首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Riginos C  Young TP 《Oecologia》2007,153(4):985-995
Plant–plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree–grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the tree’s life cycle.  相似文献   

2.
Ludwig F  De Kroon H  Prins HH 《Oecologia》2008,155(3):487-496
Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems.  相似文献   

3.
High evaporative demand and periodic drought characterize the growing season in midwestern grasslands relative to deciduous forests of the eastern US, and predicted climatic changes suggest that these climatic extremes may be exacerbated. Despite this less than optimal environment for tree seedling establishment, deciduous trees have expanded into adjacent tallgrass prairie within the last century leading to a dramatic land cover change. In order to determine the role of light and temperature on seedling establishment, we assessed carbon and water relations and aboveground growth of first‐year Quercus macrocarpa seedlings exposed to one of three conditions: (1) intact tallgrass prairie communities (control), (2) aboveground herbaceous biomass removed (grass removal), and (3) shade plus biomass removal to reduce light (PFD) to levels typical of the grassland‐forest ecotone (shade). In the 2000 growing season, precipitation was 35% below the long‐term average, which had a significant negative effect on oak seedling carbon gain at midseason (photosynthesis declined to 10% of maximum rates). However, net photosynthesis and stomatal conductance in the shade treatment was ca. 2.5 and 1.5 times greater, respectively, than in control treatment seedlings during this drought. During this period, leaf and air temperatures in control seedlings were similar whereas leaf temperatures in the shade treatment remained below air temperature. A late‐season recovery period, coincident with decreased air temperatures, resulted in increased net photosynthesis for all seedlings. Increased photosynthetic rates and water relations in shaded seedlings compared to seedlings in full sun suggest that, at least in dry years, high light and temperature may negatively impact oak seedling performance. However, high survival rates for all seedlings indicate that Q. macrocarpa seedlings are capable of tolerating both present‐day and future climatic extremes. Unless historic fire regimes are restored, forest expansion and land cover change are likely to continue.  相似文献   

4.
A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree–grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.  相似文献   

5.
The relationships of plant species associations and underlying environmental factors in a woodland savanna in South Africa were investigated. 40 plots were included with 25 tree and 17 grass species dominating the arboreal and ground cover. Correspondence Analysis described the relationships between soil moisture retention, soil nutrients and the abundance of trees and grasses. Dry matter indices represented the accumulated effects of rainfall, fire and grazing of the herbaceous layer. Variations in the abundance of plants corresponded to well-defined gradients of soil nutrients. The distribution of grass and tree species along the ordination axes indicated that soils with high water retention capacity and high nutrient contents provided a suitable substrate for many of the tree species sampled. However, grass species abundance was high in plots with porous soils and poor nutrient availability.  相似文献   

6.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

7.
Abstract. Savanna trees have a multitude of positive and negative effects on understorey grass production, but little is known about how these effects interact. We report on a fertilization and shading experiment carried out in a Tanzanian tropical dry savanna around Acacia tortilis trees. In two years of study there was no difference in grass production under tree canopies or in open grassland. Fertilization, however, indicate that trees do affect the nutrient limitation of the grass layer with an N‐limited system in open grassland to a P‐limited system under the trees. The N:P ratios of grass gave a reliable indication of the nature of nutrient limitation, but only when assessed at the end of the wet season. Mid‐wet season nutrient concentrations of grasses were higher under than outside the tree canopy, suggesting that factors other than nutrients limit grass production. A shading experiment indicated that light may be such a limiting factor during the wet season when water and nutrients are sufficiently available. However, in the dry season when water is scarce, the effect of shade on plant production became positive. We conclude that whether trees increase or decrease production of the herbaceous layer depends on how positive effects (increased soil fertility) and negative effects (shade and soil water availability) interact and that these interactions may significantly change between wet and dry seasons.  相似文献   

8.
With the proliferation of old fields and the decline of native grasslands in North America, non-indigenous grasses, which tend to colonize and dominate North American old fields, have become progressively more abundant. These new grasses can differ from native grasses in a number of ways, including root and shoot morphology (e.g., density of root mat, height of shoots), growth phenology (e.g., cool season vs. warm season growth), and plant–soil–water relations due to differences in photosynthetic physiology (C3 vs. C4). Woody plants have been slow to colonize some old fields in the prairie-forest border area of North America and it is hypothesized that non-indigenous grasses may be contributing to the poor establishment success of woody plants in this region, possibly through more intense competition for resources. To test this hypothesis, a multi-factorial field experiment was conducted in which water, nitrogen, and grass functional group (non-indigenous C3 and native C4 species) were manipulated in a study of survival of oak seedlings. The grass type variously affected some of the different growth measurements, however, the effects of grass type on seedling growth were small compared to the effects on seedling survival. The results showed that when grown under dry conditions, seedlings growing in non-indigenous grasses experienced up to a 50% reduction in survival compared to those growing in native grasses under the same conditions. Analyses of root and shoot competition showed that the cause for the reduced survival in the non-indigenous grasses was due primarily to underground processes. The findings confirmed our initial hypothesis that non-indigenous grasses are likely contributing to the poor establishment success of woody plants in these old fields. However, the explanation for the reduced oak seedling survival in non-indigenous grasses does not appear to be due to reduced resource availability since soil water levels did not differ between non-indigenous and native grass plots and other resource levels measured (light, NO3, and NH4) were higher in non-indigenous grass plots under dry conditions. An alternative explanation is that the non-indigenous grasses modify the soil environment in ways that, under dry conditions, are deleterious to emerging oak seedlings. Since current climate projections for the upper Midwest are for hotter and drier summers, the results suggest that the resistance of these old fields to oak encroachment will likely increase in the future.  相似文献   

9.
Here we describe the fine root distribution of trees and grasses relative to soil nitrogen and water profiles. The primary objective is to improve our understanding of edaphic processes influencing the relative abundance of trees and grasses in savanna systems. We do this at both a mesic (737 mm MAP) site on sandy-loam soils and at an arid (547 mm MAP) site on clay rich soils in the Kruger National Park in South Africa. The proportion of tree and grass fine roots at each soil depth were estimated using the δ13C values of fine roots and the δ13C end members of the fine roots of the dominant trees and grasses at our study sites. Changes in soil nitrogen concentrations with depth were indexed using total soil nitrogen concentrations and soil δ15N values. Soil water content was measured at different depths using capacitance probes. We show that most tree and grass roots are located in the upper layers of the soil and that both tree and grass roots are present at the bottom of the profile. We demonstrate that root density is positively related to the distribution of soil nitrogen and negatively related to soil moisture. We attribute the negative correlation with soil moisture to evaporation from the soil surface and uptake by roots. Our data is a snapshot of a dynamic process, here the picture it provides is potentially misleading. To understand whether roots in this system are primarily foraging for water or for nitrogen future studies need to include a dynamic component.  相似文献   

10.
Aim It has been proposed that, in tropical savannas, trees deploy their leaves earlier in the growing season and grasses deploy their leaves later. This hypothesis implies a mechanism that facilitates the coexistence of trees and grasses in savannas. If true, this hypothesis would also allow algorithms to use differences in the phenological timing of grass and tree leaves to partition the relative contribution of grasses and trees to net primary production. In this study we examine whether a temporal niche separation between grasses and trees exists in savanna. Location A semi‐arid, subtropical savanna, Kruger National Park, South Africa. Methods We use a multi‐spectral camera to track through an entire growing season the normalized difference vegetation index (NDVI) of individual canopies of grasses and trees at eight sites arranged along a precipitation and temperature gradient. Results Among trees, we identified two distinct phenological syndromes: an early flushing syndrome and a late‐flushing syndrome. Leaf flush in the tree strategies appears to pre‐empt rainfall, whereas grass leaf flush follows the rain. The growing season of trees is 20 (late‐flushing trees) to 27 (early flushing trees) days longer than that of the grasses. Main conclusions We show that grasses and trees have different leaf deployment strategies. Trees deployed leaves at lower temperatures than grasses and retained them for longer at the end of the growing season. The timing of the increase in NDVI is, however, similar between grasses and late‐flushing trees and this complicates the separation of grass and tree signals from multi‐spectral satellite imagery.  相似文献   

11.
Invasive non‐native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non‐native species, particularly grasses. Within a grass‐dominated site in leeward Hawaii, we explored the mechanisms by which non‐native Pennisetum setaceum, African fountain grass, limits seedlings of native species. We planted 1,800 seedlings of five native trees, three native shrubs, and two native vines into a factorial field experiment to examine the effects of grass removal (bulldozed vs. clipped plus herbicide vs. control), shade (60% shade vs. full sun), and water (supplemental vs. ambient) on seedling survival, growth, and physiology. Both grass removal and shade independently increased survival and growth, as well as soil moisture. Seedling survival and relative growth rate were also significantly dependent on soil moisture. These results suggest that altering soil moisture may be one of the primary mechanisms by which grasses limit native seedlings. Grass removal increased foliar nitrogen content of seedlings, which resulted in an increase in leaf‐level photosynthesis and intrinsic water use efficiency. Thus in the absence of grasses, native species showed increased productivity and resource acquisition. We conclude that the combination of grass removal and shading may be an effective approach to the restoration of degraded tropical dry forests in Hawaii and other ecologically similar ecosystems.  相似文献   

12.
Planted silvo-pastoral systems are formed by sparing selected native trees when land is cleared for pasture establishment, or by planting selected species – often known agroforestry species – into the establishing pasture. Isolated trees within pastures and savannas are often associated with `resource islands', characterized by higher fertility and organic matter levels under the tree canopies. We here examine the processes underlying the differences in fertility and organic matter in a buffel grass (Cenchrus ciliaris L.) pasture that contained two tree species (Ziziphus joazeiro Mart., Spondias tuberosa Arruda Cam.) preserved from the native thorn forest and a planted agroforestry species (Prospois juliflora Swartz D.C). The objective is to distinguish effects of soil variability from those induced by the presence of trees or the planting of pasture. The 13C signatures of the original (largely C3) vegetation, the preserved and planted trees, and the planted C4 grass were used to distinguish the provenance of organic matter in the top soil (0–15 cm). This allowed the conclusion that all trees maintained C3 derived C at the original thorn forest level, while lower levels under pasture were due to mineralisation of organic matter. The net rates of forest-derived C loss under pasture varied with soil type amounting to between 25 and 50% in 13 years after pasture establishment. Only on Alfisol, C inputs from the pasture compensated for the C3-C losses. Analysis of organic and inorganic P fractions indicated Z. joazeiro and P. juliflora enriched the soil under their canopy with P, whereas S. tuberosa had no positive effect on fertility. A combination of ANOVA and spatial analysis and mapping was used to show vegetation effects.  相似文献   

13.
Savannas are characterized by the coexistence of trees and flammable grasses. Yet, tree–grass coexistence has been labeled as paradoxical—how do these two functional groups coexist over such an extensive area, despite being generally predisposed to excluding each other? For instance, many trees develop dense canopies that limit grass growth, and many grasses facilitate frequent/intense fires, increasing tree mortality. This study revisits tree–grass coexistence with a model of hierarchical competition between pyrogenic grasses, “forest trees” adapted to closed-canopy competition, and “savanna trees” that are inferior competitors in closed-canopy communities, but more resistant to fire. The assumptions of this model are supported by empirical observations, including a systematic review of savanna and forest tree community composition reported here. In general, the model simulations show that when savanna trees exert weaker competitive effects on grasses, a self-reinforcing grass community is maintained, which limits forest tree expansion while still allowing savanna trees to persist (albeit as a subdominant to grasses). When savanna trees exert strong competitive effects on grasses, savanna trees cover increases initially, but as grasses decline their inhibitory effect on forest trees weakens, allowing forest trees to expand and exclude grasses and savanna trees. Rather than paradoxical, these results suggest that having weaker competitive effects on grasses may be advantageous for savanna trees, leading to greater long-term abundance and stability. We label this the “enemy of my enemy hypothesis,” which might apply to species coexistence in communities defined by hierarchical competition or with species capable of generating strong ecological feedbacks.  相似文献   

14.
The distribution and abundance of trees can be strongly affected by disturbance such as fire. In mixed tree/grass ecosystems, recurrent grass‐fuelled fires can strongly suppress tree saplings and therefore control tree dominance. We propose that changes in atmospheric [CO2] could influence tree cover in such metastable ecosystems by altering their postburn recovery rates relative to flammable herbaceous growth forms such as grasses. Slow sapling recovery rates at low [CO2] would favour the spread of grasses and a reduction of tree cover. To test the possible importance of [CO2]/fire interactions, we first used a Dynamic Global Vegetation Model (DGVM) to simulate biomass in grassy ecosystems in South Africa with and without fire. The results indicate that fire has a major effect under higher rainfall conditions suggesting an important role for fire/[CO2] interactions. We then used a demographic model of the effects of fire on mesic savanna trees to test the importance of grass/tree differences in postburn recovery rates. We adjusted grass and tree growth in the model according to the DGVM output of net primary production at different [CO2] relative to current conditions. The simulations predicted elimination of trees at [CO2] typical of the last glacial period (180 ppm) because tree growth rate is too slow (15 years) to grow to a fire‐proof size of ca. 3 m. Simulated grass growth would produce an adequate fuel load for a burn in only 2 years. Simulations of preindustrial [CO2] (270 ppm) predict occurrence of trees but at low densities. The greatest increase in trees occurs from preindustrial to current [CO2] (360 ppm). The simulations are consistent with palaeo‐records which indicate that trees disappeared from sites that are currently savannas in South Africa in the last glacial. Savanna trees reappeared in the Holocene. There has also been a large increase in trees over the last 50–100 years. We suggest that slow tree recovery after fire, rather than differential photosynthetic efficiencies in C3 and C4 plants, might have been the significant factor in the Late Tertiary spread of flammable grasslands under low [CO2] because open, high light environments would have been a prerequisite for the spread of C4 grasses. Our simulations suggest further that low [CO2] could have been a significant factor in the reduction of trees during glacial times, because of their slower regrowth after disturbance, with fire favouring the spread of grasses.  相似文献   

15.
In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light‐use efficiency, thereby reducing the difference in net primary productivity between shaded and non‐shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light‐use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light‐use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.  相似文献   

16.
Kennedy PG  Sousa WP 《Oecologia》2006,148(3):464-474
Competition and facilitation are both considered major factors affecting the structure of plant assemblages, yet few studies have quantified positive, negative, and net effects simultaneously. In this study, we investigated the positive, negative, and net effects of tree saplings on the encroachment of two tree species, Douglas fir (Pseudotsuga menziesii) and tanoak (Lithocarpus densiflora), into a coastal California grassland. The study involved three components: sampling the spatial distributions of P. menziesii and L. densiflora in the grasslands, a field experiment examining seedling survival in different grassland environments, and a greenhouse experiment examining the effects of soil moisture on early seedling performance. The field experiment was conducted over a 2-year period, using Pseudotsuga in 2002 and both species in 2003. Seedlings were separated into four treatment groups: those planted in open grassland, in shaded grassland, under artificial (plastic) conifer saplings, and under natural Pseudotsuga saplings. Air temperature, relative humidity, soil moisture, incident radiation levels and fog water inputs were measured for each treatment group in 2003. In the greenhouse experiment, Pseudotsuga and Lithocarpus seedlings were grown for 13 weeks in watering treatments simulating the summer soil moisture conditions of the open grasslands and under Pseudotsuga saplings. Surveys of naturally established seedlings found that Lithocarpus occurred only under Pseudotsuga saplings, while most Pseudotsuga seedlings were located near but not directly under conspecific saplings. In the field experiment, positive effects of tree saplings were much larger than negative effects, resulting in strong net facilitation of seedling establishment. Survival for both species was always higher under the plastic and live trees than in the open or shade plots. The primary mechanism facilitating seedling survival appeared to be increased soil moisture caused by input of fog precipitation coupled with reduced microsite evaporation. The greenhouse experiment further showed that soil moisture strongly affected seedling performance, with both species having much higher photosynthetic rates in the higher moisture treatment. In the lower moisture treatment, Pseudotsuga seedlings had higher photosynthetic rates and stomatal conductance than Lithocarpus, suggesting they may be able to better tolerate the environmental conditions found in the open grasslands. Our combined results suggest that rate and patterning of woody plant encroachment can be strongly influenced by facilitation and that fog precipitation may play a key role in plant interactions.  相似文献   

17.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

18.
Under large East African Acacia trees, which were known to show hydraulic lift, we experimentally tested whether tree roots facilitate grass production or compete with grasses for below‐ground resources. Prevention of tree–grass interactions through root trenching led to increased soil water content indicating that trees took up more water from the topsoil than they exuded via hydraulic lift. Biomass was higher in trenched plots compared to controls probably because of reduced competition for water. Stable isotope analyses of plant and source water showed that grasses which competed with trees used a greater proportion of deep water compared with grasses in trenched plots. Grasses therefore used hydraulically lifted water provided by trees, or took up deep soil water directly by growing deeper roots when competition with trees occurred. We conclude that any facilitative effect of hydraulic lift for neighbouring species may easily be overwhelmed by water competition in (semi‐) arid regions.  相似文献   

19.
西双版纳不同林茶复合生态系统碳储量   总被引:2,自引:0,他引:2  
为了探明上层遮荫树种对茶园碳储量的影响,根据所建立的茶园上层树种及茶树的生物量模型估算了不同林茶复合生态系统的生物量,结合植物、土壤样品碳含量的实测值,对西双版纳州勐海县4种茶园组合模式及纯茶园的碳储量进行了分析。结果表明:樟树+茶、樟-杉+茶2种组合模式的碳储量分别比纯茶园碳储量(223.442t·hm-2)高22.701、3.871t·hm-2,而4种遮荫树种+茶、6种遮荫树种+茶2种组合模式的碳储量则分别比纯茶园低10.828、5.717t·hm-2。各茶园总碳储量以土壤的碳储量所占比例最大,达91.8%~96.0%,随上层树种数量的增加而降低,并在4种遮荫树种+茶组合模式达到最低;而植物体的碳储量仅占总碳储量的4.0%~8.2%,呈现随上层树种数量增加而先增加后降低的趋势。表明西双版纳的人工茶园复合态系统具有很强的碳储存能力。  相似文献   

20.
Species interactions and their indirect effects on the availability and distribution of resources have been considered strong determinants of community structure in many different ecological systems. In deciduous forests, the presence of overstory trees and shrubs creates a shifting mosaic of resources for understory plants, with implications for their distribution and abundance. Determination of the ultimate resource constraints on understory vegetation may aid management of these systems that have become increasingly susceptible to invasions by non-native plants. Microstegium vimineum (Japanese grass) is an invasive annual grass that has spread rapidly throughout the understory of forests across the eastern United States since it was first observed in Tennessee in 1919. M. vimineum occurs as extensive, dense patches in the understory of eastern deciduous forests, yet these patches often exhibit sharp boundaries and distinct gaps in cover. One example of this distributional pattern was observed relative to the native midstory tree Asimina triloba (pawpaw), whereby dense M. vimineum cover stopped abruptly at the drip line of the A. triloba patch and was absent beneath the A. triloba canopy. We conducted field and greenhouse experiments to test several hypotheses regarding the causes of this observed pattern of M. vimineum distribution, including allelopathy, seed dispersal, light limitations, and soil moisture, texture, and nutrient content. We concluded that light reduction by the A. triloba canopy was the environmental constraint that prevented establishment of M. vimineum beneath this tree. Whereas overstory tree canopy apparently facilitates the establishment of this shade-tolerant grass, the interaction of overstory canopy with midstory canopy interferes with M. vimineum by reducing the availability of sunflecks at the ground layer. It is likely that other midstory species influence the distribution and abundance of other herb-layer species, with implications for management of understory invasive plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号