首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来许多研究发现,小脑作为运动控制的主要脑区,除参与运动控制外也与孤独症、精神分裂症、奖励相关的认知功能和社会行为有关,因此小脑相关研究越来越受到重视。研究小脑参与运动学习和运动控制的神经机制是神经科学中最重要的课题之一。眼睛运动的肌肉协调和生物运动特征比其他类型的运动更简单,这使眼动成为研究小脑在运动控制中作用的理想模型。作为收集外界信息的主要方式之一,视觉对日常生活至关重要。为确保清晰视觉,3种主要类型的眼动(眼跳、平滑追随眼动(SPEM)和注视)需受小脑的精确控制,以确保静止或移动的物体保持在视小凹的中心。异常眼动可导致视力障碍,并可作为诊断各种疾病的临床指标。因此,眼动控制研究具有重要的医学和生物学意义。虽然对小脑皮层和顶核在调节眼动中的作用有基本了解,但眼动动力学编码的确切神经机制,尤其是小脑顶核控制追随眼动和注视的神经机制仍不清楚。本综述总结了目前小脑在运动和认知等方面的主要研究问题与小脑相关研究的潜在应用价值,以及近年来有关小脑控制眼动的相关文献,并深入探讨了利用单细胞记录和线性回归模型分析小脑皮层和顶核同一神经元同时参与控制不同类型的眼动,而不同类型眼动的不同动力学参数编码原则不同。此外,基于检测微眼跳的研究结果,我们讨论了小脑顶核参与控制视觉注视的可能神经机制。最后,讨论了最近技术进步给小脑研究带来的新机遇,为今后与小脑相关的研究和脑控义肢的优化控制(例如通过单独改善运动参数优化义肢控制)提供了新思路。  相似文献   

2.
One of the basic questions about the working of the brain is the extent to which its various functions are localised. In the nineteenth century great advances were made in the study of localisation. The control of speech, movement, and vision was identified with specific regions of the cerebral cortex. Although since the nineteenth century lesions of the cerebellum have been known to produce impaired movement, there has been rather little progress towards answering more detailed questions about the functions of the cerebellum and cerebellar localisation. The experts are still not agreed on what the cerebellum does or how and where it does it. Three examples are given of functions which probably are mediated by the cerebellum; adaptation of the vestibulo-ocular reflex, classical conditioning of the nictitating membrane response, and adaptation of saccadic eye movements. In all three cases the control of these functions has been localised to a specific region of the cerebellar cortex and/or nuclei. The success of localisation studies in the cerebral cortex can serve as a guide. Continued experimentation directed at the question of localisation should prove a fruitful approach to understanding more about the functions of the cerebellum.  相似文献   

3.
The role of the cerebellum in motor control and learning has been largely inferred from the effects of cerebellar damage. Recent work shows that cerebellar damage produces greater impairment of movements that require predictive as opposed to reactive control. This dissociation is consistent across many different types of movement. Predictive control is crucial for fast and ballistic movements, but impaired prediction can also affect slow movements, because of increased reliance on time-delayed feedback signals. The new findings are compatible with theories of cerebellar function, but still do not resolve whether the cerebellum operates by predicting the optimal motor commands or future sensory states. Prediction mechanisms must be learned and maintained through comparisons between predicted and observed outcomes. New results show that not all such error information is equivalent in driving cerebellar learning.  相似文献   

4.
Yamazaki T  Nagao S 《PloS one》2012,7(3):e33319
Precise gain and timing control is the goal of cerebellar motor learning. Because the basic neural circuitry of the cerebellum is homogeneous throughout the cerebellar cortex, a single computational mechanism may be used for simultaneous gain and timing control. Although many computational models of the cerebellum have been proposed for either gain or timing control, few models have aimed to unify them. In this paper, we hypothesize that gain and timing control can be unified by learning of the complete waveform of the desired movement profile instructed by climbing fiber signals. To justify our hypothesis, we adopted a large-scale spiking network model of the cerebellum, which was originally developed for cerebellar timing mechanisms to explain the experimental data of Pavlovian delay eyeblink conditioning, to the gain adaptation of optokinetic response (OKR) eye movements. By conducting large-scale computer simulations, we could reproduce some features of OKR adaptation, such as the learning-related change of simple spike firing of model Purkinje cells and vestibular nuclear neurons, simulated gain increase, and frequency-dependent gain increase. These results suggest that the cerebellum may use a single computational mechanism to control gain and timing simultaneously.  相似文献   

5.
The present paper proposes a model which applies formal neural network modeling techniques to construct a theoretical representation of the cerebellar cortex and its performances in motor control. A schema that makes explicit use of propagation delays of neural signals, is introduced to describe the ability to store temporal sequences of patterns in the Golgi-granule cell system. A perceptron association is then performed on these sequences of patterns by the Purkinje cell layer. The model conforms with important biological constraints, such as the known excitatory or inhibitory nature of the various synapses. Also, as suggested by experimental evidence, the synaptic plasticity underlying the learning ability of the model, is confined to the parallel fiber — Purkinje cell synapses, and takes place under the control of the climbing fibers. The result is a neural network model, constructed according to the anatomy of the cerebellar cortex, and capable of learning and retrieval of temporal sequences of patterns. It provides a framework to represent and interpret properties of learning and control of movements by the cerebellum, and to assess the capacity of formal neural network techniques for modeling of real neural systems.  相似文献   

6.
The ontophylogenetic analysis of morphofunctional peculiarities of the cerebellum shows its extremely high adaptability to the requirements for the organization of the nervous activity of the organism corresponding to the level of its evolutionary development and ecological habitat conditions. The changes of the cerebellum in the course of its onto- and phylogenetic development appear to be more pronounced as compared with other cerebral regions. Depending on the level of the development, revealed are different aspects of the cerebellar integrative activity which contributed, if necessary, a quite new directions of the nervous activity, such as learning and cognition, which demonstrates astonishingly wide limits of the adaptability. This explains that the cerebellum in various vertebrates is considerably different by its shape, location of neurons in the cerebellar cortex, and the main peculiarities of afferent, internal, and efferent pathways. There is a reason to suggest that the future study of these aspects of the cerebellar activity will bring us to a clearer understanding of the cerebellar mechanisms of learning.  相似文献   

7.
Shmuelof L  Krakauer JW 《Neuron》2011,72(3):469-476
Here we argue that general principles with regard to the contributions of the cerebellum, basal ganglia, and primary motor cortex to motor learning can begin to be inferred from explicit comparison across model systems and consideration of phylogeny. Both the cerebellum and the basal ganglia have highly conserved circuit architecture in vertebrates. The cerebellum has consistently been shown to be necessary for adaptation of eye and limb movements. The precise contribution of the basal ganglia to motor learning remains unclear but one consistent finding is that they are necessary for early acquisition of novel sequential actions. The primary motor cortex allows independent control of joints and construction of new movement synergies. We suggest that this capacity of the motor cortex implies that it is a necessary locus for motor skill learning, which we argue is the ability to execute selected actions with increasing speed and precision.  相似文献   

8.
The exact role of the cerebellum in motor control and learning is not yet fully understood. The structure, connectivity and plasticity within cerebellar cortex has been extensively studied, but the patterns of connectivity and interaction with other brain structures, and the computational significance of these patterns, is less well known and a matter of debate. Two contrasting models of the role of the cerebellum in motor adaptation have previously been proposed. Most commonly, the cerebellum is employed in a purely feedforward pathway, with its output contributing directly to the outgoing motor command. The cerebellum must then learn an inverse model of the motor apparatus in order to achieve accurate control. More recently, Porrill et al. (Proc Biol Sci 271(1541):789–796, 2004) and Porrill et al. (PLoS Comput Biol 3:1935–1950, 2007a) and Porrill et al. (Neural Comput 19(1), 170–193, 2007b) have highlighted the potential importance of these recurrent connections by proposing an alternative architecture in which the cerebellum is embedded in a recurrent loop with brainstem control circuitry. In this framework, the feedforward connections are not necessary at all. The cerebellum must learn a forward model of the motor apparatus for accurate motor commands to be generated. We show here how these two models exhibit contrasting yet complimentary learning capabilities. Central to the differences in performance between architectures is that there are two distinct kinds of disturbance to which a motor system may need to adapt (1) changes in the relationship between the motor command and the observed outcome and (2) changes in the relationship between the stimulus and the desired outcome. The computational distinction between these two kinds of transformation is subtle and has therefore often been overlooked. However, the implications for learning turn out to be significant: learning with a feedforward architecture is robust following changes in the stimulus-desired outcome mapping but not necessarily the motor command-outcome mapping, while learning with a recurrent architecture is robust under changes in the motor command-outcome mapping but not necessarily the stimulus-desired outcome mapping. We first analyse these differences theoretically and through simulations in the vestibulo-ocular reflex (VOR), then illustrate how these same concepts apply more generally with a model of reaching movements.  相似文献   

9.
Motor skill learning is essential for environmental adaptations during everyday life. It has been shown that the cerebellum plays an important role in both the adaptation of eye movements and the motor skill learning. However, the neuronal substrates responsible for consolidation of complex motor skills rather than simple reflexes are still uncertain. Because the induction of immediate-early genes activity-regulated cytoskeleton-associated protein (Arc) and zinc finger binding protein clone 268 (Zif268) has been regarded as a marker for recent neuronal activity, therefore, in the present study, a rat paradigm of motor skill learning was used to investigate the protein expression of Arc and zif268 in the cerebellum after motor skill learning. Rats were trained to traverse the runway apparatus for 5 days. Protein samples were collected from the cerebellar cortices 1 hour after the training on days 1, 3, and 5, and analyzed by western blotting. The results showed that the expression of Arc, but not zif268, was significantly increased in the cerebellum following motor skill learning. These findings suggest that motor skill learning induces Arc expression in the cerebellum, which may play a role in acquiring complex motor skills.  相似文献   

10.
Long conduction delays in the nervous system prevent the accurate control of movements by feedback control alone. We present a new, biologically plausible cerebellar model to study how fast arm movements can be executed in spite of these delays. To provide a realistic test-bed of the cerebellar neural model, we embed the cerebellar network in a simulated biological motor system comprising a spinal cord model and a six-muscle two-dimensional arm model. We argue that if the trajectory errors are detected at the spinal cord level, memory traces in the cerebellum can solve the temporal mismatch problem between efferent motor commands and delayed error signals. Moreover, learning is made stable by the inclusion of the cerebello-nucleo-olivary loop in the model. It is shown that the cerebellar network implements a nonlinear predictive regulator by learning part of the inverse dynamics of the plant and spinal circuit. After learning, fast accurate reaching movements can be generated. Received: 8 February 1999 /Accepted in revised form: 7 August 1999  相似文献   

11.
After limb deafferentation, there was no gross alteration in the initiation and performance of a sound-triggered ballistic movement. The pattern of neuronal discharge in the arm area of the motor cortex was not significantly modified. In the absence of cerebellum, the reaction time of motor cortex cells was about 150 msec longer than the reaction time observed in normal and deafferented animals. This was associated with an equal retardation in the onset of ENG changes in the limb muscles. This observation is compatible with the idea that the motor cortex is normally situated downstream to the cerebellum in the initiation of some movements. However, the motor cortex is necessary for the initiation and execution of simple sound-triggered movements since its removal results in a permanent inability to perform the task. Finally, in the absence of peripheral feedback, the pattern of motor output to the agonistic and antagonistic muscles was initiated normally and thus appeared to be preprogrammed centrally. The importance of the motor cortex as a "reflex center" in the control of slower movements is obviously not challenged by these observations since the motor task that we have used depends very little or not at all on sensory feedback (Stark, 1968). What these results indicate, however, is that the execution of some voluntary fast ballistic movements can be entirely preprogrammed independently of peripheral and cerebellar influences, and that the program, which is mainly concerned with generating velocity signals, appears to require the integrity of the motor cortex for its execution.  相似文献   

12.
The expression of follicle-stimulating hormone (FSH) and its receptor in extrapituitary and non-HPG axis tissues has been demonstrated and their non-reproductive functions in these tissues have been found. However, there have been no reports concerning the expression and function of FSH and its receptor in the cerebellum. In our study, immunofluorescence staining and in situ hybridization were used to detect the expression of FSH, double-labeled immunofluorescence staining was used to detect co-localization of FSH and its receptor and co-localization of FSH and gonadotropin-releasing hormone (GnRH) receptor in the rat cerebellar cortex. Results showed that some cells of the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex showed both FSH immunoreactivity and FSH mRNA positive signals; not only for FSH and FSH receptor, but also for FSH and GnRH receptor co-localized in some cells throughout the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex. These suggested that rat cerebellum could express FSH; cerebellum is a target tissue of FSH; FSH may exert certain functions through FSH receptor in a paracrine or autocrine manner; GnRH may regulate FSH positive cells through GnRH receptor in the cerebellum. Our study provides morphological evidence for further functional research on FSH and related hormones in the cerebellum.  相似文献   

13.
Cerebellar development and disease   总被引:4,自引:0,他引:4  
  相似文献   

14.
Lesions of the cerebellum and its associated circuitry abolish or impair several types of motor learning. It is controversial whether these lesions damage the motor memory or its performance. Recent work is evaluated in the light of the original suggestions by Marr, Albus and Gilbert that the cerebellar cortex is a preferred locus for reflex plasticity and motor learning.  相似文献   

15.
The cerebellum is a brain structure involved in the coordination, control and learning of movements, and elucidation of its function is an important issue. Japanese scholars have made seminal contributions in this field of neuroscience. Electrophysiological studies of the cerebellum have a long history in Japan since the pioneering works by Ito and Sasaki. Elucidation of the basic circuit diagram of the cerebellum in the 1960s was followed by the construction of cerebellar network theories and finding of their neural correlates in the 1970s. A theoretically predicted synaptic plasticity, long-term depression (LTD) at parallel fibre to Purkinje cell synapse, was demonstrated experimentally in 1982 by Ito and co-workers. Since then, Japanese neuroscientists from various disciplines participated in this field and have made major contributions to elucidate molecular mechanisms underlying LTD. An important pathway for LTD induction is type-1 metabotropic glutamate receptor (mGluR1) and its downstream signal transduction in Purkinje cells. Sugiyama and co-workers demonstrated the presence of mGluRs and Nakanishi and his pupils identified the molecular structures and functions of the mGluR family. Moreover, the authors contributed to the discovery and elucidation of several novel functions of mGluR1 in cerebellar Purkinje cells. mGluR1 turned out to be crucial for the release of endocannabinoid from Purkinje cells and the resultant retrograde suppression of transmitter release. It was also found that mGluR1 and its downstream signal transduction in Purkinje cells are indispensable for the elimination of redundant synapses during post-natal cerebellar development. This article overviews the seminal works by Japanese neuroscientists, focusing on mGluR1 signalling in cerebellar Purkinje cells.  相似文献   

16.
 Accuracy of movements requires that the central nervous system computes approximate inverse functions of the mechanical functions of limb articulations. In vertebrates, this is known to be achieved within the cerebellar pathways, and also in the cerebral cortex of primates. A cybernetic circuit achieving this computation allows accurate simulation of fast movements of the eye or forearm. It is consistent with anatomy, and with the classical view of the cerebellum as permanently supervised by the inferior olive. The inferior olive detects over- or under-shoots of movements, and the resulting climbing fiber activity corrects ongoing movements, regulates the function of cerebellar cortex and nuclei, and sets the gains of the sensorimotor reactions. Received: 25 September 1995/Accepted in revised form: 9 May 1996  相似文献   

17.
18.
Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, has been found in the cerebellum of many vertebrates and in the gastrointestinal tract of African ostrich chicks, but little is known about its distribution in the cerebellum of the African ostrich. In the present study, the distribution and morphological characteristics of ghrelin-producing cells in the cerebellum of the African ostrich were investigated using immunohistochemistry. The results indicate that the cerebellum is divided into two sections: the outer cerebellar cortex and the inner medulla of cerebellum. The cerebellar cortex comprises a molecular layer, a Purkinje cell layer and a granular layer; ghrelin-immunopositive (ghrelin-ip) cells were localized throughout the entire cerebellum, but sparsely in the medulla. The greatest number of ghrelin-ip cells was found in the stratum granulosum, and the density decreased gradually from the molecular layer to the Purkinje cell layer in the cerebellar cortex. The ghrelin-ip cells were fusiform or irregular polygons and their cytoplasm was stained intensely. These results clearly demonstrate the presence of ghrelin-ip cells in the cerebellum of the African ostrich. It is speculated that ghrelin may have a physiological function in the cerebellum.  相似文献   

19.
We have previously demonstrated an increase in adult brain DNA content in rats adrenalectomized on postnatal day 11. The present studies examined cell proliferation in cerebral cortex, cerebellum, hippocampus, and midbrain-diencephalon following adrenalectomy at this age. Compared to sham-operated controls, adrenalectomized animals showed increased [3H]thymidine incorporation into DNA (measured at 1 h following a pulse injection) in all brain regions at 7 and 14 days postsurgery. In some areas, the effect was already present as early as 2 days following adrenalectomy. Chronic replacement with corticosterone prevented this increase in DNA labelling in a dose-dependent manner. When cell proliferation in the cerebral cortex and cerebellum was independently assessed by measuring changes in thymidine kinase activity, enzyme activity was significantly elevated in both areas at 7 and 14 days postsurgery. Finally, histological examination of the cerebellar cortex suggested a delayed disappearance of the external granular layer in several cerebellar lobules of adrenalectomized animals. Overall, these findings indicate that day-11 adrenalectomy leads to a prolonged stimulation of mitotic activity in areas where cell formation at this time is exclusively glial (i.e., cerebral cortex and mid-brain-diencephalon) as well as in areas where postnatal neurogenesis is also occurring (cerebellum and hippocampus). It is hypothesized that this stimulation results from the removal of a tonic inhibitory effect exerted by circulating glucocorticoids in the normal intact animal.  相似文献   

20.
A major goal of learning and memory research is to correlate the function of molecules with the behaviour of organisms. The beautiful laminar structure of the cerebellar cortex lends itself to the study of synaptic plasticity, because its clearly defined patterns of neurons and their synapses form circuits that have been implicated in simple motor behaviour paradigms. The best understood in terms of molecular mechanism is the parallel fibre-Purkinje cell synapse, where presynaptic long-term potentiation and postsynaptic long-term depression and potentiation finely tune cerebellar output. Our understanding of these forms of plasticity has mostly come from the electrophysiological and behavioural analysis of knockout mutant mice, but more recently the knock-in of synaptic molecules with mutated phosphorylation sites and binding domains has provided more detailed insights into the signalling events. The present review details the major forms of plasticity in the cerebellar cortex, with particular attention to the membrane trafficking and intracellular signalling responsible. This overview of the current literature suggests it will not be long before the involvement of the cerebellum in certain motor behaviours is fully explained in molecular terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号