首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The capacity of four neurologically healthy young adults to distinguish opposing directions of cutaneous motion was determined at five different sites along the proximal-distal axis of the upper limb. Constant-velocity brushing stimuli (ranging from 0.5 to 32.0 cm/sec) were delivered through an aperture in a Teflon plate that was securely positioned in light contact with the skin. In one series of experiments, directional sensitivity in d' units was assessed at each site, using an aperture length of 0.75 cm. In a second series of experiments, the aperture length required to obtain the same criterion level of directional sensitivity at each site was determined. To attain the sensitivity reached at distal sites, a proximal stimulus had to traverse a longer chord of skin. Specifically, chords 5.9 times longer on average (range = 5.4-6.2) were required on the proximal forearm than on the index finger pad. This finding suggests that relative directional sensitivity increases sixfold from the proximal forearm to the finger pad. Moreover, relative directional sensitivity on the shoulder was comparable to that observed on the proximal forearm for two of the subjects, and approximately one-half that observed on the proximal forearm for the other two subjects. In addition to such a prominent spatial gradient in relative directional sensitivity, the velocity of stimulus motion at which directional sensitivity was highest increased systematically as the test site was shifted from the finger pad to the proximal forearm. Specifically, the optimal velocity on the finger pad varied among subjects from 1.5 to 9.4 cm/sec (mean = 5.4 cm/sec), and on the proximal forearm from 11.5 to 31.2 cm/sec (mean = 18.6 cm/sec). The optimal velocity on the shoulder was not significantly different from that observed on the proximal forearm. The results suggest that effective and informed clinical testing of patients' capacity to distinguish opposing directions of motion on cutaneous regions that differ in peripheral innervation density requires appreciation of the sensitivities of different skin regions, as well as the unique velocity dependency of direction discrimination at each skin site.  相似文献   

2.
A computational procedure is described for obtaining reproducible, low noise estimates of the instantaneous velocity of axonally transported organelles. Axonally transported organelles were detected in myelinated nerve fibers from Xenopus laevis by dark-field microscopy. The motion of the organelles was recorded on motion picture film at 3 frames/s, and the position of organelles travelling in the retrograde direction was obtained as a pair of x (axial) and y (transverse) coordinates at each 0.33-s interval. THe trend in organelle movement with time was calculated for each of the series of x and y coordinates by linear regression. This trend was removed from the measurements of x and y to yield sets of trend-free displacements. The trend yielded a measure of the mean velocity of the organelle in each of the two orthogonal directions. Power spectra of the deviations in x and y about the trend were calculated. For 133 particles studied, 99% of the power in the trend-free deviations occurred at frequencies below 0.3 Hz. The peak power in the x and y deviations occurred at a frequency of 0.1 Hz or less. Positional deviations about the trend were treated with a discrete 21-term differentiating filter that attenuated frequencies above 0.3 Hz. Instantaneous velocities for the organelles were obtained by adding the result of the band-limited differentiation to the appropriate estimates of mean velocity. The 21-term method was compared with a commonly used 2-term approximation to a differentiator and was shown to produce velocity estimates with about one order of magnitude less error. Estimates of organelle velocity obtained with the 21-term method indicate that saltatory particle motion may be viewed either as a smooth variation of particle velocity with respect to time or as an irregular, or discontinuous, variation of velocity with respect to particle position.  相似文献   

3.
Relationship between eye ability to perceive smooth motion under stroboscopic stimulation on forward motion (from which stationary positions of the object) in the plane perpendicular to the look line was found. For diagnostics and occupational selection it is suggested to carry out stimulation in several directions thus obtaining additional information about the visual system of the person under test.  相似文献   

4.
The discrimination of the angular velocity of ventrodorsal and dorsoventral movement of an acoustic image was studied in nine test subjects. The experiments were performed using an apparent movement produced by consecutive activation of loudspeakers located along an arc in the vertical plane. The differential thresholds were measured by the minimum increment method. As the velocity of an acoustic image movement in opposite directions increased, the values of its mean absolute differential thresholds increased monotonically. Regression lines plotted by linear approximation of these values did not differ significantly.  相似文献   

5.
A neural network which models multistable perception is presented. The network consists of sensor and inner neurons. The dynamics is established by a stochastic neuronal dynamics, a formal Hebb-type coupling dynamics and a resource mechanism that corresponds to saturation effects in perception. From this a system of coupled differential equations is derived and analyzed. Single stimuli are bound to exactly one percept, even in ambiguous situations where multistability occurs. The network exhibits discontinuous as well as continuous phase transitions and models various empirical findings, including the percepts of succession, alternative motion and simultaneity; the percept of oscillation is explained by oscillating percepts at a continuous phase transition. Received: 13 September 1995 / Accepted: 3 June 1996  相似文献   

6.
The primate brain intelligently processes visual information from the world as the eyes move constantly. The brain must take into account visual motion induced by eye movements, so that visual information about the outside world can be recovered. Certain neurons in the dorsal part of monkey medial superior temporal area (MSTd) play an important role in integrating information about eye movements and visual motion. When a monkey tracks a moving target with its eyes, these neurons respond to visual motion as well as to smooth pursuit eye movements. Furthermore, the responses of some MSTd neurons to the motion of objects in the world are very similar during pursuit and during fixation, even though the visual information on the retina is altered by the pursuit eye movement. We call these neurons compensatory pursuit neurons. In this study we develop a computational model of MSTd compensatory pursuit neurons based on physiological data from single unit studies. Our model MSTd neurons can simulate the velocity tuning of monkey MSTd neurons. The model MSTd neurons also show the pursuit compensation property. We find that pursuit compensation can be achieved by divisive interaction between signals coding eye movements and signals coding visual motion. The model generates two implications that can be tested in future experiments: (1) compensatory pursuit neurons in MSTd should have the same direction preference for pursuit and retinal visual motion; (2) there should be non-compensatory pursuit neurons that show opposite preferred directions of pursuit and retinal visual motion.  相似文献   

7.
Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100 Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke.  相似文献   

8.
A new technique is presented that utilizes relative velocity vectors between articulating surfaces to characterize internal/external rotation of the tibio-femoral joint during dynamic loading. Precise tibio-femoral motion was determined by tracking the movement of implanted tantalum beads in high-speed biplane X-rays. Three-dimensional, subject-specific CT reconstructions of the femur and tibia, consisting of triangular mesh elements, were positioned in each analyzed frame. The minimum distance between subchondral bone surfaces was recorded for each mesh element comprising each bone surface, and the relative velocity between these opposing closest surface elements was determined in each frame. Internal/external rotation was visualized by superimposing tangential relative velocity vectors onto bone surfaces at each instant. Rotation about medial and lateral compartments was quantified by calculating the angle between these tangential relative vectors within each compartment. Results acquired from 68 test sessions involving 23 dogs indicated a consistent pattern of sequential rotation about the lateral condyle (approximately 60 ms after paw strike) followed by rotation about the medial condyle (approximately 100 ms after paw strike). These results imply that axial knee rotation follows a repeatable pattern within and among subjects. This pattern involves rotation about both the lateral and medial compartments. The technique described can be easily applied to study human knee internal/external rotation during a variety of activities. This information may be useful to define normal and pathologic conditions, to confirm post-surgical restoration of knee mechanics, and to design more realistic prosthetic devices. Furthermore, analysis of joint arthrokinematics, such as those described, may identify changes in joint mechanics associated with joint degeneration.  相似文献   

9.
10.
Two bistable apparent-movement displays (i.e. ones that generate two qualitatively different kinds of movement percepts under different conditions) were compared. They were designed to be as similar as possible spatially, and were studied with identical stimulus manipulations to see whether changes in balance between their bistable percepts would be similar. Results show that the two displays had different response characteristics to the same stimulus manipulations. Two models of motion perception that have previously predicted at least one kind of bistable apparent motion were considered in terms of how well they address the current data. As yet, neither model has been shown to predict the motion states and bistable behavior of the two displays studied here. It is concluded that results of the type described here (specifically, differences in the psychophysical functions yielded by two structurally similar but qualitatively different bistable displays) present a challenge for theories of motion perception.  相似文献   

11.
The 2-substituted ATP analog 2-Chloro ATP was tested for its capacity to support axonemal movement. The movement of sea urchin axonemes reactivated with 2-Cl ATP appeared very similar to that with ATP. Detailed waveform analysis indicated that bend angle and shear amplitude were not significantly different for ATP and 2-Cl ATP. Although wavelength differs at particular nucleotide concentrations, if normalized to the beat frequency, it is similar for ATP and 2-Cl ATP. The main difference in the movement with the two analogs was seen in beat frequency and sliding velocity. The Vmax for beat frequency and mean sliding velocity was lower for 2-Cl ATP. The apparent Km for beat frequency and sliding velocity was much lower for 2-Cl ATP. The ratio of these two effects, that is, (Vmax/Km) is higher for 2-Cl ATP. Thus 2-Cl ATP is a good substrate for axonemal movement. The significantly lower Km of 2-Cl ATP was also demonstrated by its ability to support oscillatory motion at concentrations below that for ATP. The observations identify the structures and conformation of substrate necessary to support axonemal movement.  相似文献   

12.
13.
The phenomenon of stroboscopic alternative motion exhibits five different percepts that are seen with an increase in the frequency of presentation: (a) succession, (b) fluttering motion, (c) reversible clockwise and counter-clockwise turning motion, (d) oppositional motion and (e) simultaneity. From a synergetic point of view the increase in frequency is a control parameter and the different percepts are order parameters with phase transitions in between. The neural network model of Carmesin and Arndt is applied to receive predictions about hysteresis and phase transitions between these order parameters. Empirical data show the different motion percepts (b), (c) and (e) have lognormal distributions. Following the theoretical model, it is argued that there are three different phases, (a), (c) and (e), with two continuous phase transitions, (b) and (d), between them. The experimental data substantially match the theoretical ssumptions. Received: 29 December 1995 / Accepted in revised form: 3 June 1996  相似文献   

14.
In everyday life, eye movements enable the eyes to gather the information required for motor actions. They are thus proactive, anticipating actions rather than just responding to stimuli. This means that the oculomotor system needs to know where to look and what to look for. Using examples from table tennis, driving and music reading we show that the information the eye movement system requires is very varied in origin and highly task specific, and it is suggested that the control program or schema for a particular action must include directions for the oculomotor and visual processing systems. In many activities (reading text and music, typing, steering) processed information is held in a memory buffer for a period of about a second. This permits a match between the discontinuous input from the eyes and continuous motor output, and in particular allows the eyes to be involved in more than one task.  相似文献   

15.
Adaptation was used to probe the perceiver's activation state when either motion or nonmotion percepts are formed for bistable, single-element apparent motion stimuli. Although adaptation was not observed in every instance, when it was observed its effect was to increase the probability of both motion-to-nonmotion and nonmotion-to-motion switches, the time scale of adaptation corresponding to neurophysiological observations for directionally selective cortical cells (Giaschi et al. 1993). This susceptibility to de-stabilizing adaptation effects indicated that the nonmotion percept was not the result of inadequate stimulation producing subthreshold levels of motion detector activation; if that were the case, activation-dependent adaptation would have decreased the nonmotion-to-motion switching rate by reducing activation further below threshold. Above-threshold activation levels are therefore associated with both nonmotion and motion perceptual states, and the failure to perceive motion despite the presence of adequate motion detector stimulation can be attributed to inhibitory competition between detectors activated by motion-specifying stimulus information and detectors activated to similar levels by motion-independent stimulus information, consistent with the dynamical quality of single-element apparent motion.  相似文献   

16.
《Journal of Physiology》2013,107(5):409-420
During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank using motion-based prediction. This implies that using a prior on the coherency of motion, the system may integrate previous motion information even in the absence of a stimulus. In order to compare with experimental results, we simulated tracking velocity responses. We found that the response of the motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly recovers the information on the trajectory after reappearance. This is compatible with behavioral and neural observations on motion extrapolation. To understand these mechanisms, we have recorded the response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at the global level as a gain control mechanism and that we could switch from a smooth regime to a binary tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a certain value, where motion coherency and predictability fail to hold longer. In particular, we found that motion-based prediction leads to the emergence of a tracking behavior only when enough information from the trajectory has been accumulated. Then, during tracking, trajectory estimation is robust to blanks even in the presence of relatively high levels of noise. Moreover, we found that tracking is necessary for motion extrapolation, this calls for further experimental work exploring the role of noise in motion extrapolation.  相似文献   

17.
Smooth pursuit eye movements change the retinal image velocity of objects in the visual field. In order to change from a retinocentric frame of reference into a head-centric one, the visual system has to take the eye movements into account. Studies on motion perception during smooth pursuit eye movements have measured either perceived speed or perceived direction during smooth pursuit to investigate this frame of reference transformation, but never both at the same time. We devised a new velocity matching task, in which participants matched both perceived speed and direction during fixation to that during pursuit. In Experiment 1, the velocity matches were determined for a range of stimulus directions, with the head-centric stimulus speed kept constant. In Experiment 2, the retinal stimulus speed was kept approximately constant, with the same range of stimulus directions. In both experiments, the velocity matches for all directions were shifted against the pursuit direction, suggesting an incomplete transformation of the frame of reference. The degree of compensation was approximately constant across stimulus direction. We fitted the classical linear model, the model of Turano and Massof (2001) and that of Freeman (2001) to the velocity matches. The model of Turano and Massof fitted the velocity matches best, but the differences between de model fits were quite small. Evaluation of the models and comparison to a few alternatives suggests that further specification of the potential effect of retinal image characteristics on the eye movement signal is needed.  相似文献   

18.
Effects of MgATP, MgADP, and Pi on actin movement by smooth muscle myosin.   总被引:4,自引:0,他引:4  
To test the idea that the in vitro motility assay is a simplified model system for muscle contraction, the MgATP-dependent movement of actin filaments by thiophosphorylated smooth muscle myosin was characterized in the presence of the products MgADP and inorganic phosphate. The dependence of actin filament velocity on MgATP concentration was hyperbolic with a maximum velocity of 0.6 micron/s and an apparent Km = 40 microM (30 degrees C). MgADP competitively inhibited actin movement by MgATP with a Ki = 0.25 mM. Inorganic phosphate did not affect actin filament velocity in the presence of 1 mM MgATP, but competitively inhibited movement in the presence of 50 microM MgATP with a Ki = 9.5 mM. The effects of ADP and Pi on velocity agree with fiber mechanical studies, confirming that the motility assay is an excellent system to investigate the molecular mechanisms of force generation and shortening in smooth muscle. The rate at which rigor cross-bridges can be recruited to move actin filaments was observed by initiating cross-bridge cycling from rigor by flash photolysis of caged MgATP. Following the flash, which results in a rapid increase in MgATP concentration, actin filaments experienced a MgATP-dependent delay prior to achieving steady state velocity. The delay at low MgATP concentrations was interpreted as evidence that motion generating cross-bridges are slowed by a load due to a transiently high percentage of rigor cross-bridges immediately following MgATP release.  相似文献   

19.
Gait analysis using small sensor units is becoming increasingly popular in the clinical context. In order to segment continuous movement from a defined point of the stride cycle, knowledge about footfall timings is essential. We evaluated the accuracy and precision of foot contact timings of a defined limb determined using an inertial sensor mounted on the pelvis of ten horses during walk and trot at different speeds and in different directions. Foot contact was estimated from vertical velocity events occurring before maximum sensor roll towards the contralateral limb. Foot contact timings matched data from a synchronised hoof mounted accelerometer well when velocity minimum was used for walk (mean (SD) difference of 15 (18)ms across horses) and velocity zero-crossing for trot (mean (SD) difference from -4 (14) to 12 (7)ms depending on the condition). The stride segmentation method also remained robust when applied to movement data of hind limb lame horses. In future, this method may find application in segmenting overground sensor data of various species.  相似文献   

20.
Purified smooth muscle myosin in the in vitro motility assay propels actin filaments at 1/10 the velocity, yet produces 3-4 times more force than skeletal muscle myosin. At the level of a single myosin molecule, these differences in force and actin filament velocity may be reflected in the size and duration of single motion and force-generating events, or in the kinetics of the cross-bridge cycle. Specifically, an increase in either unitary force or duty cycle may explain the enhanced force-generating capacity of smooth muscle myosin. Similarly, an increase in attached time or decrease in unitary displacement may explain the reduced actin filament velocity of smooth muscle myosin. To discriminate between these possibilities, we used a laser trap to measure unitary forces and displacements from single smooth and skeletal muscle myosin molecules. We analyzed our data using mean-variance analysis, which does not rely on scoring individual events by eye, and emphasizes periods in the data with constant properties. Both myosins demonstrated multiple but similar event populations with discrete peaks at approximately +11 and -11 nm in displacement, and 1.5 and 3.5 pN in force. Mean attached times for smooth muscle myosin were longer than for skeletal-muscle myosin. These results explain much of the difference in actin filament velocity between these myosins, and suggest that an increased duty cycle is responsible for the enhanced force-generating capacity of smooth over skeletal-muscle myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号