首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S R Pfeffer  R B Kelly 《Cell》1985,40(4):949-957
Coated vesicles have been purified in the past on the basis of their remarkably homogeneous structure, not their function. We have succeeded in isolating two subpopulations of bovine brain coated vesicles that carry specific "cargoes," in this case two synaptic vesicle membrane polypeptides (Mr = 95,000 and 65,000). Monoclonal antibodies that recognize cytoplasmic domains of these polypeptides can penetrate the clathrin coat and recognize them on the outer surface of the coated vesicle membrane. An immunoadsorption technique could therefore be used to fractionate coated vesicles on the basis of their membrane composition. The subpopulations have the normal complement of conventional coated vesicle proteins. Exclusive, however, to the subpopulations that carry synaptic vesicle polypeptides are two new coated vesicle polypeptides (Mr = 38,000 and 29,000).  相似文献   

2.
A protein designated as a 100-kDa protein on the basis of sodium dodecyl sulfate gel electrophoresis was purified from coated vesicles obtained from bovine brain, with uncoated vesicles as starting material. Two gel filtration steps, one involving 0.5 M tris(hydroxymethyl)aminomethane, pH 8.0, buffer, and the other 0.01 M tris(hydroxymethyl)aminomethane, pH 8.0, and 3 M urea buffer, were employed. The purified protein has a native molecular weight of 114,000 as determined by sedimentation equilibrium analysis. Circular dichroism data showed that the protein has 28% helical structure, 29% beta-structure, and 15% beta-turns, and the rest is random coil. Addition of the purified protein to clathrin results in the polymerization of clathrin to homogeneous size baskets of sedimentation velocity 150 S. A scan of the Coomassie Blue stained electrophoresis gels of the polymerized baskets shows that, for every clathrin trimer, there is approximately one 100-kDa protein molecule.  相似文献   

3.
We previously reported (Ryu, S. H., Cho, K. S., Lee, K. Y., Suh, P. G., and Rhee, S. G. (1986) Biochem. Biophys. Res. Commun. 141, 137-144) that cytosolic fractions of bovine brain contain two phosphoinositide-specific phospholipase C (PLC), PLC-I and PLC-II. In this paper purification procedures and properties of these two forms of enzyme are presented. The two enzymes exhibit similar substrate specificity. Both PLC-I and PLC-II catalyze the hydrolysis of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Yet, they respond differently to activators such as Ca2+ and nucleotides and to inhibitory divalent metal ions such as Hg2+ and Cd2+. In addition, they are immunologically distinct as evidenced by the fact that monoclonal antibodies directed against either enzyme do not cross-react with the other. Their activities are Ca2+ concentration-dependent. PIP and PIP2 are better substrates than PI for both PLC-I and PLC-II when the concentration of Ca2+ is in the micromolar range. Study of the effect of nucleotides, such as GTP, guanosine 5'-(3-O-thio)triphosphate, guanyl-5'-yl imidodiphosphate, and ATP, on the activities of both isozymes with PIP2 as substrate revealed that (i) in the absence of Ca2+, PLC-I activity is enhanced by 400% by either GTP or ATP. In the presence of Ca2+ (a condition in which PLC-I exhibits much higher activity), the activation factor by nucleotides is diminished to approximately 140%. (ii) without Ca2+, PLC-II activity is too low to measure with or without added nucleotides. The effect of nucleotides on PLC-II activity is trivial in the presence of Ca2+. In addition, studies on the effect of metal ions on PI hydrolysis showed that the activities of both PLC-I and PLC-II are not affected by 50 microM of Mg2+, Mn2+, Ca2+, or Ni2+. However, Hg2+, Zn2+, and Cu2+ inhibited both PLC-I and PLC-II, with PLC-II exhibiting much higher sensitivity to these metal ions than PLC-I. For example, the value of I0.5 for Hg2+ inhibition is 0.2 microM for PLC-II and 1 microM for PLC-I. Cd2+ selectively inhibits PLC-II with a I0.5 value of 5 microM. Most of these metal ions' inhibition can be overcome by either dithiothreitol or EDTA.  相似文献   

4.
Two distinct dipeptidyl aminopeptidases, which were designated DPP-A and DPP-B, were purified from soluble fraction of monkey brain using Leu-enkephalin as the substrate. The enzymes were purified 187 and 136 fold, respectively. Both enzymes showed the optimum pH in neutral range. Their molecular weights were almost equal and were estimated to be about 100,000. Their Km values with Leu-enkephalin as the substrate were 5.6 X 10(-5) and 1.1 X 10(-5) M, respectively. Among synthesized substrates, the highest affinity of the enzymes was toward arginyl-arginine beta-naphthylamide with the Km values of 6.25 X 10(-5) and 6.41 X 10(-5) M, respectively. Both enzyme activities were inhibited by the metal-chelators DFP and PCMB. Two hundred fifty microM arphamenine A inhibited DPP-A and -B with inhibition of 36.6% and 44.1%, respectively. Beta-endorphin, ACTH, and glucagon inhibited only DPP-B, while beta-lipotropin and angiotensin II inhibited both DPP-A and -B when Leu-enkephalin was used as the substrate.  相似文献   

5.
Alcohol dehydrogenase activity in mouse liver homogenate-supernatants is 1.7 times greater in the C57BL/10 strain than in the BALB/c strain, regardless of whether activity is expressed in units per gram liver, total liver, or milligram DNA. The K m values for ethanol and NAD+, approximately 0.4 and 0.03mm, respectively, of enzyme purified from both strains are similar. Moreover, the K i for NADH, 1 µm, the pH optimum for ethanol oxidation, 10.5, and the V max for ethanol oxidation, 160 min–1, for ADH from the C57BL/10 and BALB/c strains are similar. Therefore, the difference in ADH activity in the two strains cannot be due to differences in the catalytic properties of the enzyme. The electrophoretic and isoelectric focusing patterns and two-dimensional tryptic peptide maps of the purified enzyme from both strains are identical. Thus the amino acid sequences of enzyme from C57BL/10 and BALB/c mice must also be identical or very similar. The difference in ADH activity in the two strains is most likely the result of genetic differences in the content of ADH protein in liver.Supported by NIAAA Grant AA 04307.  相似文献   

6.
Lipase, an enzyme that hydrolyzes triacylglycerol, has been purified and characterized. The purification procedure includes ethanol precipitation and chromatographies on Sephacryl-200 HR, high resolution anion-exchange (mono Q) and Polybuffer exchanger 94. With this procedure, two forms of lipases from Geotrichum candidum were obtained. Lipase I (main enzyme) and lipase II (minor enzyme) were purified 35-fold with a 62% recovery in activity and 94-fold with a 18% recovery in activity, respectively. Their molecular weights have been estimated by polyacrylamide gel electrophoresis under denaturing conditions and by molecular sieving under native conditions at 56,000. Lipase I and II had optimum pH values of 6.0 and 6.8 and isoelectric points of 4.56 and 4.46, respectively. The enzymes are stable at a pH range of 6.0 to 8.0. Monovalent ions had little effect on both enzyme activities, while divalent ions at concentrations above 50 mM inhibited the lipase activities in a concentration-dependent manner. Sodium dodecyl sulfate at a concentration lower than 10 mM completely inhibited the lipase activity.  相似文献   

7.
The major molecular form of acetylcholinesterase (AChE) from chicken brain is a membrane-bound glycoprotein with an apparent sedimentation coefficient of 11.4 S. Analysis of the purified protein by gel filtration, velocity sedimentation, and sodium dodecyl sulfate-gel electrophoresis shows that the solubilized enzyme is a globular tetramer with an apparent Mr = 420,000. This membrane-bound form of AChE is hydrophobic and readily aggregates in the absence of detergent. These aggregates are concentration-dependent, relatively stable in the presence of high salt concentrations, yet readily dissociate upon addition of detergent to the 11.4 S form, indicating that the interactions are hydrophobic. Polyclonal and monoclonal antibodies raised against chicken brain AChE purified by ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis precipitate AChE enzyme activity. However, these antibodies do not cross-react with the enzyme from chicken muscle which preferentially hydrolyses butyrylcholine. Immunoprecipitation of isotopically labeled enzyme molecules from tissue cultured brain cells and analysis by sodium dodecyl sulfate-gel electrophoresis shows that AChE consists of two polypeptide chains with apparent Mr = 105,000 (alpha) and 100,000 (beta) in a 1:1 ratio. Immunoblotting of brain AChE with either the polyclonal or monoclonal antibodies indicates that the alpha and beta chains share antigenic determinants. Furthermore, both polypeptide chains can be labeled with [3H]diisopropyl fluorophosphate, indicating that they each contain a catalytic site. This is the first indication that globular forms of AChE may consist of multiple polypeptide chains.  相似文献   

8.
A new eukaryotic initiation factor 2 kinase has been purified for the first time from calf brain cytosol. The purification of a nonabundant novel protein kinase activity, designated as PKI, that phosphorylates the alpha subunit of eukaryotic initiation factor 2 is described. The protein kinase activity was assayed using purified initiation factor 2 as a substrate and was purified by ammonium sulphate precipitation, conventional chromatography in heparin-Sepharose and phosphocellulose and by high performance size exclusion and anion exchange chromatographies. The protein kinase activity elutes in the region of 140,000 in the size exclusion chromatography and is associated with two different polypeptides a and b, with relative molecular masses of 38,000 and 20,000 and an approximate ratio of 2.5-3.0:1. The protein kinase does not phosphorylate casein or histones and it is independent of cyclic nucleotides. It can be classified as a serine kinase since the phosphorylation of the alpha subunit of eIF-2 is produced in serine residues. Under these conditions none of the kinase subunits are phosphorylated.  相似文献   

9.
Two-dimensional peptide map analysis was used to determine the structural homology among the '100 kDa'-group of polypeptides. There are at least six distinct polypeptides whose apparent molecular weights are 116, 113, 111, 108, 105 and 100 kDa. The molar ratio of the '100 kDa'-group of polypeptides to three clathrin monomers (equivalent to one triskelion) is 1.2:1. There are three families of polypeptides in the '100 kDa'-group as determined by two-dimensional peptide map analysis. They are 116 and 113 kDa polypeptides, 111, 108, and 105 kDa polypeptides and 100 kDa polypeptide. However, all six polypeptides apparently show a series of homologous peptides. It is suggested that the 100-116 kDa polypeptides may bind to triskelions at the area of homology that is found in the 100-116 kDa polypeptides.  相似文献   

10.
Acetylcholine receptors (AChRs) are packed in the postsynaptic membrane at neuromuscular junctions at a density of approximately 20,000/micron 2, whereas the density a few micrometers away is less than 20/micron 2. To understand how this remarkable distribution comes about during nerve-muscle synapse formation, we have attempted to isolate factors from neural tissue that can promote the accumulation of AChRs and/or alter their distribution. In this paper we report the purification of a polypeptide from chick brains that can increase the rate of insertion of AChR into membranes of cultured chick myotubes at a concentration of less than 0.5 ng/ml. Based on SDS PAGE and the action of neuraminidase, the acetylcholine receptor-inducing activity (ARIA) appears to be a 42,000-D glycoprotein. ARIA was extracted in a trifluoroacetic acid-containing cocktail and purified to homogeneity by reverse-phase, ion exchange, and size exclusion high pressure liquid chromatography. Dose response curves indicate that the activity has been purified 60,000-fold compared with the starting acid extract and approximately 1,500,000-fold compared with a saline extract prepared from the same batch of brains. Although the ARIA was purified on the basis of its ability to increase receptor incorporation, we found that it increased the number and size of receptor clusters as well. It is not yet clear if the two effects are independent. The 42-kD ARIA is extremely stable: it was not destroyed by exposure to intact myotubes, low pH, organic solvents, or SDS. Its action appears to be selective in that the increase in the rate of receptor insertion was not accompanied by an increase in the rate of protein synthesis. Moreover, there was no change in cellular, surface membrane, or secreted acetylcholinesterase. The effect of ARIA is apparently independent of the state of activity of the target myotubes as its effect on receptor incorporation added to that of maximal concentrations of tetrodotoxin.  相似文献   

11.
A membrane-bound phosphatidylinositol (PI) kinase was purified from rat brain. The enzyme was solubilized with Triton X-100 from salt-washed membrane and purified 11,183-fold, with a final specific activity of 150 nmol/min/mg of protein. Purification steps included several chromatography using Q-Sepharose Fast Flow, cellulose phosphate, Toyopearl HW 55 and Affi-Gel Blue. The purified PI kinase had an estimated molecular weight of 80,000 by gel filtration and 76,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified kinase phosphorylated only PI and did not phosphorylate phosphatidylinositol 4-phosphate or diacylglycerol. Km values for PI and ATP were found to be 115 and 150 microM, respectively. The enzyme required Mg2+ (5-20 mM) or Mn2+ (1-2 mM) for activity, was stimulated by 0.1-1.0% (w/v) Triton X-100, and completely inhibited by 0.05% sodium dodecyl sulfate. The enzyme activity showed a broad pH optimum at around 7.4. The enzyme utilized ATP and not GTP as phosphate donor. Nucleoside triphosphates other than ATP and diphosphates significantly inhibited the kinase activity. However, inhibitory effects of adenosine, cAMP, and quercetin were weak.  相似文献   

12.
The Snf1 kinase complex of Saccharomyces cerevisiae contains one of three possible beta subunits encoded by either SIP1, SIP2, or GAL83. Snf1 kinase complexes were purified from cells expressing only one of the three beta subunits using a tandem affinity purification tag on the C terminus of the Snf1 protein. The purified kinase complexes were enzymatically active as judged by their ability to phosphorylate a recombinant protein containing the Snf1-responsive domain of the Mig1 protein. The Snf1 kinase complexes containing Gal83 or Sip2 as the beta subunit showed comparable and high levels of activity, whereas the Sip1-containing enzyme was significantly less active. Examination of the protein composition of the purified Snf1 enzyme complexes indicated that the Sip1 protein was present in substoichiometric levels. Increased gene dosage of SIP1 rescued the ethanol growth defect observed in cells expressing Sip1 as their only beta subunit and increased the in vitro activity of Snf1 kinase purified from these cells. Our studies indicate that the reduced activity of Snf1-Snf4-Sip1 kinase is due to low level of Sip1 accumulation rather than a limited ability of the Sip1 form of the enzyme to direct phosphorylation of specific substrates.  相似文献   

13.
A calcium and calmodulin-dependent protein kinase has been purified from rat brain. It was monitored during the purification by its ability to phosphorylate the synaptic vesicle-associated protein, synapsin I. A 300-fold purification was sufficient to produce kinase that is 90-95% pure as determined by scans of stained sodium dodecyl sulfate-polyacrylamide gels and has a specific activity of 2.9 mumol of 32P transferred per min/mg of protein. Thus, the kinase is a relatively abundant brain enzyme, perhaps comprising as much as 0.3% of the total brain protein. The Stokes radius (95 A) and sedimentation coefficient (16.4 S) of the kinase indicate a holoenzyme molecular weight of approximately 650,000. The holoenzyme is composed of three subunits as judged by their co-migration with kinase activity during the purification steps and co-precipitation with kinase activity by a specific anti-kinase monoclonal antibody. The three subunits have molecular weights of 50,000, 58,000, and 60,000, and have been termed alpha, beta', and beta, respectively. The alpha- and beta-subunits are distinct peptides, however, beta' may have been generated from beta by proteolysis. All three of these subunits bind calmodulin in the presence of calcium and are autophosphorylated under conditions in which the kinase is active. The subunits are present in a ratio of about 3 alpha-subunits to 1 beta/beta'-subunit. We therefore postulate that the 650,000-Da holoenzyme consists of approximately 9 alpha-subunits and 3 beta/beta'-subunits. The abundance of this calmodulin-dependent protein kinase indicates that its activation is likely to be an important biochemical response to increases in calcium ion concentration in neuronal tissue.  相似文献   

14.
gamma-tubulin exists in two related complexes in Drosophila embryo extracts (Moritz, M., Y. Zheng, B.M. Alberts, and K. Oegema. 1998. J. Cell Biol. 142:1- 12). Here, we report the purification and characterization of both complexes that we name gamma-tubulin small complex (gammaTuSC; approximately 280,000 D) and Drosophila gammaTuRC ( approximately 2,200,000 D). In addition to gamma-tubulin, the gammaTuSC contains Dgrip84 and Dgrip91, two proteins homologous to the Spc97/98p protein family. The gammaTuSC is a structural subunit of the gammaTuRC, a larger complex containing about six additional polypeptides. Like the gammaTuRC isolated from Xenopus egg extracts (Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nature. 378:578-583), the Drosophila gammaTuRC can nucleate microtubules in vitro and has an open ring structure with a diameter of 25 nm. Cryo-electron microscopy reveals a modular structure with approximately 13 radially arranged structural repeats. The gammaTuSC also nucleates microtubules, but much less efficiently than the gammaTuRC, suggesting that assembly into a larger complex enhances nucleating activity. Analysis of the nucleotide content of the gammaTuSC reveals that gamma-tubulin binds preferentially to GDP over GTP, rendering gamma-tubulin an unusual member of the tubulin superfamily.  相似文献   

15.
ErbB receptors associate in a ligand-dependent or -independent manner, and overexpression of epidermal growth factor receptor (ErbB1) or ErbB2 results in ligand-independent activation. Ligand-independent activation is poorly understood, and dimerization alone is not sufficient for activation. ErbB receptors also form higher order oligomers, but the mechanism of oligomer formation and their contribution to signaling are not known. The kinase-deficient ErbB3 as well as its extracellular domains are particularly prone to ligand-independent oligomerization, and oligomers are destabilized by binding of the ligand heregulin. In contrast, ligand binding facilitates heterodimerization with ErbB2 and is expected to stabilize an extended conformation of the ErbB3 extracellular domain (ECD) in which the dimerization interface is exposed. In the absence of ligand, ErbB3 can adopt a closed conformation that is held together by an intramolecular tether. We used a constitutively extended form of the ErbB3-ECD to analyze the conformation of the ECD in oligomers and the mechanism of oligomer disruption by heregulin. The extended conformation of the ECD forms oligomers more readily, suggesting the crystallographically defined dimer interface is one of the interfaces involved in oligomerization. Heregulin destabilizes oligomeric complexes but not dimers, which are neither stabilized nor disrupted by ligand binding, indicating a distinct second interface in oligomers of ErbB3. Cross-linking and activation studies on membrane-embedded ErbB3/ErbB2 chimeras confirm this dual effect of heregulin. Most of the ErbB3-ECD on the cell surface is apparently kept in an open conformation through oligomerization, and the resulting oligomers adopt a conformation representing a state of reduced activity.  相似文献   

16.
Purification and characterization of pregastric esterase from calf   总被引:1,自引:0,他引:1  
Calf pregastric esterase (PGE) was purified from calf gullet tissues. The tissue was excised and lyophilized, and lipid materials were extracted with acetone and n-butanol at -20 degrees C. Proteins were extracted from the delipidated tissue with a buffer containing a chaotropic salt (NaSCN) to solubilize hydrophobically bound protein aggregates. Calf PGE precipitated from the crude extract at pH 5.0. The precipitated, solubilized proteins were subjected to anion-exchange chromatography on DEAE-Sephacel, and the enzymatic activity was eluted using a linear gradient from 0.10 to 0.50 M NaCl at pH 8.0. Fractions with high specific activities were then chromatographed twice using gel filtration on Sephadex G-100. The resultant enzyme was shown to be pure upon discontinuous electrophoresis in 12% polyacrylamide containing 0.1% sodium dodecyl sulfate (SDS-PAGE). From SDS-PAGE gel patterns, a molecular weight of 49,000 was determined. The amino acid composition of the enzyme allowed calculation of an "average hydrophobicity" (Bigelow index) of 1150 cal/residue. This indicates that calf PGE is relatively hydrophobic, being similar to proteins such as alpha-lactalbumin and bovine serum albumin in average hydrophobicity.  相似文献   

17.
Bullock brain coated vesicles contain a family of at least six 100-kd polypeptides which have the property of promoting clathrin assembly. These proteins have been purified from Triton X-100-extracted coated vesicles by a combination of gel filtration and chromatography on hydroxylapatite and DE-52 cellulose. Three major 100-kd species occur as complexes with a stoichiometric amount of a 50-kd polypeptide. On cross-linking these complexes, the chief products appear to contain two polypeptides of 100 kd and two of 50 kd. These 100-kd/50-kd complexes will polymerise with low concentrations of clathrin to give a relatively homogeneous population of coats predominantly of the 'barrel' size. In contrast, three other polypeptides of 100 kd lack the 50-kd protein but polymerise with clathrin under the same conditions to yield coats of a wide range of sizes including 'barrels', truncated icosahedra and particles of greater than 100 nm diameter. When clathrin cages are reassembled with a saturating amount of 100-kd/50-kd complexes and studied by electron microscopy, the additional proteins appear to follow the underlying geometry of the clathrin polyhedra, partially filling in the polygonal faces of the cage structures. Saturation appears to require approximately 3 molecules of 100-kd polypeptide per clathrin trimer.  相似文献   

18.
The tyrosyl-tRNA synthetases located in cytoplasm and chloroplasts of soybean cotyledons were purified to near homogeneity by ammonium sulfate precipitation, DEAE-cellulose chromatography, hydroxylapatite chromatography, and DEAE-Sephadex A-25 chromatography. Purified cytoplasmic tyrosyl-tRNA synthetase shows only a single band in acrylamide gel electrophoresis which corresponds to a MW of 126000. In SDS-acrylamide gel electrophoresis the enzyme again shows only a single band which corresponds to a MW of 61 000. Chloroplast tyrosyl-tRNA synthetase shows only one band in both acrylamide and SDS-acrylamide gel electrophoresis with MWs being 98 000 and 43 000, respectively. For cytoplasmic tyrosyl-tRNA synthetase the apparent Kms determined are 6.8 μM L-tyrosine, 49 μM ATP, and 8.9 × 10?8 M tRNA (as total tRNA). Apparent Kms for chloroplast tyrosyl-tRNA synthetase are 4.9 μM L-tyrosine, 214 μM ATP and 2.2 × 10?8 M tRNA (as BDC-ethanol fraction tRNA). Fractionation of soybean cotyledon-tRNA on RPC-5 columns gives 4 tyrosyl-tRNA species, the first two species (tRNA1 and 2Tyr) are acylated only by cytoplasmic tyrosyl-tRNA synthetase while the last two species (tRNA3 and 4Tyr) are acylated only by chloroplast tyrosyl-tRNA synthetase.  相似文献   

19.
Isolation and characterization of coated vesicles from filamentous fungi   总被引:1,自引:0,他引:1  
Coated vesicles have been shown to exist in Neurospora crassa (Ascomycetes) and Uromyces phaseoli (Basidiomycetes) growing germlings. Separation of coated vesicles in both fungi was obtained when the high-speed (100,000g) pellet was fractioned on a Sephacryl S-1000 gel filtration column, according to the procedure of Mueller and Branton. Electron micrographs of negatively stained coated vesicles from fractions of gel filtration show the same striking lattice coated vesicles similar to vertebrate coated vesicles. We observe two major size classes of coated vesicles in both fungi: the larger class (100-180 nm) is similar in size to vertebrate coated vesicles; the smaller class (50-80 nm) is mostly found in both fungi. When examined by SDS-PAGE, the Sephacryl column fractions containing the maximum concentration of electron microscopically visible coated vesicles coincide with the bands of the protein coat reported as clathrin. The protein composition on SDS-PAGE of the coated vesicles indicates a major polypeptide species of 180 kDa and minor 30 to 36 kDa species. Polypeptides of 100 kDa and 64 kDa are also found in the fractions containing coated vesicles.  相似文献   

20.
Tubulin strictly requires GTP for its polymerization. Nevertheless, microtubule assembly can be observed in the presence of ATP as the only nucleotide triphosphate, due to the nucleoside diphosphate kinase (NDP kinase) present in microtubule preparations, and which phosphorylates the GDP into GTP. We have purified this enzyme from pig brain to homogeneity, and shown that its relative mass is close to 100 000 in its native state, and 17 000 under denaturing conditions. Therefore it is probably a hexamer, as previously shown for the enzyme from other sources, and also presents a microheterogeneity, with the major isoforms between pI 5.0 and 6.0. The enzyme is transiently phosphorylated during catalysis, as expected within a ping-pong bi-bi mechanism. The effect of the NDP kinase on pure tubulin polymerization was studied: in the presence of NDP kinase, the lag time observed in the kinetics of microtubule assembly was shorter and the final extent of assembly was unchanged. The effect of the enzyme was observed at enzyme concentrations 900-fold lower than tubulin concentration, which shows that the NDP kinase acts catalytically. Kinetic data show that the catalytic effect of the NDP kinase is faster than the rate of nucleotide exchange on tubulin under the same conditions. This result demonstrates that the tubulin-GDP complex itself is a substrate for the enzyme, which may indicate that the GDP bound to tubulin at the E site is exposed on the surface of dimeric tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号