首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Yazawa  T Vorherr  P James  E Carafoli  K Yagi 《Biochemistry》1992,31(12):3171-3176
The interaction between calmodulin and synthetic peptides corresponding to the calmodulin binding domain of the plasma membrane Ca2+ pump has been studied by measuring Ca2+ binding to calmodulin. The largest peptide (C28W) corresponding to the complete 28 amino acid calmodulin binding domain enhanced the Ca2+ affinity of calmodulin by more than 100 times, implying that the binding of Ca2+ increased the affinity of calmodulin for the peptide by more than 10(8) times. Deletion of the 8 C-terminal residues from peptide C28W did not decrease the affinity of Ca2+ for the high-affinity sites of calmodulin, but it decreased that for the low-affinity sites. A larger deletion (13 residues) decreased the affinity of Ca2+ for the high-affinity sites as well. The data suggest that the middle portion of peptide C28W interacts with the C-terminal half of calmodulin. Addition of the peptides to a mixture of tryptic fragments corresponding to the N- and C-terminal halves of calmodulin produced a biphasic Ca2+ binding curve, and the effect of peptides was different from that on calmodulin. The result shows that one molecule of peptide C28W binds both calmodulin fragments. Interaction of the two domains of calmodulin through the central helix is necessary for the high-affinity binding of four Ca2+ molecules.  相似文献   

2.
Various Ca2+-antagonists and related compounds were probed for possible anti-calmodulin properties. Some of them efficiently inhibit calmodulin dependent activity (the plasma membrane Ca2+-ATPase and the cyclic nucleotide phosphodiesterase). The I50-values for the most potent inhibitors varied between 15 and 30 uM. Using fluorescence spectroscopy and flow dialysis methods the stoichiometry of the binding of some of the drugs to calmodulin has been investigated. The number of Ca2+-dependent high affinity binding sites has been studied on trypsin fragments of calmodulin. Compound 12-114 was bound with high affinity in a Ca2+-dependent way to both halves of calmodulin, compound 200-737 recognized one high affinity binding site only in the C-terminal half of the molecule, whereas compound 36-079 demanded the intact protein to be able to interact with high affinity in a Ca2+-dependent manner.  相似文献   

3.
Under conditions where nM level of calmodulin was able to show full activation of myosin light chain kinase and cyclic-nucleotide phosphodiesterase, the fragments of calmodulin at concentrations as high as 20 microM failed to activate these enzymes in the presence of Ca2+. The fragments tested were Ala1-Lys75 (F12), Ala1-Arg74 (F12'), Lys75-Lys148 (F34'), Met76-Lys148 (F34'), Asp78-Lys148 (F34), Ala1-Arg106 (F123), and His107-Lys148 (F4). Purification of the proteolytic fragments through HPLC was necessary to remove contaminant calmodulin. Among the fragments, that corresponding to the C-terminal half domain inhibited myosin light chain kinase activity with the inhibition constant of 13 microM. The integrated structure of calmodulin consisting of N-terminal half domain, C-terminal half domain, and the linker peptide was indispensable for the enzyme activation. We discuss the functions of the two structural domains (N-domain and C-domain) in the activation of various enzymes.  相似文献   

4.
The differential reactivities of individual lysines on porcine testicular calmodulin were determined by trace labeling with high specific activity [3H]acetic anhydride as a function of the molar ratio of Ca2+ to calmodulin. In progressing from the Ca2+-depleted form of the protein to a Ca2+:calmodulin molar ratio of 5:1, six of the seven lysyl residues exhibited a modest 1.5- to 3.0-fold increase in reactivity. Lys 75, in contrast, was enhanced in reactivity greater than 20-fold. When the change in reactivity of each lysine was normalized as a percentage of the maximum change, most of the residues were found to fall into two distinct classes. One class, comprising lysines 94 and 148 from the two carboxy terminal Ca2+-binding domains 3 and 4, respectively, exhibited about 90% of their reactivity change when the Ca2+:calmodulin molar ratio was 2:1, and these residues were perturbed very little upon further addition of Ca2+. The other class, encompassing lysines 13, 21, and 30 from the amino terminal domain 1 and Lys 75 from the extended helix connecting the two globular lobes of calmodulin, underwent most of their overall reactivity change (55-70%) between 2 and 5 equivalents of Ca2+ per mol of calmodulin. Lys 77 was distinct in its pattern of change, undergoing approximately equal changes with each Ca2+ increment. These results are consistent with a model where Ca2+ first binds to the two carboxy terminal sites of calmodulin with no apparent preference, concomitant with minor alterations in the microenvironments of lysines in the unoccupied amino terminal domains. The third and fourth Ca2+ ions then bind to these latter two domains, again with no evidence of preference, with little change in the lysine reactivities at the carboxy terminus of the molecule. The environments of groups in the central helix appear to undergo changes in a manner that reflects their proximity to the amino and carboxy terminal domains. In the course of this work, it was found that Lys 94 in apocalmodulin is specifically perturbed by the addition of EGTA, suggesting that the chelating agent may interact with calmodulin at or near the third Ca2+-binding domain.  相似文献   

5.
Hoffman RM  Li MX  Sykes BD 《Biochemistry》2005,44(48):15750-15759
W7 is a well-characterized calmodulin antagonist. It decreases the maximal tension and rate of ATP hydrolysis in cardiac muscle fibers. Cardiac troponin C (cTnC) has been previously implicated as the mechanistically significant target for W7 in the myofilament. Two-dimensional NMR spectra ({1H,15N}- and {1H,13C}-HSQCs) were used to monitor the Ca2+-dependent binding of W7 to cTnC. Titration of cTnC x 3Ca2+ with W7 indicated binding to both domains of the protein. We examined the binding of W7 to the separated domains of cTnC to simplify the spectral analysis. In the titration of the C-terminal domain (cCTnC x 2Ca2+), the spectral peaks originating from a subset of residues changed nonuniformly, and could not be well-described as single-site binding. A global fit of the cCTnC x 2Ca2+ titration data to a two-site, sequential binding model (47 residues simultaneously fit) yielded a dissociation constant (Kd1) of 0.85-0.91 mM for the singly bound state, with the second dissociation constant fit to 3.40-3.65 mM (> or = 4 x Kd1). The titration data for the N-terminal domain (cNTnC x Ca2+) was globally fit to single-site binding model with a Kd of 0.15-0.30 mM (41 residues fit). The data are consistent with W7 binding to each domain's major hydrophobic pocket, coordinating side chains responsible for liganding cTnI. When in muscle fibers, W7 may compete with cTnI for target sites on cTnC.  相似文献   

6.
Calcium binding to calmodulin and its globular domains   总被引:15,自引:0,他引:15  
The macroscopic Ca(2+)-binding constants of bovine calmodulin have been determined from titrations with Ca2+ in the presence of the chromophoric chelator 5,5'-Br2BAPTA in 0, 10, 25, 50, 100, and 150 mM KCl. Identical experiments have also been performed for tryptic fragments comprising the N-terminal and C-terminal domains of calmodulin. These measurements indicate that the separated globular domains retain the Ca2+ binding properties that they have in the intact molecule. The Ca2+ affinity is 6-fold higher for the C-terminal domain than for the N-terminal domain. The salt effect on the free energy of binding two Ca2+ ions is 20 and 21 kJ. mol-1 for the N- and C-terminal domain, respectively, comparing 0 and 150 mM KCl. Positive cooperativity of Ca2+ binding is observed within each globular domain at all ionic strengths. No interaction is observed between the globular domains. In the N-terminal domain, the cooperativity amounts to 3 kJ.mol-1 at low ionic strength and greater than or equal to 10 kJ.mol-1 at 0.15 M KCl. For the C-terminal domain, the corresponding figures are 9 +/- 2 kJ.mol-1 and greater than or equal to 10 kJ.mol-1. Two-dimensional 1H NMR studies of the fragments show that potassium binding does not alter the protein conformation.  相似文献   

7.
A spectral probe mutant (F29W) of chicken skeletal muscle troponin C (TnC) has been prepared in which Phe-29 has been substituted by Trp. Residue 29 is at the COOH-terminal end of the A helix immediately adjacent to the Ca2+ binding loop of site I (residues 30-41) of the regulatory N domain. Since this protein is naturally devoid of Tyr and Trp, spectral features can be assigned unambiguously to the single Trp. The fluorescent quantum yield at 336 nm is increased almost 3-fold in going from the Ca(2+)-free state to the 4Ca2+ state with no change in the wavelength of maximum emission. Comparisons of the Ca2+ titration curves of the change in far-UV CD and fluorescence emission indicated that the latter was associated only with the binding of 2Ca2+ to the regulatory sites I and II. No change in fluorescence was detected by titration with Mg2+. The Ca(2+)-induced transitions of both the N and C domains were highly cooperative. Addition of Ca2+ also produced a red shift in the UV absorbance spectrum and a reduction in positive ellipticity as monitored by near-UV CD measurements. The fluorescent properties of F29W were applied to an investigation of five double mutants: F29W/V45T, F29W/M46Q, F29W/M48A, F29W/L49T, and F29W/M82Q. Ca2+ titration of their fluorescent emissions indicated in each case an increased Ca2+ affinity of their N domains. The magnitude of these changes and the decreased cooperativity observed between Ca2+ binding sites I and II for some of the mutants are discussed in terms of the environment of the mutated residues in the 2Ca2+ and modeled 4Ca2+ states.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The kinetics of the Ca2+-dependent conformational change of the tryptic fragments F12 (residues 1-75) and F34 (residues 78-148) of calmodulin were studied by 1H-NMR. Resonances of two phenylalanines, 16 (or 19) and 65 (or 68), N epsilon, N epsilon, N epsilon-trimethyllysine-115 and tyrosine-138 were examined by the saturation-transfer technique or computer-aided line-shape simulation to obtain the rate of the conformational exchange between the Ca2+-free form and the Ca2+-bound form. The rates for F12 and F34 in the presence of 0.2 M KCl at 22 degrees C were 300-500 s-1 and 3-10 s-1, respectively. Activation parameters are as follows: Delta H not equal to = 11(+/- 2) kcal X M-1 and delta S not equal to = -9(+/- 5) cal X K-1 X M-1 for F12, and delta H not equal to = 16(+/- 2) kcal X M-1 and delta S not equal to = -2(+/- 5) cal X K-1 X M-1 for F34. These kinetic data for the conformational exchange are in agreement with those of Ca2+ dissociation from the binding sites obtained by 43Ca-NMR and stopped-flow fluorescence studies.  相似文献   

9.
Structural independence of the two EF-hand domains of caltractin   总被引:1,自引:0,他引:1  
Caltractin (centrin) is a member of the calmodulin subfamily of EF-hand Ca2+-binding proteins that is an essential component of microtubule-organizing centers in many organisms ranging from yeast and algae to humans. The protein contains two homologous EF-hand Ca2+-binding domains linked by a flexible tether; each domain is capable of binding two Ca2+ ions. In an effort to search for domain-specific functional properties of caltractin, the two isolated domains were subcloned and expressed in Escherichia coli. Ca2+ binding affinities and the Ca2+ dependence of biophysical properties of the isolated domains were monitored by UV, CD, and NMR spectroscopy. Comparisons to the corresponding results for the intact protein showed that the two domains function independently of each other in these assays. Titration of a peptide fragment from the yeast Kar1p protein to the isolated domains and intact caltractin shows that the two domains interact in a Ca2+-dependent manner, with the C-terminal domain binding much more strongly than the N-terminal domain. Measurements of the macroscopic Ca2+ binding constants show that only the N-terminal domain has sufficient apparent Ca2+ affinity in vitro (1-10 microm) to be classified as a traditional calcium sensor in signal transduction pathways. However, investigation of the microscopic Ca2+ binding events in the C-terminal domain by NMR spectroscopy revealed that the observed macroscopic binding constant likely results from binding to two sites with very different affinities, one in the micromolar range and the other in the millimolar range. Thus, the C-terminal domain appears to also be capable of sensing Ca2+ signals but is activated by the binding of a single ion.  相似文献   

10.
The Ca(2+)-induced structural changes in mutant calmodulins from Drosophila melanogaster have been studied by circular dichroism. The proteins comprise eight site-specific mutants, in which a bidentate glutamic acid (at position 12 in each Ca2+ binding loop) is replaced with either glutamine (BQ series) or lysine (BK series). Previous studies of these proteins indicate that Ca2+ binding at the mutated site is effectively eliminated by each of these substitutions, with additional effects at nonmutated sites. Circular dichroism has now been used to assess Ca(2+)-induced changes in secondary and tertiary structure in these proteins. In the absence of Ca2+, the helical content of these mutant calmodulins is close to that of the wild-type protein. In excess Ca2+, calmodulins with a mutation in the N-terminal sites show Ca(2+)-induced increases in helicity (CD at 222 nm) that are similar to those of the wild-type protein. In contrast, much less additional helix is induced by Ca2+ in calmodulins with mutations in the C-terminal sites, with the two mutations to site IV showing a particularly poor response. Ca(2+)-induced changes to the environment of the single tyrosine of Drosophila calmodulin (Tyr-138 in site IV of the C-terminal domain) have been monitored via CD at 280 nm. The signal from this residue is significantly altered in the Ca(2+)-free form of almost all these mutants, including those in the N-terminal domain. This indicates significant interaction between the N- and C-terminal domains of these mutants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Tb~(3+)作为荧光探针研究钙调蛋白与拮抗药物的相互作用   总被引:3,自引:0,他引:3  
本文报导以Tb~(3+)作为荧光探针,研究钙调蛋白(CaM)与其拮抗药物分子间相互作用的机制.所用方法简便、快速、灵敏.CaM的内源荧光研究表明,Tb~(3+)类似于Ca~(2+),也能诱导CaM分子构象发生改化,由于CaM分子中Ca~(2+)的第Ⅲ、Ⅳ结合位点上各有一个Tyr线基,如(?)280nm激发,则发生从Tyr向Tb~(3+)的能量转移,从而导致Tb~(3+)在490和545nm处的特征荧光发射大大加强.本文检测了药物分子与Tb~(3+)-CaM结合对该荧光发射的影响.实验表明,TFP与CaM的高亲和位点处于CaM分子C-末端部位,即含第Ⅲ、Ⅳ结构域的半分子上:丙拮抗药物酸枣仁皂甙A则优先结合在含第Ⅰ、Ⅱ的结构域的另一半分子(?).  相似文献   

12.
Human centrin 2 (HsCen2), a member of the EF-hand superfamily of Ca2+-binding proteins, is commonly associated with centrosome-related structures. The protein is organized in two domains, each containing two EF-hand motifs, but only the C-terminal half exhibits Ca2+ sensor properties. A significant fraction of HsCen2 is localized in the nucleus, where it was recently found associated with the xeroderma pigmentosum group C protein (XPC), a component of the nuclear excision repair pathway. Analysis of the XPC sequence (940 residues), using a calmodulin target recognition software, enabled us to predict two putative binding sites. The binding properties of the two corresponding peptides were investigated by isothermal titration calorimetry. Only one of the peptides (P1-XPC) interacts strongly (Ka = 2.2 x 10(8) m-1, stoichiometry 1:1) with HsCen2 in a Ca2+-dependent manner. This peptide also binds, with a similar affinity (Ka = 1.1 x 10(8) m-1) to a C-terminal construct of HsCen2, indicating that the interaction with the integral protein is mainly the result of the contribution of the C-terminal half. The second peptide (P2-XPC) failed to show any detectable binding either to HsCen2 or to its C-terminal lobe. The two peptides interact with different affinities and mechanisms with calmodulin. Circular dichroism and nuclear magnetic resonance were used to structurally characterize the complex formed by the C-terminal domain of HsCen2 with P1-XPC.  相似文献   

13.
Calmodulin (CaM) is a multifunctional Ca2+-binding protein that regulates the activity of many enzymes in response to changes in the intracellular Ca2+ concentration. There are two globular domains in CaM, each containing a pair of helix-loop-helix Ca2+-binding motifs called EF-hands. Ca2+-binding induces the opening of both domains thereby exposing hydrophobic pockets that provide binding sites for the target enzymes. Here, I present a 2.4 A resolution structure of a calmodulin mutant (CaM41/75) in which the N-terminal domain is locked in the closed conformation by a disulfide bond. CaM41/75 crystallized in a tetragonal lattice with the Ca2+ bound in all four EF-hands. In the closed N-terminal domain Ca ions are coordinated by the four protein ligands in positions 1, 3, 5 and 7 of the loop, and by two solvent ligands. The glutamate side-chain in the 12th position of the loop (Glu31 in site I and Glu67 in site II), which in the wild-type protein provides a bidentate Ca2+ ligand, remains in a distal position. Based on a comparison of CaM41/75 with other CaM and troponin C structures a detailed two-step mechanism of the Ca2+-binding process is proposed. Initially, the Ca2+ binds to the N-terminal part of the loop, thus generating a rigid link between the incoming helix (helix A, or helix C) and the central beta structure involving the residues in the sixth, seventh and eighth position of the loop. Then, the exiting helix (helix B or helix D) rotates causing the glutamate ligand in the 12th position to move into the vicinity of the immobilized Ca2+. An adjustment of the phi, psi backbone dihedral angles of the Ile residue in the eighth position is necessary and sufficient for the helix rotation and functions as a hinge. The model allows for a significant independence of the Ca2+-binding sites in a two-EF-hand domain.  相似文献   

14.
15.
Ophiobolin A, a fungal toxin that affects rice and maize, inhibits calmodulin by reacting with the lysine residues in calmodulin. Previous studies have shown that lysines 75, 77 and 148 in the calmodulin molecule were the binding sites for ophiobolin A, and that lysine 75 was the primary inhibitory site. In this study, we used kinetic analysis and mutated calmodulins to further characterize the inhibition process. The inhibition of bovine-brain calmodulin by ophiobolin A in the presence of excess ophiobolin A occurred rapidly and followed pseudo-first-order kinetics with a second-order rate constant of 3470 M(-1) min(-1). The kinetics data indicated that the binding of a single ophiobolin A molecule was enough to inactivate a calmodulin molecule. Mutant calmodulins in which two of the three aforementioned binding sites for ophiobolin A had been removed by site-directed mutagenesis were examined for the role of each of the three lysines in the inhibition. It was found that when lysine 75 or 77 in the mutant calmodulin was reacted with ophiobolin A, the resulting calmodulin became a poor activator of phosphodiestease. These results provide further evidence that lysine 75 in calmodulin is the primary inhibitory site for ophiobolin A.  相似文献   

16.
17.
Native calmodulin binds four calcium ions per molecule and exhibits strong Ca2+-dependent binding to phenyl-Sepharose. In contrast, calmodulin inactivated by oxidation of methionine residues or by deamidation binds fewer calcium ions (two per molecule) and shows relatively weak interaction with phenyl-Sepharose. Calmodulin inactivated by modification of lysine residues still is able to bind four calcium ions per molecule and shows strong binding to phenyl-Sepharose similar to native calmodulin. The results suggest that complete exposure of calmodulin's hydrophobic region occurs only after the binding of four ions of calcium to the calmodulin molecule. Thus, phenyl-Sepharose hydrophobic interaction chromatography might be used to separate active calmodulin from inactive forms of calmodulin obtained by oxidation or heat treatment for prolonged periods. As an example, phenyl-Sepharose chromatography can be used to separate free iodide and inactivated species of calmodulin readily from the active, iodinated form of calmodulin following iodination.  相似文献   

18.
A new derivative of bisbenzylisoquinoline (berbamine type): 0-(4-ethoxylbutyl) berbamine (EBB) was found to possess powerful and specific calmodulin (CaM) inhibitory properties. It inhibited CaM-stimulated Ca2+-Mg2+-ATPase in human erythrocyte membrane with IC50 value of 0.35 microM compared to that of 60 microM of berbamine. CaM-independent basal Ca2+-Mg2+-ATPase, Na+-K+-ATPase and Mg2+-ATPase were not effect at 1.0 microM of EBB at which CaM-dependent Ca2+-Mg2+-ATPase was already potently inhibited. The inhibition of CaM-dependent Ca2+-Mg2+-ATPase was competitive with respect to CaM. Higher amount of CaM reversed the inhibition caused by higher concentration of EBB. Using dansyl-CaM (D-CaM), it was shown that EBB binds directly to CaM and caused a conformational change of CaM polypeptide chain. From fluorescence titration curve we obtained evidence that in the presence of Ca2+, CaM has two specific binding sites for EBB and additional unspecific binding sites. The Ca2+-dependent binding sites of EBB on CaM were novel region different from the binding sites for TFP.  相似文献   

19.
Calbindin-D28K is a 1 alpha,25-dihydroxyvitamin D3-dependent protein that belongs to the superfamily of high affinity calcium-binding proteins which includes parvalbumin, calmodulin, and troponin C. All of these proteins bind Ca2+ ligands by an alpha-helix-loop-alpha-helix domain that is termed an EF-hand. Calbindin-D28K has been reported previously to have four high affinity Ca2(+)-binding sites (KD less than 10(-7)) as quantitated by equilibrium dialysis. With the determination of the amino acid sequence, it was clear that there are in fact six apparent EF-hand domains, although the Ca2(+)-binding functionality of the two additional domains was unclear. It was of interest to quantitate the Ca2(+)-binding ability of chick intestinal calbindin-D28K utilizing several different Ca2+ titration methods that cover a range of macroscopic binding constants for weak or strong Ca2+ sites. Titrations with the Ca2+ chelator dibromo-1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (5,5'-Br2BAPTA), a Ca2+ selective electrode, and as followed by 1H NMR, which measure KD values of 10(-6)-10(-8) M, 10(-4)-10(-7) and 10(-3)-10(-5) M, respectively, gave no evidence for the presence of weak Ca2(+)-binding sites. However, Ca2+ titration of the fluorescent Ca2+ chelator Quin 2 in the presence of calbindin-D28K yielded a least squares fit optimal for 5.7 +/- 0.8 Ca2(+)-binding sites with macroscopic dissociation constants around 10(-8) M. The binding of Ca2+ by calbindin was found to be cooperative with at least two of the sites exhibiting positive cooperativity.  相似文献   

20.
We examined the interactions of calmodulin with neuronal gap junction proteins connexin35 (Cx35) from perch, its mouse homologue Cx36, and the related perch Cx34.7 using surface plasmon resonance. Calmodulin bound to the C-terminal domains of all three connexins with rapid kinetics in a concentration- and Ca2+-dependent manner. Dissociation was also very rapid. K(d)'s for calmodulin binding at a high-affinity site ranged from 11 to 72 nM, and K(1/2)'s for Ca2+ were between 3 and 5 microM. No binding to the intracellular loops was observed. Binding competition experiments with synthetic peptides mapped the calmodulin binding site to a 10-30 amino acid segment at the beginning of the C-terminal domain of Cx36. The micromolar K(1/2)'s and rapid on and off rates suggest that this interaction may change dynamically in neurons, and may occur transiently when Ca2+ is elevated to a level that would occur in the near vicinity of an activated synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号