首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
In this study, the feasibility and applicability of marine algal biomass Saccharina (Laminaria) japonica as a sole substrate for the production of pigments by Talaromyces amestolkiae GT11 in submerged fermentation was evaluated. Results indicated that the fungus T. amestolkiae GT11 produced the highest amount of extracellular yellow (444.83 ± 22) and red (200.94 ± 12), and intracellular yellow (362.28 ± 34) and red (193.87 ± 10) pigments, utilizing 1% (w/v) of S. japonica powder at an initial pH of 5 and 30°C, as compared to other physiochemical parameters tested. The pH and thermostability analysis results demonstrated that even after 5 h of incubation the pigment was found to be highly stable at pH 6 and 40 ~ 60°C with 98% and 90.56 ~ 84.69% of residual absorbance, respectively. Apart from the application of pigment as a natural colorant instead of synthetic one in biotechnology industry, the fermented substrate itself can be exploited as food and feed with enhanced nutrient content, improved protein quality and fiber digestibility, etc. However, further studies concerning the safety and functional properties of the pigment and fermented substrate are required. Furthermore, this study provides the evidences about the biological method of making easily fermentable biomass for biorefiners or other metabolite production.  相似文献   

2.
This study aimed to assess the variability in respect of titer and properties of xylanase from Trichoderma reesei SAF3 under both solid-state and submerged fermentation. SSF was initially optimized with different agro-residues and among them wheat bran was found to be the best substrate that favored maximum xylanase production of 219 U (gws)?1 at 96 h of incubation. The mycelial stage of the fungi and intracellular accumulation of Ca++ and Mg++ induced maximum enzyme synthesis. Inoculum level of 10 × 106 spores 5 g?1 of dry solid substrate and water activity of 0.6 were found to be optimum for xylanase production under SSF. Further optimization was made using a Box-Behnken design under response surface methodology. The optimal cultivation conditions predicted from canonical analysis of this model were incubation time (A) = 96–99 h, inoculum concentration (B) = 10 × 106 spores 5 g?1 of dry substrate, solid substrate concentration (C) = 10–12 g flask?1, initial moisture level (D) = 10 mL flask?1 (equivalent to a w  = 0.55) and the level of xylanase was 299.7 U (gws)?1. Subsequent verification of these levels agreed (97 % similar) with model predictions. Maximum amount of xylanase was recovered with water (6:1, v/w) and under shaking condition (125 rpm). Purified xylanase from SSF showed better stability in salt and pH, was catalytically and thermodynamically more efficient over enzyme from SmF, though molecular weight of both enzymes was identical (53.8 kDa).  相似文献   

3.
A single peak (λmax 370) yellow pigment-producing mutant derived from Monascus sp. TISTR 3179 was used for the pigment production in solid rice culture. Various factors affecting yellow tones were investigated. Hom-mali rice variety was the best amongst five Thai local varieties used for fungus culture. It was also better than corn, mungbean, soybean, potato, sweet potato, or cassava tubers. The moisture content and temperature were the key environmental factors affecting the color tones of creamy, tangerine, and golden brown rice solid cultures. The golden brown rice culture gave the highest yellow pigment concentration. Under an optimum room temperature of 28–32 °C, an initial moisture content of 42 %, and 7-day-old inoculum size of 2 % (v/w) the maximum yield at 2,224.63 A370U/gdw of yellow pigment was produced. A mellow yellow powder at 550 A370U/gdw could be obtained using spray-drying techniques. The powder had a moisture content of 5.15 %, a water activity value of 0.398, a hue angle of 73.70 ° (yellowish orange), high lightness (L*) of 74.63, color saturation (C*) of 28.97, a neutral pH of 7.42, 0.12 % acidity and solubility of 0.211 g/10 ml. It was noteworthy that the Chinese fresh noodle with spray-dried yellow powder showed no discoloration during 8-day storage.  相似文献   

4.
A carbonyl reductase (SCR2) gene was synthesized and expressed in Escherichia coli after codon optimization to investigate its biochemical properties and application in biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is an important chiral synthon for the side chain of cholesterol-lowering drug. The recombinant SCR2 was purified and characterized using ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. The specific activity of purified enzyme was 11.9 U mg?1. The optimum temperature and pH for enzyme activity were 45 °C and pH 6.0, respectively. The half-lives of recombinant SCR2 were 16.5, 7.7, 2.2, 0.41, and 0.05 h at 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively, and it was highly stable in acidic environment. This SCR2 displayed a relatively narrow substrate specificity. The apparent K m and V max values of purified enzyme for COBE are 6.4 mM and 63.3 μmol min?1 mg?1, respectively. The biocatalytic process for the synthesis of (S)-CHBE was constructed by this SCR2 in an aqueous–organic solvent system with a substrate fed-batch strategy. At the final COBE concentration of 1 M, (S)-CHBE with yield of 95.3 % and e.e. of 99 % was obtained after 6-h reaction. In this process, the space-time yield per gram of biomass (dry cell weight, DCW) and turnover number of NADP+ to (S)-CHBE were 26.5 mmol L?1 h?1 g?1 DCW and 40,000 mol/mol, respectively, which were the highest values as compared with other works.  相似文献   

5.
β-Exoglucanase production on the lignocellulosic material, wheat bran, by Aspergillus niger under solid state fermentation (SSF) on a laboratory scale was investigated. Different fermentation parameters, such as moisture content, initial pH, temperature, depth of the substrate, and inoculum size on exoglucanase production were optimized. Moisture content of 40 %, pH of 7.0, substrate depth of 1.0 cm, inoculum size of 2?×?106 spores/g of wheat bran, and temperature at 30 °C were optimal for maximum production of exoglucanase. Maximum yields of exoglucanase with 28.60 FPU/g of wheat bran were obtained within 3 days of incubation under optimal conditions.  相似文献   

6.
Seaweeds are rich in bioactive compounds which have well-documented antioxidant properties. They also have antimicrobial activities against food pathogenic microorganisms. This study uses an extract of the brown seaweed, Saccharina (Laminaria) japonica, produced by subcritical water hydrolysis (SWH) for investigating its potential to inhibit bacteria. De-oiled S. japonica was obtained by supercritical carbon dioxide extraction. The reaction temperatures for hydrolysis of raw and de-oiled S. japonica were maintained from 200 to 280 °C. The experiment was done with condition 1.3–6.0 MPa for the reaction pressure and 1:10 (w/v) for the ratio of material to water. The antibacterial activities of raw and de-oiled S. japonica produced by SWH were determined by using the agar diffusion method. Antibacterial activity was tested against two Gram-negative (Escherichia coli and Salmonella typhimurium) and two Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus). The antibacterial activities of hydrolysate water with catalyst at 240 °C showed better bacterial inhibition than the others. Strong antibacterial activity was found using de-oiled material with acetic acid added, with a zone of inhibition of S. typhimurium (14.33?±?0.06 mm) and E. coli (13.00?±?0.09 mm). On the other hand, the weakest antibacterial inhibition was found for S. aureus (12.83?±?0.10 mm) and B. cereus (12.50?±?0.09 mm).  相似文献   

7.
Physiological leaf traits and accumulation of pollutants of ten woody species in response to air pollution at seriously polluted site Sanguigang (SGG) and control site Maofengshan (MFS) in Southern China were studied. Net photosynthetic rates of most species at SGG were lower than those at MFS, but stomatal conductance (gs) showed opposite trend. The specific leaf area of Aporusa dioica, Sapium discolor, Schefflera octophylla and Toxicodendron succedaneum were significantly, 46.77, 13.09, 55.11 and 23.51 %, higher in SGG than in MFS, while chlorophyll content being the opposite. A. dioica had the highest sulphur (S) content at both sites (11.74 mg g?1 at SGG and 11.07 mg g?1 at MFS). Heavy metals concentrations were generally higher in species at SGG than at MFS. S. octophylla showed significantly higher concentrations of Zn, Cd and Mn (341.81, 2.41 and 2,287.29 μg g?1) than other species at SGG. Moreover, A. dioica had the highest Pb concentration (9.19 μg g?1), and L. glutinosa showed the highest Cr concentration (3.40 μg g?1). According to the integrated results, we infer that A. dioica, S. octophylla and L. glutinosa are the promising species for phytoremediation in the ceramic industry polluted environment.  相似文献   

8.
This study was aimed at developing a protocol for improving soil health using Sargassum johnstonii as a conditioner and fertilizer. Tomato (Lycopersicon esculentum) plants were raised on seaweed-amended soil in experimental fields of Department of Botany, University of Delhi, India. Soil was amended with granular (G) and powder (P) seaweed forms in the proportion of 12.5 % (G1 and P1), 25 % (G2 and P2), and 37.5 % (G3 and P3) (w/w). To compare the efficacy of seaweed fertilizer with a conventional organic fertilizer, a parallel series (positive control) was run with vermicompost (V) in the above-mentioned proportions. Unamended soil served as control (C). The nutrient status of S. johnstonii and vermicompost was analyzed prior to giving treatments. Physicochemical properties of the amended soils as well as growth, productivity, and biochemical constituents of tomato grown in soil with each treatment were analyzed. Higher concentration of granular form of seaweed (G3) in the soil resulted in 144, 268, 122, 138, and 188 % increase in Na, K, Mg, Ca, and Zn, respectively. Seaweed-amended soil had higher porosity and water-holding capacity as compared to C. Tomato plants raised on seaweed (G3 and P3)-amended soil showed an increased overall growth, with earlier flowering and fruiting as compared to control plants. Plants raised on G3-amended soil showed significantly higher levels of proteins (95 mg?g?1 FW) in leaves, and vitamin C (99.2 mg 100 g?1) and lycopene (5.78 mg 100 g?1) in fruits. The present study showed that S. johnstonii biomass has a high potential to condition and fertilize the soil for improved crop productivity.  相似文献   

9.
Biodegradation of pyridine by a novel bacterial strain, Rhizobium sp. NJUST18, was studied in batch experiments over a wide concentration range (from 100 to 1,000 mg l?1). Pyridine inhibited both growth of Rhizobium sp. NJUST18 and biodegradation of pyridine. The Haldane model could be fitted to the growth kinetics data well with the kinetic constants μ* = 0.1473 h?1, K s = 793.97 mg l?1, K i = 268.60 mg l?1 and S m = 461.80 mg l?1. The true μ max, calculated from μ*, was found to be 0.0332 h?1. Yield coefficient Y X/S depended on S i and reached a maximum of 0.51 g g?1 at S i of 600 mg l?1. V max was calculated by fitting the pyridine consumption data with the Gompertz model. V max increased with initial pyridine concentration up to 14.809 mg l?1 h?1. The q S values, calculated from $V_{ \hbox{max} }$ , were fitted with the Haldane equation, yielding q Smax = 0.1212 g g?1 h?1 and q* = 0.3874 g g?1 h?1 at S m′ = 507.83 mg l?1, K s′ = 558.03 mg l?1, and K i′ = 462.15 mg l?1. Inhibition constants for growth and degradation rate value were in the same range. Compared with other pyridine degraders, μ max and S m obtained for Rhizobium sp. NJUST18 were relatively high. High K i and K i′ values and extremely high K s and K s′ values indicated that NJUST18 was able to grow on pyridine within a wide concentration range, especially at relatively high concentrations.  相似文献   

10.
Value-added abalone Haliotis discus hannai containing bioactive phlorotannins is produced by simply changing the feed to phlorotannin-rich brown seaweed Ecklonia cava 2 weeks prior to harvesting. We assessed the accumulation of phlorotannins by feeding with the seaweed after 4 days of starvation. Reverse-phase high-performance liquid chromatography afforded isolation of the major phlorotannins, which were identified by mass spectrometry and 1H-nuclear magnetic resonance to be 7-phloroeckol and eckol. Throughout the E. cava feeding period of 20 days, 7-phloroeckolol accumulated in the flesh (foot muscle tissue), up to 0.85?±?0.21 mg g?1 dry weight of tissue after 12 days. Eckol reached 0.31?±?0.08 mg g?1 dry tissue after 14 days. Feeding Laminaria japonica as a control, we detected no phlorotannins in the abalone muscle tissue. Abalone seaweed consumption and growth rate were similar when fed with E. cava or L. japonica for 20 days. Reduction in phlorotannins to half-maximal accumulation took 1.0 and 2.7 days for 7-phloroeckol and eckol, respectively, after replacement of the feed with L. japonica.  相似文献   

11.
The process parameters were optimized to obtain enhanced enzyme activity from the fungus Phoma herbarum isolate KU4 using rice straw and saw dust as substrate under solid-state fermentation using Response surface methodology (RSM). Genetic algorithm was used to validate the RSM for maximum laccase production. Six variables, viz., pH of the media, initial moisture content, copper sulphate concentration, concentration of tannic acid, inoculum concentration and incubation time were found to be effective and optimized for enhanced production. Maximum laccase production was achieved by RSM at pH 5·0 and 86% of initial moisture content of the culture medium, 150 µmol l−1 of CuSO4, 1·5% tannic acid and 0·128 g inoculum g−1 dry substrate inoculum size on the fourth day of fermentation. The highest laccase activity was observed as 79 008 U g−1, which is approximately sixfold enhanced production compared to the unoptimized condition (12 085·26 U g−1).  相似文献   

12.
2-phenylethanol (2-PE) is a higher alcohol widely used in industry that can be obtained by solid-state fermentation (SSF) using low-cost raw materials. This report describes the 2-PE production potential of an indigenous Pichia kudriavzevii isolated from solid-state fermented sugarcane bagasse that possesses attractive characteristics for processing waste streams such as its low-pH tolerance, high growth rate and temperature resistance. Besides, 2-PE production was optimized in batch-SSF using sugarcane bagasse supplemented with l-phenylalanine as substrate. Full factorial design allowed identifying the pH adjustment, micronutrient addition, inoculum and co-substrate load effects, and response surface methodology served to identify the maximum production based on temperature, initial moisture content (MC0) and specific airflow rate (SAFR). While the pH adjustment and micronutrient addition did not affect the 2-PE production, temperature and MC0 resulted critical for the process. After optimization, the maximum 2-PE content was 27.2 ± 0.2 mg per gram of dry substrate at 31 °C, 76 % MC0 and 0.129 L h−1 g−1 SAFR. This result was 23.8 % higher than the sub-optimal condition, and it is the highest 2-PE production via SSF reported so far. These results confirm the ability of P. kudriavzevii for producing 2-PE, and its potential for using waste streams as substrate.  相似文献   

13.
A codon-optimized 2-deoxyribose-5-phosphate aldolase (DERA) gene was newly synthesized and expressed in Escherichia coli to investigate its biochemical properties and applications in synthesis of statin intermediates. The expressed DERA was purified and characterized using 2-deoxyribose-5-phosphate as the substrate. The specific activity of recombinant DERA was 1.8 U/mg. The optimum pH and temperature for DERA activity were pH 7.0 and 35 °C, respectively. The recombinant DERA was stable at pH 4.0–7.0 and at temperatures below 50 °C. The enzyme activity was inhibited by 1 mM of Ni2+, Ba2+ and Fe2+. The apparent K m and V max values of purified enzyme for 2-deoxyribose-5-phosphate were 0.038 mM and 2.9 μmol min?1 mg?1, for 2-deoxyribose were 0.033 mM and 2.59 μmol min?1 mg?1, respectively, which revealed that the enzyme had similar catalytic efficiency towards phosphorylated and non-phosphorylated substrates. To synthesize statin intermediates, the bioconversion process for production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose from chloroacetaldehyde and acetaldehyde by the recombinant DERA was developed and a conversion of 94.4 % was achieved. This recombinant DERA could be a potential candidate for application in production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose.  相似文献   

14.
In the present study, the endoinulinase gene (EnInu) from Aspergillus niger CICIM F0620 was optimized according to the codon usage of Pichia pastoris and both the native and the optimized gene were expressed in P. pastoris. Use of the optimized gene resulted in the secretion of recombinant endoinulinase activity that reached 1,349 U ml?1, 4.18 times that observed using the native gene. This is the highest endoinulinase activity reported to date. The recombinant enzyme was optimally active at pH 6.0 and 60 °C. Moreover, inulooligosaccharides production from inulin was studied using the recombinant enzyme produced from the optimized gene. After 8 h under optimal conditions, which included 400 g l?1 inulin, an enzyme concentration of 40 U g?1 substrate, 50 °C and pH 6.0, the inulooligosaccharide yield was 91 %. The high substrate concentration and short reaction time described here should reduce production costs distinctly, compared with the conditions used in previous studies. Thus, this study may provide the basis for the industrial use of this recombinant endoinulinase for the production of inulooligosaccharides.  相似文献   

15.
Seaweeds, particularly species of red macroalgae, are promising resources for bioethanol production because of their exceptionally high carbohydrate content. Of 20 seaweeds evaluated, Palmaria palmata (Rhodymenia palmata) contained the highest carbohydrate content (469.8 mg g?1 seaweed) with a carrageenan content of 354 mg g?1 seaweed. Such a high carrageenan content makes the high-volume production of bioethanol feasible. Acid hydrolysis of P. palmata in 0.4 M H2SO4 at 125 °C for 25 min released 27 mg of glucose, 218.4 mg of reducing sugars, and 127.6 mg of galactose per gram of seaweed. Ethanol fermentation of these hydrolysis products using an inoculum concentration of 1.5 mg mL?1 at 30 °C and 72 h in a shaking incubator at 130 rpm yielded 17.3 mg of ethanol per gram of seaweed.  相似文献   

16.
A novel agro-residue, tea stalks, was tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger JMU-TS528. Maximum yield of tannase was obtained when SSF was carried out at 28 °C, pH 6.0, liquid-to-solid ratio (v/w) 1.8, inoculum size 2 ml (1?×?108 spores/ml), 5 % (w/v) ammonium chloride as nitrogen source and 5 % (w/v) lactose as additional carbon source. Under optimum conditions, tannase production reached 62 U/g dry substrate after 96 h of fermentation. Results from the study are promising for the economic utilization and value addition of tea stalks.  相似文献   

17.
A recombinant oleate hydratase from Lysinibacillus fusiformis converted ricinoleic acid to a product, whose chemical structure was identified as the novel compound 10,12-dihydroxystearic acid by gas chromatograph/mass spectrometry, Fourier transform infrared, and nuclear magnetic resonance analysis. The reaction conditions for the production of 10,12-dihydroxystearic acid were optimized as follows: pH?6.5, 30 °C, 15 g?l?1 ricinoleic acid, 9 mg?ml?1 of enzyme, and 4 % (v/v) methanol. Under the optimized conditions, the enzyme produced 13.5 g?l?1 10,12-dihydroxystearic acid without detectable byproducts in 3 h, with a conversion of substrate to product of 90 % (w/w) and a productivity of 4.5 g?l?1?h?1. The emulsifying activity of 10,12-dihydroxystearic acid was higher than that of oleic acid, ricinoleic acid, stearic acid, and 10-hydroxystearic acid, indicating that 10,12-dihydroxystearic acid can be used as a biosurfactant.  相似文献   

18.
The influence of cytokinins and culture conditions including medium volume, harvest time and elicitation with abiotic elicitors (SA/MeJ) have been studied for the optimal production of biomass and withanolides in the multiple shoot culture of Withania somnifera. Elicitation of shoot inoculum mass (2 g l?l FW) with SA at 100 μM in the presence of 0.6 mg l?l BA and 20 mg l?l spermidine for 4 h exposure time at the 4th week in 20 ml liquid medium recorded higher withanolides production (withanolides A [8.48 mg g?l DW], withanolides B [15.47 mg g?l DW], withaferin A [29.55 mg g?l DW] and withanone [23.44 mg g?l DW]), which were 1.14 to 1.18-fold higher than elicitation with MeJ at 100 μM after 5 weeks of culture. SA-elicited cultures did not exhibit much variation in biomass accumulation when compared to control. This cytokinin induces and SA-elicited multiple shoot culture protocol provides a potential alternative for the optimal production of biomass and withanolides utilizing liquid culture.  相似文献   

19.
In spite of numerous advantages on operating fermentation at elevated temperatures, very few thermophilic bacteria with polyhydroxyalkanoates (PHAs)-accumulating ability have yet been found in contrast to the tremendous mesophiles with the same ability. In this study, a thermophilic poly(3-hydroxybutyrate) (PHB)-accumulating bacteria (Chelatococcus daeguensis TAD1), isolated from the biofilm of a biotrickling filter used for NOx removal, was extensively investigated and compared to other PHB-accumulating bacteria. The results demonstrate that C. daeguensis TAD1 is a growth-associated PHB-accumulating bacterium without obvious nutrient limitation, which was capable of accumulating PHB up to 83.6 % of cell dry weight (CDW, w/w) within just 24 h at 45 °C from glucose. Surprisingly, the PHB production of C. daeguensis TAD1 exhibited strong tolerance to high heat stress as well as nitrogen loads compared to that of other PHB-accumulating bacterium, while the optimal PHB amount (3.44?±?0.3 g l?1) occurred at 50 °C and C/N?=?30 (molar) with glucose as the sole carbon source. In addition, C. daeguensis TAD1 could effectively utilize various cheap substrates (starch or glycerol) for PHB production without pre-hydrolyzed, particularly the glycerol, exhibiting the highest product yield (Y P/S, 0.26 g PHB per gram substrate used) as well as PHB content (80.4 % of CDW, w/w) compared to other carbon sources. Consequently, C. daeguensis TAD1 is a viable candidate for large-scale production of PHB via utilizing starch or glycerol as the raw materials.  相似文献   

20.
Dissociated cells separated from a natural colony of Nostoc flagelliforme were cultivated heterotrophically in the darkness on glucose under fed-batch culture conditions. The effects of carbon sources (glucose, fructose, xylose, and sucrose) and concentrations on cell growth and extracellular polysaccharide (EPS) production were investigated. At harvest, the culture contained 1.325 g L?1 of biomass and 117.2 mg L?1 of EPS, respectively. The gravimetric EPS production rate was 16.7 mg g?1 cell dry weight day?1, which was 2.1 times higher than previously reported. Using sigmoid model, batch fermentation of N. flagelliforme was kinetically simulated to obtain equations including substrate consumption, biomass growth, and EPS accumulation. Results from a simulation correlated well with the experimental ones, indicating that this method could be useful in studying EPS production from batch and fed-batch cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号