首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Recently, it has been shown that water fluxes across biological membranes occur not only through the lipid bilayer but also through specialized water-conducting proteins, the so called aquaporins. In the present study, we investigated in young and mature leaves of Brassica napus L. the expression and localization of a vacuolar aquaporin homologous to radish γ-tonoplast intrinsic protein/vacuolar-membrane integral protein of 23 kDa (TIP/VM 23). In-situ hybridization showed that these tonoplast aquaporins are highly expressed not only in developing but also in mature leaves, which export photosynthates. No substantial differences could be observed between different tissues of young and mature leaves. However, independent of the developmental stage, an immunohistochemical approach revealed that the vacuolar membrane of bundle-sheath cells contained more protein cross-reacting with antibodies raised against radish γ-TIP/VM 23 than the mesophyll cells. The lowest labeling was detected in phloem cells. We compared these results with the distribution of plasma-membrane aquaporins cross-reacting with antibodies detecting a domain conserved among members of the plasma-membrane intrinsic protein 1 (PIP1) subfamily. We observed the same picture as for the vacuolar aquaporins. Furthermore, a high density of gold particles labeling proteins of the PIP1 group could be observed in plasmalemmasomes of the vascular parenchyma. Our results indicate that γ-TIP/VM 23 and PIP1 homologous proteins show a similar expression pattern. Based on these results it is tempting to speculate that bundle-sheath cells play an important role in facilitating water fluxes between the apoplastic and symplastic compartments in close proximity to the vascular tissue. Received: 23 December 1999 / Accepted: 3 June 2000  相似文献   

2.
Protein storage vacuoles were examined for the induction of H+-pyrophosphatase (H+-PPase), H+-ATPase, and a membrane integral protein of 23 kD after seed germination. Membranes of protein storage vacuoles were prepared from dry seeds and etiolated cotyledons of pumpkin (Cucurbita sp.). Membrane vesicles from etiolated cotyledons had ATP- and pyrophosphate-dependent H+-transport activities. H+-ATPase activity was sensitive to nitrate and bafilomycin, and H+-PPase activity was stimulated by potassium ion and inhibited by dicyclohexylcarbodiimide. The activities of both enzymes increased after seed germination. On immunoblot analysis, the 73-kD polypeptide of H+-PPase and the two major subunits, 68 and 57 kD, of vacuolar H+-ATPase were detected in the vacuolar membranes of cotyledons, and the levels of the subunits of enzymes increased parallel to those of enzyme activities. Small amounts of the subunits of the enzymes were detected in dry cotyledons. Immunocytochemical analysis of the cotyledonous cells with anti-H+-PPase showed the close association of H+-PPase to the membranes of protein storage vacuoles. In endosperms of castor bean (Ricinus communis), both enzymes and their subunits increased after germination. Furthermore, the vacuolar membranes from etiolated cotyledons of pumpkin had a polypeptide that cross-reacted with antibody against a 23-kD membrane protein of radish vacuole, VM23, but the membranes of dry cotyledons did not. The results from this study suggest that H+-ATPase, H+-PPase, and VM23 are expressed and accumulated in the membranes of protein storage vacuoles after seed germination. Overall, the findings indicate that the membranes of protein storage vacuoles are transformed into those of central vacuoles during the growth of seedlings.  相似文献   

3.
Vacuolar H+-ATPase (V-ATPase) was purified from pear fruit andantibodies were raised against the subunits of 55 and 33 kDa.Antibodies against mung bean H+-pyro-phosphatase (V-PPase) andradish VM23, which is a tonoplast intrinsic protein (TIP) anda water channel, cross-reacted with the vacuolar membrane proteinsof pear fruit. To clarify the roles of these proteins in developmentof pear fruit, we determined their levels relative to the totalamount of protein by immunoblot analysis. The levels of subunitsof the V-ATPase increased with fruit development. By contrast,the level of V-PPase was particularly high at the cell-divisionstage and remained almost the same at other stages. The changesin the activities of V-ATPase and V-PPase corresponded to thosein their protein levels. The ratio of V-PPase activity to V-ATPaseactivity indicated that V-PPase is a major H+-pump of the vacuolarmembranes of young fruit and that the contribution of V-ATPaseincreases with fruit development, finally, V-ATPase becomesthe major H+-pump during the later stages of fruit development.The level of a protein analogous to VM23 (VM23P) was especiallyhigh during the active cell-expansion stage in young fruit,and VM23P might, therefore, play an important role in the rapidexpansion of cells as a vacuolar water channel. Our resultsshow that the levels of V-ATPase, V-PPase and VM23P change differentlyand reflect the roles of the respective proteins in the developmentof pear fruit. 3Research Fellow of the Japan Society for the Promotion of Science 4Present address: Faculty of Agriculture, Tohoku University,1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981 Japan  相似文献   

4.
Zhang C  Li A  Gao S  Zhang X  Xiao H 《PloS one》2011,6(6):e21233
Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4) and Endophilin B1 (Endo B1) that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H+)-ATPases (V-ATPases) to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA), producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.  相似文献   

5.
The Sec1p family of proteins is required for vesicle-mediated protein trafficking between various organelles of the endomembrane system. This family includes Vps45p, which is required for transport to the vacuole in yeast (Saccharomyces cerevisiae). We have isolated a cDNA encoding a VPS45 homolog from Arabidopsis thaliana (AtVPS45). The cDNA is able to complement both the temperature-sensitive growth defect and the vacuolar-targeting defect of a yeast vps45 mutant, indicating that the two proteins are functionally related. AtVPS45p is a peripheral membrane protein that associates with microsomal membranes. Sucrose-density gradient fractionation demonstrated that AtVPS45p co-fractionates with AtELP, a potential vacuolar protein sorting receptor, implying that they may reside on the same membrane populations. These results indicate that AtVPS45p is likely to function in the transport of proteins to the vacuole in plants.  相似文献   

6.
Effects on oxygen evolution of the storage of detached cucumber (Cucumis sativus) leaves at 0°C in the dark were investigated with thylakoids and oxygen-evolving photosystem II membranes isolated from stored leaves. The cold and dark treatment of leaves selectively inactivated electron transport on the oxidizing side of photosystem II. Photosystem II membranes isolated from treated leaves were largely depleted of two proteins of 20 and 14 kilodaltons, which correspond to the extrinsic 23- and 17- kilodalton proteins of spinach functioning in oxygen evolution. The manganese content of photosystem II membranes was also markedly reduced by the treatment. Thus, the inactivation of oxygen evolution induced by the dark, chilling treatment is ascribed to solubilization of the 20- and 14-kilodalton proteins and extraction of manganese.  相似文献   

7.
The composition of vacuolar membrane phospholipids in the taproot of red beet (Beta vulgaris L.), cv. Modana, was determined at normal conditions and under different types of stress (hypo- and hyperosmotic and oxidative stress). The experiments have shown that, among vacuolar membrane phospholipids in red beet taproot, phosphatidylcholines and phosphatidylethanolamines dominated and accounted for 70% of total phospholipids. It is interesting that the content of phosphatidic acid was high (20% of total phospholipids of the vacuolar membrane). Stress effects brought about changes in the composition of membrane phospholipids, which may be an element of phenotypic adaptation. Under hypoosmotic stress, reliable changes in the content of phosphatidic acid were observed, hyperosmotic stress was associated with changes in the level of phosphatidylcholines and phosphatidylinositols, and oxidative stress was notable for changes in the content of phosphatidylethanolamines and phosphatidylserines. The most significant changes were observed in the classes of phospholipids that may be involved in structural modification of membranes associated with transformation of their bilayer lamellar structure into hexagonal. These phospholipids comprise phosphatidic acid, phosphatidylcholines, and phosphatidylethanolamines. Revealed changes in the content of these phospholipids may alter the ratio between lamellar bilayer and nonbilayer hexagonal lipid structures in the vacuolar membrane and act as an important adaptation mechanism ensuring protection against stress.  相似文献   

8.
We have suggested previously that the amino-terminal 8 kilodaltons of pp60src may serve as a structural hydrophobic domain through which pp60src attaches to plasma membranes. Two isolates of recovered avian sarcoma viruses (rASVs), 1702 and 157, encode pp60src proteins that have alterations in this amino-terminal region. The rASV 1702 src protein (56 kilodaltons) and the 157 src protein (62.5 kilodaltons) show altered membrane association, and fractionate largely as soluble, cytoplasmic proteins in aqueous buffers, in contrast with the membrane association of more than 80% of the src protein of standard avian sarcoma virus under the identical fractionation procedure. Plasma membranes purified from cells transformed by these rASVs contain less than 10% of the amount of pp60src found in membranes purified from cells transformed by Rous sarcoma virus or control rASVs. The altered membrane association of these src proteins had little or no effect on the properties of chick embryo fibroblasts transformed in monolayer culture. In contrast, rASV 1702 showed reduced in vivo tumorigenicity compared with Rous sarcoma virus or with other rASVs that encode membrane-associated src proteins. Rous sarcoma virus-induced tumors are malignant, poorly differentiated sarcomas that are lethal to their hosts. rASV 1702 induces a benign, differentiated sarcoma that regresses and is not lethal to its hosts. These data support the role of amino-terminal sequences in the membrane association of pp60src, and suggest that the amino terminus of pp60src may have a critical role in the promotion of in vivo tumorigenicity.  相似文献   

9.
Ward JM  Sze H 《Plant physiology》1992,99(1):170-179
The vacuolar H+-translocating ATPase (H+-ATPase), originally reported to consist of three major subunits, has been further purified from oat roots (Avena sativa var Lang) to determine the complete subunit composition. Triton-solubilized ATPase activity was purified by gel filtration on Sephacryl S400 and ion-exchange chromatography (Q-Sepharose). ATP hydrolysis activity of purified preparations was inhibited by 100 nanomolar bafilomycin A1, a specific vacuolar-type ATPase inhibitor. The purified oat H+-ATPase (relative molecular weight = 650,000) was composed of polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. To analyze the organization of the H+-ATPase subunits, native vacuolar membranes were treated with KI and MgATP to dissociate peripheral proteins. Release of 70, 60, 44, 42, 36, and 29 kilodalton polypeptides from the membrane was accompanied by a loss of ATP hydrolysis and ATP-dependent H+-pumping activities. Five of the peripheral subunits were released from the membrane as a large complex of 540 kilodaltons. Vesicles that had lost the peripheral sector of the ATPase could hold a pH gradient generated by the proton-translocating pyrophosphatase, suggesting that the integral sector of the ATPase did not form a H+-conducting pathway. Negative staining of native vesicles revealed knob-like structures of 10 to 12 nanometers in dense patches on the surface of vacuolar membranes. These structures were removed by MgATP and KI, which suggested that they were the peripheral sectors of the H+-ATPase. These results demonstrate that the vacuolar H+-ATPase from oat roots has 10 different subunits. The oat vacuolar ATPase is organized as a large peripheral sector and an integral sector with a subunit composition similar, although not identical to, other eukaryotic vacuolar ATPases. Variations in subunit composition observed among several ATPases support the idea that distinct types of vacuolar H+-ATPases exist in plants.  相似文献   

10.
The effects of heat shock on the synthesis of α-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25°C to 40°C for 3 hours, inhibits the accumulation of α-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca2+. When ER is isolated from heat-shocked aleurone layers, less newly synthesized α-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca2+ transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.  相似文献   

11.
Randall SK 《Plant physiology》1992,100(2):859-867
The vacuole plays a major structural and biochemical role in the higher plant cell. Among the most studied properties of the vacuole have been transport activities. One important aspect of vacuolar function is its participation in the regulation of cytosolic calcium levels. To identify the molecular entities involved in calcium regulation, a study of vacuole-associated, calcium-binding proteins (CaBs) was initiated. A competition assay was used, and it was observed that the majority of the total cellular membrane-associated, calcium-binding activity resided in low-density fractions enriched in vacuole membranes. Much of that calcium-binding activity was inactivated by a 0.5 m KI wash, and of the remaining activity, 77% was estimated to be peripherally associated with vacuolar membranes, whereas 23% was integrally associated with the vacuolar membrane. Calcium-ligand blots were used, and four major CaBs, with apparent molecular masses of 64, 58, 55, and 42 kD, were detected in purified vacuole membrane fractions. Two of these, the 58- and the 55-kD polypeptide, also appear to be present in significant amounts in endoplasmic reticulum-enriched fractions. However, the 64- and the 42-kD polypeptide are found primarily in vacuolar fractions. It is interesting that expression of the 42-kD polypeptide appears to be restricted to the heavily vacuolated cortical tissues (i.e. it is not found in vascular tissues). The localization of CaBs in the vacuole is consistent with the presence of calcium uptake (H+/Ca2+ antiport) and release mechanisms (inositol trisphosphate sensitive) on vacuolar membranes. These vacuole-associated CaBs, which may play a role in calcium buffering, together with the calcium transport systems, could mediate the vacuolar component of cellular calcium homeostasis.  相似文献   

12.
During stages 9 and 10 of oogenesis in Drosophila the major proteins involved in vitelline membrane (VM) formation are synthesized and secreted by the somatic follicle cells surrounding the oocyte. To identify potential mRNAs involved in VM protein synthesis, newly synthesized poly(A)-containing RNA from egg chambers of different developmental stages was studied. Urea-agarose gel electrophoresis revealed two RNA bands in stage 10 egg chambers in the size range expected for those which encode the smaller VM proteins. These RNA bands, T1 and T2, are specifically enriched in stage 10 follicle cell preparations. In vitro translations in reticulocyte lysates in the absence and presence of microsomal membranes showed both RNA bands code for products that are synthesized in precursor forms which are processed to species that comigrate with VM proteins. T2 directed the synthesis of processed species that comigrated with the 23- to 24-kDa and 17.5-kDa VM proteins (J. Fargnoli and G. L. Waring, 1982, Dev. Biol. 92, 306–314) while the T1 translation product comigrated with the 14-kDa protein. To determine the cytogenetic location of the genes encoding T1 and T2 RNAs, radiolabeled T1 and T2 RNAs were hybridized in situ to salivary gland chromosomes. The results suggest that the structural genes coding for the small vitelline membrane proteins are localized at two sites on the second chromosome: 39DE and 42A.  相似文献   

13.
Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.

Sphingolipidomes from microsomes, vacuole, plasma, and detergent-resistant membranes from Arabidopsis are described and compared and the possible roles of sphingolipid classes and individual species are discussed.  相似文献   

14.
Here, we report the localization and characterization of BHKp23, a member of the p24 family of transmembrane proteins, in mammalian cells. We find that p23 is a major component of tubulovesicular membranes at the cis side of the Golgi complex (estimated density: 12,500 copies/μm2 membrane surface area, or ≈30% of the total protein). Our data indicate that BHKp23-containing membranes are part of the cis-Golgi network/intermediate compartment . Using the G protein of vesicular stomatitis virus as a transmembrane cargo molecule, we find that p23 membranes are an obligatory station in forward biosynthetic membrane transport, but that p23 itself is absent from transport vesicles that carry the G protein to and beyond the Golgi complex. Our data show that p23 is not present to any significant extent in coat protein (COP) I-coated vesicles generated in vitro and does not colocalize with COP I buds and vesicles. Moreover, we find that p23 cytoplasmic domain is not involved in COP I membrane recruitment. Our data demonstrate that microinjected antibodies against the cytoplasmic tail of p23 inhibit G protein transport from the cis-Golgi network/ intermediate compartment to the cell surface, suggesting that p23 function is required for the transport of transmembrane cargo molecules. These observations together with the fact that p23 is a highly abundant component in the intermediate compartment, lead us to propose that p23 contributes to membrane structure, and that this contribution is necessary for efficient segregation and transport.  相似文献   

15.
The fatty acid composition of vacuolar membrane lipids from plant storage tissues and their genesis have been studied. A high content of unsaturated fatty acids (up to 77%) was observed in lipids of these membranes. Linoleic acid prevailed in vacuolar lipids of carrot and red beet (54.2 and 44.2%, respectively). Linolenic acid prevailed in vacuolar lipids of garden radish and turnip (39.7 and 33.9%, respectively). Regarding saturated fatty acids, vacuolar lipids of garden radish, carrot, and red beet contained predominantly palmitic acid (up to 20-24%). Unsaturated fatty acids, petroselinic (C18: 1omega12), cis-vaccenic (C18: 1omega7), hexatrien-7,-10,-13-oic (C16:3omega3) and others, were observed in vacuolar lipids of roots. These acids are usually synthesized in chloroplasts, and their presence in vacuolar lipids can be associated either with the transport of metabolites to the vacuole, or with endocytosis during vacuolar formation in the plant cell. The specific features of fatty acid composition of tonoplast lipids apparently are closely related to the tonoplast unique fluidity and mobility required for running osmotic processes in the cell and for forming transport protein assemblies.  相似文献   

16.
The evolutionarily conserved adaptor protein-3 (AP-3) complex mediates cargo-selective transport to lysosomes and lysosome-related organelles. To identify proteins that function in AP-3–mediated transport, we performed a genome-wide screen in Saccharomyces cerevisiae for defects in the vacuolar maturation of alkaline phosphatase (ALP), a cargo of the AP-3 pathway. Forty-nine gene deletion strains were identified that accumulated precursor ALP, many with established defects in vacuolar protein transport. Maturation of a vacuolar membrane protein delivered via a separate, clathrin-dependent pathway, was affected in all strains except those with deletions of YCK3, encoding a vacuolar type I casein kinase; SVP26, encoding an endoplasmic reticulum (ER) export receptor for ALP; and AP-3 subunit genes. Subcellular fractionation and fluorescence microscopy revealed ALP transport defects in yck3Δ cells. Characterization of svp26Δ cells revealed a role for Svp26p in ER export of only a subset of type II membrane proteins. Finally, ALP maturation kinetics in vac8Δ and vac17Δ cells suggests that vacuole inheritance is important for rapid generation of proteolytically active vacuolar compartments in daughter cells. We propose that the cargo-selective nature of the AP-3 pathway in yeast is achieved by AP-3 and Yck3p functioning in concert with machinery shared by other vacuolar transport pathways.  相似文献   

17.
The ether phospholipid platelet-activating factor and certain similar phospholipids, including lysophosphatidylcholine, are known to stimulate both H+ transport and protein phosphorylation in plant microsomal membranes. In the present work, several polypeptides in highly purified tonoplast membranes from zucchini (Cucurbita pepo L.) showed platelet-activating factor-dependent phosphorylation. Comparison of protein phosphorylation in different membrane fractions separated by sucrose step density gradient centrifugation indicated that some of the phosphoproteins were contaminants or were common to several membrane fractions, but platelet-activating factor-dependent phosphorylation of peptides at 30, 53, and perhaps 100 kilodaltons was tonoplast specific. The phosphoprotein of 53 kilodaltons was shown by three different approaches (one- and two-dimensional polyacrylamide gel electrophoresis, western blots, and immunoprecipitation) to cross-react with antibody raised against the B subunit of the tonoplast ATPase from red beet (Beta vulgaris L.).  相似文献   

18.
The biosynthesis of nonspecific lipid transfer proteins (ns-LTPs) in germinating castor bean (Ricinus communis L.) seeds were investigated. Lipid transfer activities of ns-LTPs in the cotyledons, axis, and endosperm increased with growth after germination. The activity increases were accompanied by increased amounts of ns-LTPs in each tissue, as measured by immunoblot using anti-ns-LTP serum. These results suggest that the ns-LTPs are synthesized de novo in each tissue after germination and not activated from inactive proteins synthesized before germination. Comparison of the immunoblot products in each tissue from 4-day-old seedlings indicate the occurrence of tissue-specific isoforms of ns-LTPs; 9 kilodaltons (major) and 7 kilodaltons (minor) in the cotyledons, and 7 kilodaltons (major) and 9 kilodaltons (minor) in the axis, whereas only the 8-kilodalton ns-LTP is present in the endosperm. In vitro translation from poly(A)+ RNAs from three tissues of castor bean seedlings and the detection of immunoprecipitated products indicate that translatable mRNAs for ns-LTPs exist in the three tissues a day before the synthesis of ns-LTPs; the translation products, which are 3.5 to 4.0 kilodaltons larger than ns-LTPs, were processed to the mature ns-LTPs. The production of mature ns-LTPs from translatable mRNAs without any delay suggests that gene expression of ns-LTPs in castor bean seedlings is controlled at a step before the formation of translatable mRNAs.  相似文献   

19.
The effect of dihydroquercetin (DHQ) on proton pumps of the vacuolar membrane (H+-ATPase and H+-pyrophosphatase), slow vacuolar (SV) channel, lipid peroxidation, and stability of isolated vacuoles was studied. The results of experiments showed that DHQ affected active and passive transport systems of the vacuolar membrane. The mechanism of action of DHQ may be based on its combined effect on the sulfhydryl groups of proteins and the lipid component of the membrane. The strong stabilizing effect of DHQ on the membranes of isolated vacuoles may be associated not only with its antioxidant properties but also with changes in the membrane permeability affecting the ion channels.  相似文献   

20.
Tetrahymena pyriformis cells have been grown in media varying in NaCl concentration from 3.7 mM (normal medium) to 0.3 M and varying in CaCl2 from 0.2 mM (normal medium) to 0.1 M. Tetrahymena grown in 0.3 M NaCl showed relatively few alterations in phospholipid composition, with significant changes being found only in the cell surface membranes (pellicle), which increased in phosphatidylethanolamine content from 39% (low Na+) to 48% (high Na+) of the total phospholipids. The small decrease in fatty acid unsaturation and increase in shorter chain fatty acids in pellicle phospholipids were not statistically significant. No significant changes in phospholipid head group composition or fatty acid distribution were observed in high Ca2+-grown cells. Complementary studies of membrane fluidity, as inferred from freeze-fracture electron microscopy analysis, indicated that membranes of high Na+-acclimated cells were similar to those of control cells, when each was measured in its respective medium. However, the outer alveolar membrane of the pellicle and the food vacuolar membrane were considerably less fluid in high-Ca2+ cells. The lower fluidity in vacuolar membranes may have been responsible for alterations in the cells' capacity to form food vacuoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号