test. Oral administration of Panax ginseng root (125.0 mg/kg) into rats three times daily for three days after receiving fructose-rich chow for four weeks reversed the increased glucose-insulin index, indicating that Panax ginseng root has the ability to improve insulin sensitivity. In addition, the plasma glucose concentrations in rats repeatedly treated with Panax ginseng root were not elevated as markedly as those of the vehicle-treated group during the fructose-rich chow-feeding period. Also, the time in which the plasma glucose-lowering response to tolbutamide (10.0 mg/kg, i. p.) receded in fructose-rich chow fed rats was markedly delayed by repeated Panax ginseng root treatment compared to the vehicle-treated group. The plasma glucose-lowering activity of tolbutamide is believed to depend on the secretion of endogenous insulin, which is widely used as an indicator of insulin resistance development. Thus, it provided supportive data that oral administration of Panax ginseng root could delay the development of insulin resistance in rats. In conclusion, our results suggest that oral administration of Panax ginseng root improves insulin sensitivity and may be used as an adjuvant therapy for treating diabetic patients with insulin resistance.  相似文献   

9.
Cinnamaldehyde—A potential antidiabetic agent   总被引:1,自引:0,他引:1  
Cinnamonum zeylanicum (cinnamon) is widely used in traditional system of medicine to treat diabetes in India. The present study was carried out to isolate and identify the putative antidiabetic compounds based on bioassay-guided fractionation; the compound identified decreased the plasma glucose levels. The active compound was purified by repeat column and structure of cinnamaldehyde was determined on the basis of chemical and physiochemical evidence. The LD(50) value of cinnamaldehyde was determined as 1850+/-37 mg/kg bw. Cinnamaldehyde was administered at different doses (5, 10 and 20 mg/kg bw) for 45 days to streptozotocin (STZ) (60 mg/kg bw)-induced male diabetic wistar rats. It was found that plasma glucose concentration was significantly (p<0.05) decreased in a dose-dependent manner (63.29%) compared to the control. In addition, oral administration of cinnamaldehyde (20 mg/kg bw) significantly decreased glycosylated hemoglobin (HbA(1C)), serum total cholesterol, triglyceride levels and at the same time markedly increased plasma insulin, hepatic glycogen and high-density lipoprotein-cholesterol levels. Also cinnamaldehyde restored the altered plasma enzyme (aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, alkaline phosphatase and acid phosphatase) levels to near normal. Administration of glibenclamide, a reference drug (0.6 mg/kg bw) also produced a significant (p<0.05) reduction in blood glucose concentration in STZ-induced diabetic rats. The results of this experimental study indicate that cinnamaldehyde possesses hypoglycemic and hypolipidemic effects in STZ-induced diabetic rats.  相似文献   

10.
The time course of pancreatic effects of somatostatin was studied over a period of 2 h in unanesthetized unrestrained rats after administration of the peptide by intravenous infusion and by single and multiple subcutaneous injections. During infusion of 10 and 30 micrograms/kg per min, somatostatin continuously suppressed plasma insulin and plasma glucagon. Plasma glucose was significantly increased at the lower dose, but not affected at the higher dose. Single subcutaneous injections of 0.3 and 3 mg/kg decreased plasma insulin and glucagon dose-dependently for 20-60 min without affecting plasma glucose. Multiple subcutaneous injections of somatostatin (one to four doses of 3 mg/kg, administered at intervals of 30 min) caused an initial decrease of plasma insulin (at 30 min), a rebound-increase at 60 and 90 min, and a final return to control values by 120 min. Plasma glucagon remained continuously suppressed. Plasma glucose increased significantly at 60 and 90 min and tended to return towards control values thereafter. In conclusion, pancreatic B cells - but not A cells - of the rat develop tachyphylaxis to somatostatin within 2 h after multiple subcutaneous injections of the peptide. By this mode of administration, 'selective' suppression of plasma glucagon can be achieved with somatostatin in the rat.  相似文献   

11.
Vanadium and diabetes   总被引:21,自引:0,他引:21  
We demonstrated in 1985 that vanadium administered in the drinking water to streptozotocin (STZ) diabetic rats restored elevated blood glucose to normal. Subsequent studies have shown that vanadyl sulfate can lower elevated blood glucose, cholesterol and triglycerides in a variety of diabetic models including the STZ diabetic rat, the Zucker fatty rat and the Zucker diabetic fatty rat. Long-term studies of up to one year did not show toxicity in control or STZ rats administered vanadyl sulfate in doses that lowered elevated blood glucose. In the BB diabetic rat, a model of insulin-dependent diabetes, vanadyl sulfate lowered the insulin requirement by up to 75%. Vanadyl sulfate is effective orally when administered by either single dose or chronic doses. It is also effective by the intraperitoneal route. We have also been able to demonstrate marked long-terrn effects of vanadyl sulfate in diabetic animals following treatment and withdrawal of vanadyl sulfate. Because vanadyl sulfate is not well absorbed we have synthesized and tested a number of organic vanaditun compounds. One of these, bismaltolato-oxovanadiurn IV (BMOV), has shown promise as a therapeutic agent. BMOV is 2-3x more potent than vanadyl sulfate and has shown less toxicity. Recent studies from our laboratory have shown that the effects of vanadium are not due to a decrease in food intake and that while vanadium is deposited in bone it does not appear to affect bone strength or architecture. The mechanism of action of vanadium is currently under investigation. Several studies indicate that vanadiun is a phosphatase inhibitor and that vanadium can activate serine/threonine kineses distal to tbe insulin receptor presumably by preventing dephosphorylation due to inhibition of phosphatases Short-term clinical trials using inorganic vanadium compounds in diabetic patients have been promising.  相似文献   

12.
The in vivo effects of gavage administration of the synthetic, functional biomimetic cation [Cr3O(O2CCH2CH3)6(H2O)3]+ to healthy and type 2 diabetic model rats are described. After 24 weeks of treatment (0–1,000 g Cr/kg body mass) of healthy Sprague Dawley rats, the cation results in a lowering (P<0.05) of fasting blood plasma low-density lipoprotein (LDL) cholesterol, total cholesterol, triglycerides, and insulin levels and of 2-h plasma insulin and glucose concentrations after a glucose challenge. Zucker obese rats (a model of the early stages of type 2 diabetes) and Zucker diabetic fatty rats (a model for type 2 diabetes) after supplementation (1,000 g Cr/kg) have lower fasting plasma total, high-density lipoprotein, and LDL cholesterol, triglycerides, glycated hemoglobin, and insulin levels and lower 2-h plasma insulin levels in glucose tolerance tests. The lowering of plasma insulin concentrations with little effect on glucose concentrations suggests that the supplement increases insulin sensitivity. The cation after 12 and 22 or 24 weeks of administration lowers (P<0.05) fasting plasma glycated hemoglobin levels in the Zucker diabetic and Zucker obese rats, respectively, and thus can improve the glucose status of the diabetic models. The effects cannot be attributed to the propionate ligand.Supplementary material is available for this article at .An erratum to this article can be found at  相似文献   

13.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

14.
Rutin, a polyphenolic flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were rendered diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in liver, kidney and brain. Histopathological studies were carried out in these tissues. A significant (p < 0.05) increase in the levels of fasting plasma glucose, lipid peroxidative products (thiobarbituric acid reactive substances [TBARS] and lipid hydroperoxides [HP]) and a significant (p < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase [SOD], catalase, glutathione peroxidase [GPx] and glutathione reductase [GRx]) and nonenzymic antioxidants (reduced glutathione [GSH], vitamin C and E) in diabetic liver, kidney and brain were observed. Oral administration of rutin (100 mg/kg) for a period of 45 days significantly (p < 0.05) decreased fasting plasma glucose, increased insulin levels and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with rutin (100 mg/kg) showed no significant (p < 0.05) effect on any of the parameters studied. Histopathological studies of the liver, kidney and brain showed the protective role of rutin. Thus, our study clearly shows that rutin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

15.
The objectives of this study were to evaluate the pharmacodynamics and pharmacokinetics of vanadyl acetylacetonate (VAC) in rats. Pharmacodynamic study was carried out using non-diabetic and diabetic rats by subcutaneous (s.c.) and intragastric (i.g.) administrations at single dose or multiple doses. Pharmacokinetic study was performed using non-diabetic rats. Results showed that VAC resulted in a significant decrease of plasma glucose levels in diabetic rats in all dosing levels, and nearly restored hyperglycemic values to normal values after s.c. injection at a single dose of 2, 4, and 8 mg vanadium (V)/kg, or after i.g. administration at multiple doses of 3 and 6 mg V/kg once daily for seven consecutive days, respectively. The VAC could be rapidly absorbed and T(max) values ranged from 0.9 +/- 0.3 h for s.c. injection to 3.0 +/- 0.9 h for i.g. administration. The average absolute bioavailabilities for i.g. administrations at a single dose of 3, 6, and 10 mg V/kg were 34.7%, 28.1%, and 22.8%, respectively. After i.g. administration at a single dose of 10 mg V/kg, the average elimination half-lives obtained from non-diabetic rats were very long ranging from 144.7 +/- 8.7 h in plasma to 657.3 +/- 34.8 h in femur tissue. In conclusion, VAC widely distributed in various tissues and accumulated more in the femur tissue. The time to reach maximal vanadium level after s.c. injection or i.g. administration was not coincident with the time to reach maximal hypoglycemic effect. The accumulated vanadium in bone, kidney or other tissues may gradually release and exert a longer action. In present dosing levels and administration routes, VAC was effective for lowering plasma glucose levels in diabetic rats and could reverse the higher triglyceride and cholesterol levels to the normal ranges. VAC did not influence the insulin levels in plasma and not cause obvious toxic signs like diarrhea.  相似文献   

16.
The molecular basis of insulin resistance, a major risk factor for development of Type II diabetes, involves defective insulin signaling. Insulin-mediated signal transduction is negatively regulated by the phosphotyrosine phosphatase, PTP1B, and numerous studies have demonstrated that organo-vanadium compounds, which are nonselective phosphotyrosine phosphatase inhibitors, have insulin-mimetic properties. However, whether or not vanadium compounds can prevent the transition from insulin resistance to overt diabetes is unknown. We compared the ability of bis(maltolato)oxovanadium(IV) (BMOV), an orally bioavailable organo-vanadium compound, and rosiglitazone maleate (RSG), a known insulin sensitizer, to prevent development of diabetes in Zucker diabetic fatty (ZDF) rats. Treatment began at 6 weeks of age when animals are insulin resistant and hyperinsulinemic, but not yet hyperglycemic, and ended at 12 weeks of age, which is 4 weeks after ZDF rats typically develop overt diabetes. BMOV-treated ZDF rats did not develop hyperglycemia, showed significant improvement in insulin sensitivity, and retained normal pancreatic islet morphology and endocrine cell distribution, similar to RSG-treated animals. BMOV and RSG treatment also prevented the hyper-phagia and polydipsia present in untreated ZDF rats; however, BMOV-treated ZDF rats gained much less weight than did RSG-treated animals. Circulating levels of adiponectin decreased in untreated ZDF rats compared to lean controls, but these levels remained normal in BMOV-treated ZDF rats. In contrast, in RSG-treated ZDF rats, plasma adiponectin levels were nearly 4-fold higher than in lean control rats, primarily as a result of a large increase in the amount of low-molecular weight forms of adiponectin in circulation. These data demonstrate that phosphatase inhibition offers a new approach to diabetes prevention, one that may have advantages over current approaches.  相似文献   

17.
AXEN, KATHLEEN V., XUE LI, AND ANTHONY SCLAFANI. Miglitol (BAY m 1099) treatment of diabetic hypothalamic-dietary obese rats improves islet response to glucose. Obes Res. 1999;7:83–89. Objective : The well-absorbed α-glucosidase inhibitor, miglitol (BAY m 1099), was included in the diets of hypothalamic-dietary obese diabetic rats to investigate its ability to improve glycemia and thereby reverse glucotoxic effects on islet secretory response. Research Methods and Procedures : Female rats received bilateral electrolytic lesions of the ventromedial hypothalamus and were fed high-fat, sucrosesupplemented diets until hyperinsulinemia and hyperglycemia were observed after 3 hours of food deprivation (nonfed). Diabetic animals were assigned to miglitol-treated (40 mg/17 g of diet) or untreated groups for 3 weeks; pancreatic islets were isolated for incubation experiments. Results : No differences in food intake, body weights, or nonfed plasma glucose or insulin levels were seen between treated and untreated diabetic rats. Islets isolated from untreated diabetic rats showed elevated basal insulin release and no insulin secretory response to an elevation in glucose concentration. In contrast, islets obtained from miglitol-treated rats showed more normal basal release and a significant insulin secretory response to glucose. Incubation of islets, obtained from normal control rats or untreated diabetic rats, in media containing miglitol at levels estimated to exist in plasma of treated rats had no effect on islet insulin secretory responses to glucose. Discussion : Islet secretory response was improved despite continued hyperglycemia and severe insulin resistance. Miglitol treatment may improve islet sensitivity to glucose either through effects on islet metabolism requiring prolonged exposure or by improvement in postmeal glycemia, despite persistent hyperglycemia.  相似文献   

18.
The effects of chemical diabetes and fasting on fuel metabolism and insulin secretory activity in late pregnancy were investigated. Female Wistar rats were made chemically diabetic (CD) by intravenous injection of streptozotocine (30 mg/kg) 2 weeks before conception. When CD pregnant rats were fed, plasma glucose and insulin levels were not significantly different from those of normal pregnant rats. Ketone body levels, however, were higher in CD pregnant rats than in normal pregnant rats, indicating insulin resistance in CD rats. Insulin secretion from the perfused pancreas caused by arginine or glucose was markedly decreased in CD pregnant rats. The pregnant rats were fasted for 2 days, from day 19 to 21 of gestation. Plasma glucose and insulin concentrations decreased similarly in the two groups, whereas ketone body concentrations in CD pregnant rats were significantly higher than those in normal pregnant rats. Glucose-induced insulin secretion by the perfused pancreas was markedly attenuated by fasting and was not significantly different in normal and CD pregnant rats. These observations suggest that diabetes mellitus accelerates starvation in late gestation, due to increased insulin resistance and poor insulin secretion, and that fasting in diabetic pregnancy amplifies ketogenesis.  相似文献   

19.
The effectiveness of combining the subcutaneous administration of short- and intermediate-acting insulin with the intravenous infusion of glucose in maintaining normoglycemia during labour and delivery in insulin-dependent diabetic women was tested. Fifty women were given intermediate-acting insulin twice daily in doses that were fractions of their usual dose, based on the projected duration of labour. In addition, they were given regular (i.e., short-acting) insulin every 6 hours, the dose being 1% of their total daily insulin dose for every increase of 10 mg/dl above 100 mg/dl (5.6 mmol/l) in the plasma glucose level 1 hour previously; the levels were measured every 3 hours. All the patients were fasting and received a basal intravenous infusion of 6 g/h of glucose; the rate of infusion was increased by 1 g/h for every decrease of 10 mg/dl in the plasma glucose level below 100 mg/dl. The mean plasma glucose levels (+/- standard deviation) were 90 +/- 46 mg/dl after 3 hours of labour, 92 +/- 35 mg/dl after 6 hours, 97 +/- 49 mg/dl after 9 hours and 107 +/- 65 mg/dl after 12 hours. With only one exception, in a premature infant, the 5-minute Apgar scores were identical to those of the infants of nondiabetic women.  相似文献   

20.
Vanadium has been reported to have insulin-like properties and has recently been demonstrated to be beneficial in the treatment of diabetic animals. In the present study, concentration dependence of the therapeutic effects of vanadium and the nature of interaction under in vivo conditions between vanadium and insulin were examined in streptozotocin-diabetic rats. During a 2-week period, blood glucose levels in all treated animals were decreased. At higher concentrations of vanadyl this decrease was greater and more rapid, and remained consistently lower for the entire treatment period. Daily intake of vanadyl, however, reached a similar steady state in all groups. Acute administration of submaximal doses of insulin, which had minimal effects in untreated diabetic rats, lowered blood glucose concentrations in vanadyl-treated and vanadyl-withdrawn animals to control levels. Chronic treatment of streptozotocin-diabetic rats with submaximal levels of vanadyl and insulin, ineffective alone, also produced significant decreases in blood glucose levels when used in combination. Finally, the insulin dosage required to maintain a nonglycosuric state in spontaneously diabetic (BB) rats was reduced in the presence of vanadyl. These studies indicate that chronic oral vanadyl treatment (a) produces a concentration-related lowering of blood glucose in diabetic rats, (b) potentiates the in vivo glucose lowering effects of acute and chronic administrations of insulin in streptozotocin-diabetic rats, and (c) substitutes for, or potentiates, the effects of chronic insulin therapy in spontaneously diabetic BB rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号