首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel aspects of Ras proteins biology: regulation and implications.   总被引:1,自引:0,他引:1  
The importance of Ras proteins as crucial crossroads in cellular signaling pathways has been well established. In spite of the elucidation of the mechanism of RAS activation by growth factors and the delineation of MAP kinase cascades, the overall framework of Ras interactions is far from being complete. Novel regulators of Ras GDP/GTP exchange have been identified that may mediate the activation of Ras in response to changes in intracellular calcium and diacylglycerol. The direct activation of Ras by free radicals such as nitric oxide also suggests potential regulation of Ras function by the cellular redox state. In addition, the array of Ras effectors continues to expand, uncovering links between Ras and other cellular signaling pathways. Ras is emerging as a dual regulator of cellular functions, playing either positive or negative roles in the regulation of proliferation and apoptosis. The signals transmitted by Ras may be modulated by other pathways triggered in parallel, resulting in the final order for proliferation or apoptosis. The diversity of ras-mediated effects may be related in part to differential involvement of Ras homologues in distinct cellular processes. The study of Ras posttranslational modifications has yielded a broad battery of inhibitors that have been envisaged as anti-cancer agents. Although an irreversible modification, Ras isoprenylation appears to be modulated by growth factors and by the activity of the isoprenoid biosynthetic pathway, which may lead to changes in Ras activity.  相似文献   

2.
Mitogen-activated protein (MAP) kinase cascades were originally identified as protein phosphorylation systems that control the division and the growth of yeast and animal cells. Such cascades consist of MAP kinases, MAP-kinase kinases, and MAP-kinase-kinase kinases. In addition, these organisms have been also shown to have structurally related but functionally different MAP kinase cascades, which are involved in various cellular processes such as a response to osmotic stress and apoptosis. Plants also have been shown to have a number of members of each kinase family. Although physiological and genetic functions of most plant members have yet to be established, some of members have been shown to be responsible for the cellular transmission of signals generated by wounding or a mechanical stress, which predicts that MAP kinase cascades may function in a variety of physiological processes in the plant cells. In the present review, we summarize recent progresses of researches on plant members of each kinase family as well as those of analyses of the cascades in other organisms.  相似文献   

3.
Mechanical signals are important regulators of skeletal homeostasis, and strain-induced oscillatory fluid flow is a potent mechanical stimulus. Although the mechanisms by which osteoblasts and osteocytes respond to fluid flow are being elucidated, little is known about the mechanisms by which bone marrow-derived mesenchymal stem cells respond to such stimuli. Here we show that the intracellular signaling cascades activated in human mesenchymal stem cells by fluid flow are similar to those activated in osteoblastic cells. Oscillatory fluid flow inducing shear stresses of 5, 10, and 20 dyn/cm2 triggered rapid, flow rate-dependent increases in intracellular calcium that pharmacological studies suggest are inositol trisphosphate mediated. The application of fluid flow also induced the phosphorylation of extracellular signal-regulated kinase-1 and -2 as well as the activation of the calcium-sensitive protein phosphatase calcineurin in mesenchymal stem cells. Activation of these signaling pathways combined to induce a robust increase in cellular proliferation. These data suggest that mechanically induced fluid flow regulates not only osteoblastic behavior but also that of mesenchymal precursors, implying that the observed osteogenic response to mechanical loading may be mediated by alterations in the cellular behavior of multiple members of the osteoblast lineage, perhaps by a common signaling pathway. mechanotransduction; bone; marrow  相似文献   

4.
The ERK cascade     
Sequential activation of protein kinases within the mitogen-activated protein kinase (MAPK) cascades is a common mechanism of signal transduction in many cellular processes. Four such cascades have been elucidated thus far, and named according to their MAPK tier component as the ERK1/2, JNK, p38MAPK, and ERK5 cascades. These cascades cooperate in transmitting various extracellular signals, and thus control cellular processes such as proliferation, differentiation, development, stress response, and apoptosis. Here we describe the classic ERK1/2 cascade, and concentrate mainly on the properties of MEK1/2 and ERK1/2, including their mode of regulation and their role in various cellular processes and in oncogenesis. This cascade may serve as a prototype of the other MAPK cascades, and the study of this cascade is likely to contribute to the understanding of mitogenic and other processes in many cell lines and tissues.  相似文献   

5.
促细胞分裂剂激活性蛋白激酶(MAPK)是一类存在于各种真核生物体中的丝氨酸/苏氨酸型蛋白激酶。它被上游激活因子MAPKK磷酸化而激活,并通过将底物蛋白上的丝氨酸和苏氨酸残基磷酸化而传递信号。它与其他一些信号分子组成MAPK级联信号通路,接受外界刺激信号,将信号转入细胞内,影响特定基因的表达,它的作用受到不同因子的调节。本文介绍了植物体中的MAPK的结构特点、作用机理、生物功能以及MAPK级联信号通路的调节。  相似文献   

6.
Marhl M  Perc M  Schuster S 《FEBS letters》2005,579(25):5461-5465
We show by mathematical modelling that a two-level protein cascade can act as a band-pass filter for time-limited oscillations. The band-pass filters are then combined into a network of three-level signalling cascades that by filtering the frequency of time-limited oscillations selectively switches cellular processes on and off. The physiological relevance for the selective regulation of cellular processes is demonstrated for the case of regulation by time-limited calcium oscillations.  相似文献   

7.
During adaptation and developmental processes cells respond through nonlinear calcium‐decoding signaling cascades, the principal components of which have been identified. However, the molecular mechanisms generating specificity of cellular responses remain poorly understood. Calcineurin B‐like (CBL) proteins contribute to decoding calcium signals by specifically interacting with a group of CBL‐interacting protein kinases (CIPKs). Here, we report the subcellular localization of all 10 CBL proteins from Arabidopsis and provide a cellular localization matrix of a plant calcium signaling network. Our findings suggest that individual CBL proteins decode calcium signals not only at the plasma membrane and the tonoplast, but also in the cytoplasm and nucleus. We found that distinct targeting signals located in the N‐terminal domain of CBL proteins determine the spatially discrete localization of CBL/CIPK complexes by COPII‐independent targeting pathways. Our findings establish the CBL/CIPK signaling network as a calcium decoding system that enables the simultaneous specific information processing of calcium signals emanating from different intra‐ and extracellular stores, and thereby provides a mechanism underlying the specificity of cellular responses.  相似文献   

8.
Common mechanisms plants use to translate the external stimuli into cellular responses are the activation of mitogen-activated protein kinase (MAPK) cascade. These MAPK cascades are highly conserved in eukaryotes and consist of three subsequently acting protein kinases, MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK) which are linked in various ways with upstream receptors and downstream targets. Plant MAPK cascades regulate numerous processes, including various environmental stresses, hormones, cell division and developmental processes. The number of MAPKKs in Arabidopsis and rice is almost half the number of MAPKs pointing important role of MAPKKs in integrating signals from several MAPKKKs and transducing signals to various MAPKs. The cross talks between different signal transduction pathways are concentrated at the level of MAPKK in the MAPK cascade. Here we discussed the insights into MAPKK mediated response to environmental stresses and in plant growth and development.  相似文献   

9.
Mitochondria are increasingly ascribed central roles in vital cell signalling cascades. These organelles are now recognised as initiators and transducers of a range of cell signals, including those central to activation and amplification of apoptotic cell death. Moreover, as the main source of cellular ATP, mitochondria must be responsive to fluctuating energy demands of the cell. As local and global fluctuations in calcium concentration are ubiquitous in eukaryotic cells and are the common factor in a dizzying array of intra- and inter-cellular signalling cascades, the relationships between mitochondrial function and calcium transients is currently a subject of intense scrutiny. It is clear that mitochondria not only act as local calcium buffers, thus shaping spatiotemporal aspects of cytosolic calcium signals, but that they also respond to calcium uptake by upregulating the tricarboxylic acid cycle, thus reacting metabolically to local signalling. In this chapter we review current knowledge of mechanisms of mitochondrial calcium uptake and release and discuss the consequences of mitochondrial calcium handling for cell function, particularly in conjunction with mitochondrial oxidative stress.  相似文献   

10.
Mitochondrial calcium uptake stimulates bioenergetics and drives energy production in metabolic tissue. It is unknown how a calcium-mediated acceleration in matrix bioenergetics would influence cellular metabolism in glycolytic cells that do not require mitochondria for ATP production. Using primary human endothelial cells (ECs), we discovered that repetitive cytosolic calcium signals (oscillations) chronically loaded into the mitochondrial matrix. Mitochondrial calcium loading in turn stimulated bioenergetics and a persistent elevation in NADH. Rather than serving as an impetus for mitochondrial ATP generation, matrix NADH rapidly transmitted to the cytosol to influence the activity and expression of cytosolic sirtuins, resulting in global changes in protein acetylation. In endothelial cells, the mitochondrion-driven reduction in both the cytosolic and mitochondrial NAD+/NADH ratio stimulated a compensatory increase in SIRT1 protein levels that had an anti-inflammatory effect. Our studies reveal the physiologic importance of mitochondrial bioenergetics in the metabolic regulation of sirtuins and cytosolic signaling cascades.  相似文献   

11.
Haiech J  Audran E  Fève M  Ranjeva R  Kilhoffer MC 《Biochimie》2011,93(12):2029-2037
Cells use intracellular free calcium concentration changes for signaling. Signal encoding occurs through both spatial and temporal modulation of the free calcium concentration. The encoded message is detected by an ensemble of intracellular sensors forming the family of calcium-binding proteins (CaBPs) which must faithfully translate the message using a new syntax that is recognized by the cell. The cell is home to a significant although limited number of genes coding for proteins involved in the signal encoding and decoding processes. In a cell, only a subset of this ensemble of genes is expressed, leading to a genetic regulation of the calcium signal pathways. Calmodulin (CaM), the most ubiquitous expressed intracellular calcium-binding protein, plays a major role in calcium signal translation. Similar to a hub, it is central to a large and finely tuned network, receiving information, integrating it and dispatching the cognate response. In this review, we examine the different steps starting with an external stimulus up to a cellular response, with special emphasis on CaM and the mechanism by which it decodes calcium signals and translates it into exquisitely coordinated cellular events. By this means, we will revisit the calcium signaling semantics, hoping that we will ease communication between scientists dealing with calcium signals in different biological systems and different domains.  相似文献   

12.
Calcium in ionic form is a second messenger connecting several input signals to several target processes in the cell. The question arises how one second messenger can transmit more than one signal simultaneously (bow-tie structure of signalling). Experimental data on calcium dynamics often show patterns of successive low-peak and high-peak oscillatory phases, known as bursting. Here, we propose that bursting calcium oscillations can perform the function of simultaneous transmission of two signals at physiological calcium concentrations, for example, by selective activation of two calcium-binding proteins. This differential regulation by periodic bursting is investigated in a theoretical model. The two proteins are assumed to be activated by calcium, and one of them is assumed to be subject to biphasic regulation due to additional inhibitory binding sites. To explore which characteristics of the complex signal could be responsible for independent regulation of low-peak activated and spike activated targets, different bursting patterns of simplified square pulses are applied. Depending on the change in the bursting pattern, one protein can be gradually activated at a constant level of the other protein's activity, or the two proteins can be activated simultaneously, or one protein can be activated while the other one is deactivated simultaneously. Thus, the two proteins can be regulated virtually independently.  相似文献   

13.
Calcium ions have important roles in cellular processes including intracellular signaling, protein folding, enzyme activation and initiation of programmed cell death. Cells maintain low levels of calcium in their cytosol in order to regulate these processes. When activation of calcium-dependent processes is needed, cells can release calcium stored in the endoplasmic reticulum (ER) into the cytosol to initiate the processes. This can also initiate activation of plasma membrane channels that allow entry of additional calcium from the extracellular milieu. The change in calcium levels is referred to as calcium flux. A key protein involved in initiation of calcium flux is Stromal Interaction Molecule 1 (STIM1), which has recently been identified as a sensor of ER calcium levels. STIM1 is an ER transmembrane protein that is activated by a drop in ER calcium levels. Upon activation, STIM1 interacts with a plasma membrane protein, ORAI1, to activate ORAI-containing calcium-selective plasma membrane channels. Dysregulation of calcium flux has been reported in cancers, autoimmune diseases and other diseases. STIM1 is a promising target in drug discovery due to its key role early in calcium flux. Here we review the involvement and importance of STIM1 in diseases and why STIM1 is a viable target for drug discovery. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

14.
Cellular signaling processes depend on spatiotemporal distributions of molecular components. Multicolor, high-resolution microscopy permits detailed assessment of such distributions, providing input for fine-grained computational models that explore mechanisms governing dynamic assembly of multimolecular complexes and their role in shaping cellular behavior. However, it is challenging to incorporate into such models both complex molecular reaction cascades and the spatial localization of signaling components in dynamic cellular morphologies. Here we introduce an approach to address these challenges by automatically generating computational representations of complex reaction networks based on simple bimolecular interaction rules embedded into detailed, adaptive models of cellular morphology. Using examples of receptor-mediated cellular adhesion and signal-induced localized mitogen-activated protein kinase (MAPK) activation in yeast, we illustrate the capacity of this simulation technique to provide insights into cell biological processes. The modeling algorithms, implemented in a new version of the Simmune toolset, are accessible through intuitive graphical interfaces and programming libraries.  相似文献   

15.
The progression through the cell cycle in non-transformed cells is under the strict control of extracellular signals called mitogens, that act by eliciting complex cascades of intracellular messengers. Among them, increases in cytosolic free calcium concentration have been long realized to play a crucial role; however, the mechanisms coupling membrane receptor activation to calcium signals are still only partially understood, as are the pathways of calcium entry in the cytosol. This article centers on the role of calcium influx from the extracellular medium in the control of proliferative processes, and reviews the current understanding of the pathways responsible for this influx and of the second messengers involved in their activation.  相似文献   

16.
Lipid signaling and phosphorylation cascades are fundamental to calcium signaling networks. In this review, we will discuss the recent laboratory findings for the phospholipase A2 (PLA2)/protein kinase C (PKC) pathway within cellular calcium networks. The complexity and connectivity of these ubiquitous cellular signals make interpretation of experimental results extremely challenging. We present here computational methods which have been developed to conquer such complex data, and how they can be used to make models capable of accurately predicting cellular responses within multiple calcium signaling pathways. We propose that information obtained from network analysis and computational techniques provides a rich source of knowledge which can be directly translated to the laboratory benchtop.  相似文献   

17.
The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.  相似文献   

18.
This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways.  相似文献   

19.
Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK–MAPKK–MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK–MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.  相似文献   

20.
Chen H  Bai J  Ye J  Liu Z  Chen R  Mao W  Li A  Zhou J 《Cellular signalling》2007,19(6):1315-1327
Mitogen activated protein kinase (MAPK) cascades are thought to mediate diverse biological functions such as cell growth, differentiation and migration. Activated MAPK may affect microtubule (MT) which is essential for cellular polarity, differentiation and motility. Data in this study show that JWA, a newly identified novel microtubule-associated protein (MAP) was essential for the rearrangement of F-actin cytoskeleton and activation of MAPK cascades induced by arsenic trioxide (As2O3) and phorbol ester (PMA). Over-expression of JWA alone in HeLa, B16 and HCCLM3 cancer cells effectively inhibited cellular migration; whereas, cellular migration was significantly accelerated when cells were deficient in JWA expression. The mechanism underlying these phenomena might be due to JWA affected F-actin rearrangement. Furthermore, JWA deficiency blocked anti-migratory effect produced by As2O3 but enhanced the migratory effect initiated by PMA in HeLa cells. JWA SDR-SLR motifs are not only critical for the MAPK cascades activation, but also for cell migration. Further studies found that JWA differentially regulated cell migration via ERK downstream effectors focal adhesion kinase (FAK) and cyclooxygenase-2 (COX-2). Therefore, JWA regulated-tumor cellular migration might involve MAPK cascades activation and F-actin cytoskeleton rearrangement mechanisms. Our data provide an unexpected role for JWA in tumor cell migration behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号