首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioflocculants of Chlamydomonas reinhardtii were investigated under axenic conditions. C. reinhardtii was found to produce significant amounts of bioflocculants. Flocculating activity by C. reinhardtii began in the linear phase of growth and continued until the end of the stationary phase. The highest flocculating efficiency of the culture broth was 97.06%. The purified C. reinhardtii bioflocculant was composed of 42.1% (w/w) proteins, 48.3% carbohydrates, 8.7% lipids, and 0.01% nucleic acid. The optimum condition for bioflocculant production of C. reinhardtii was as follows: under temperature of 15°C to 25°C, pH 6–10 and illumination of 40–60 μmol photons m?2 s?1. The bioflocculants produced by C. reinhardtii showed maximum activity in pH ranges from 2 to 10. The flocculating activity was significantly enhanced by the addition of CaCl2 as a co-flocculant at an optimal concentration of 4.5 mM.  相似文献   

2.
The study of the enhancement of the immune system by administration of algal cell components is a current research field of great interest for future development of algal biotechnology. Arthrospira (Spirulina) platensis is one of the key organisms, showing interesting results in the treatment of certain tumors, viral infection, and immunodeficiency. Polysaccharides from Arthrospira, together with phycocyanin, seem to be responsible for most of these positive effects. In this work, we isolated the acidic polysaccharide fraction from A. platensis and tested its capacity to induce the production of the proinflammatory cytokine tumor necrosis factor alpha in macrophages. For this purpose, we modified a previous isolation method developed by one of us, which includes several depigmentation steps, as well as differential partitioning with N-cetylpyridinium bromide (Cetavlon). Infrared spectroscopy of the acidic polysaccharide fraction indicates the presence of hydroxyl radicals, aliphatic residues, carbonyl groups, sulfate groups, and sulfate esters, as well as amine residues. Liquid chromatography confirmed the polysaccharidic nature of the fraction, revealing its high purity, essentially free of lipopolysaccharide (LPS) contamination (0.0017% w/w), and complying with international pharmacological standards. The results indicate that a very high production of tumor necrosis factor- α (TNF?α) occurred in macrophages in the presence of the polysaccharides in the range 5–100 μg mL?1, reaching values of 8 ng TNF-α mL?1 after 24 h and 30 ng TNF-α mL?1 after 48 h. These data demonstrate that acidic polysaccharides from Spirulina elicit TNF-α production levels comparable to LPS at ~100× higher concentration than LPS, but without significantly increasing the risk of septic shock or deleterious pyrogenesis.  相似文献   

3.
Antioxidants—molecules that have the ability to inhibit the oxidation of other molecules and have many medicinal and industrial applications—are commonly found in algae. Due to the harmful effects of common synthetic antioxidants, their replacement with natural antioxidants would be advantageous. The goal of this study was to examine the efficacy of antioxidants (including antioxidant content, antioxidant activity and antioxidant enzymes) among 11 species of freshwater blue-green algae. Antioxidant activities were evaluated by assaying radical scavenging activity, reducing power and chelating activity. The results showed that Spirulina platensis has the highest radical scavenging activity and reducing power (524 and 244 % more than the control, respectively) and Nostoc linkia has the highest chelating activity (195 %). Examination of some antioxidant contents such as chlorophyll a, carotenoids and phenolic content revealed that S. platensis has the highest contents [10.6 mg/g dry weight (DW), 2.4 mg/g DW and 9.7 mg gallic acid equivalent /g DW, respectively]. The positive correlation (P <0.01) between algal content and antioxidant activity may be attributed to the potent antioxidant activity of these contents. Variation in the activity of three antioxidant enzymes (superoxide dismutase, catalase and peroxidase) was also reported. This study showed that the Cyanobacteria are promising sources of antioxidants.  相似文献   

4.
Superoxide dismutase (SOD) is considered a primary antioxidant which defends against reactive oxygen species that are induced by environmental stress. In this study, we examined changes in SOD activity and expression in the cyanobacterium Spirulina (Arthrospira) platensis under iron and salinity stress; we characterized its induction under these stress conditions and we overexpressed the enzyme in a bacterial host for preliminary characterization. Analysis of SOD isoforms concludes that S. platensis was found to regulate only the iron-containing SOD isoform (FeSOD) in response to two types of stress that were tested. The FeSOD expression (on the level of both mRNA and enzyme activity) was induced by the stress conditions of salinity and iron levels. The FeSOD from S. platensis was overexpressed in Escherichia coli BL21. The recombinant FeSOD protein (about 23 kDa) was purified for characterization. It showed high specific activity and pH stability at 6.0–9.0, and it is relatively thermostable, retaining 45 % of its activity after 30 min at 90 °C. Phylogenetic analysis reveals that S. platensis FeSOD is grouped with the FeSODs from other cyanobacterial species and separated from those of the eukaryotic Chlorophyta, suggesting that the FeSOD gene may be used as a molecular marker in physiological, phylogenetic, and taxonomic studies. This study also suggests that the increased activity and expression of SOD may play a role in algal survival under stress conditions.  相似文献   

5.
Nitrogen is a critical element for algal growth and shifting its concentration above or below the optimum concentration may have a deleterious effect on algal cells. Antioxidants are one of the important factors that protect algal cells from stresses, e.g., nitrogen stress. The purpose of this study was to evaluate the biomass, pigments, antioxidant compounds and activities of two algal species, Arthrospira platensis (prokaryotic Cyanophyta) and Pseudochlorella pringsheimii (eukaryotic Chlorophyta) under hypo- and hyper-nitrogen concentrations. In general, the increase in the nitrogen concentrations of the nutrient medium (75 and 6–18 mM for A. platensis and P. pringsheimii, respectively) led to an increase in the biomass yield, pigments and other antioxidant contents. However, this increment was reversed by further N additions. The data showed that the prokaryotic alga (A. platensis) can grow at relatively hyper-nitrogen concentrations rather than the eukaryotic one (P. pringsheimii). The antioxidant enzyme activities for the both species were significantly stimulated with the relatively lower nitrogen concentrations, while increasing the N concentrations in the media decreased the enzyme activities. Despite the superiority of A. platensis as a potent antioxidants source, both algae showed high antioxidant levels compared to the synthetic antioxidant marker (butylated hydroxytoluene, BHT).  相似文献   

6.
The tensile strength of the cell walls ofBacillus megaterium andBacillus stearothermophilus was found to be about 2.4×107 N/m2. The internal pressure and water activity of the cells were 14 atm, 0.99 aw forB. megaterium and 28 atm, 0.98 aw forB. stearothermophilus. The greater strength ofB. stearothermophilus cells, considered as pressure vessels, restricts absorption of water by the protoplasm so that the water content on a dry weight basis is 3.4 g/g forB. megaterium cells in water but only 1.8 g/g forB. stearothermophilus.  相似文献   

7.
The objective of the present investigation was to establish potential of commercially available soy polysaccharide (Emcosoy®) for colon drug delivery. The soy polysaccharide–ethyl cellulose films were fabricated and characterized. The effect of the pectinase enzyme on the tensile strength and surface morphology of the film was evaluated. The permeation of chlorpheniramine maleate (CPM), a model hydrophilic drug from pectinase enzyme treated and untreated films was measured in pH 7.4 buffer. The soy polysaccharide–ethyl cellulose films were also incubated with Lactobacillus sp. culture for a specific duration, and effect on the CPM permeation was evaluated. The CPM capsules were coated with the soy polysaccharide–ethyl cellulose mixture, and Eudragit S100 was applied as a secondary coat. The coated CPM capsules were radiolabelled, and their in vivo transit was evaluated in human volunteers on oral administration. The pectinase enzyme had a significant influence on the tensile strength and surface morphology of the soy polysaccharide–ethyl cellulose films. The permeability of pectinase enzyme-treated and Lactobacillus sp.-treated films was significantly higher than that of untreated films. The CPM capsules were coated with the soy polysaccharide–ethyl cellulose mixture and Eudragit S100 and were successfully radiolabelled by a simple method. Gamma scintigraphic studies in human volunteers showed that the radiolabelled capsules maintained integrity for at least 9 h after oral administration. Thus, the soy polysaccharide has a potential in colon drug delivery.  相似文献   

8.
The DNA damage response (DDR) is induced by various DNA damaging factors and maintains genome stability in all organisms. The Chlamydomonas reinhardtii genome contains putative homologous genes involved in DDR; however, little is known about the functions and responses of these genes to DNA damage. In this study, DDR by gamma radiation was determined in C. reinhardtii. Irradiation with 80, and 200 Gy gamma radiation caused death in approximately 47 and 97 % of C. reinhardtii cells, respectively. The absolute lethality of cells was at 300 Gy. The rate of DNA breaks was also determined using comet assays after exposure to different doses of gamma radiation. Irradiation with 80 and 400 Gy resulted in 17 and 34 % of nuclear degradation in C. reinhardtii cells, respectively. To identify the major DDR pathway of C. reinhardtii induced by gamma radiation, 24 putative DDR genes were selected from the Joint Genome Institute (JGI) database. Gamma radiation significantly affected expression of 15 genes among these. Therefore, these genes displaying expressional changes by gamma radiation are involved in DDR, which indicate that C. reinhardtii may possess a fundamental conserved DDR pathway with higher plants. Furthermore, radiation responsive proteins were identified by proteomic analysis, which are involved in metabolisms of carbohydrate, energy, and photosynthesis. This is the first report to describe the responses of DDR homologous genes to gamma radiation and to identify gamma radiation-responsive proteins in C. reinhardtii. Our data should provide molecular insights into gamma radiation responses including DNA damage in green algae.  相似文献   

9.
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (μ) of 0.28 day?1 and biomass productivities of 132 mg ?L?1? day?1. The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g ?L?1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.  相似文献   

10.
11.
Spirulina platensis, a filamentous cyanobacterium, produces γ-linolenic acid (GLA, 18:3), which is an important anti-inflammatory for pharmaceutical use. Thus, to increase the GLA content in S. platensis, this study investigated the combined effect of a light–dark (LD) two-stage culture and mixotrophic culture including a precursor of GLA. When compared with a photoautotrophic culture, the supplement of a GLA precursor, such as a long- or short-chain carbon source, enhanced the total fatty acid and GLA contents in the cells in the two-stage culture. The highest GLA content of 2% (w/w) and productivity of 27.6?±?4.7?mg?L?1 were obtained in S. platensis when using 0.01?mM palmitic acid as a supplement in the two-stage culture. This study also suggests that a mixotrophic and LD two-stage culture may represent a method for increasing the total lipid production, which can then be converted to biofuels.  相似文献   

12.
A long-living (of up to several years) bipartite system was constructed between the unicellular green alga Chlamydomonas reinhardtii and the ascomycetous fungus Alternaria infectoria. The metabolic cooperation between the two organisms was tested with infecting A. infectoria hyphae into nitrogen starving yellow C. reinhardtii culture. After the infection, a slow greening process of the algal cells was observed, which was studied by measuring the increasing chlorophyll content, the appearance of chlorophyll-protein complexes – using 77 K fluorescence spectroscopy, and the measurement of photosynthetic oxygen production. Transmission electron microscopy and laser scanning microscopy images showed that no direct physical contacts were formed between the algal cells and the hyphae in the long-living symbiosis but they were joint in a mucilaginous bed allowing diffusion processes for metabolic cooperation. The increased free amino acid content of the medium of the long-living bipartite cultures’ indicated possible nitrogen supply of hyphal origin, which allowed the re-greening of the algal cells. The results of this work underline the importance of symbiosis-like stable metabolic coexistence, which ensures survival under extreme environmental conditions.  相似文献   

13.
The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L?1 days?1 reached the maximum cell concentration of 2,393 ± 241 mg L?1, about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.  相似文献   

14.
There is a pressing need to develop novel antibacterial agents given the widespread antibiotic resistance among pathogenic bacteria and the low specificity of the drugs available. Endolysins are antibacterial proteins that are produced by bacteriophage‐infected cells to digest the bacterial cell wall for phage progeny release at the end of the lytic cycle. These highly efficient enzymes show a considerable degree of specificity for the target bacterium of the phage. Furthermore, the emergence of resistance against endolysins appears to be rare as the enzymes have evolved to target molecules in the cell wall that are essential for bacterial viability. Taken together, these factors make recombinant endolysins promising novel antibacterial agents. The chloroplast of the green unicellular alga Chlamydomonas reinhardtii represents an attractive platform for production of therapeutic proteins in general, not least due to the availability of established techniques for foreign gene expression, a lack of endotoxins or potentially infectious agents in the algal host, and low cost of cultivation. The chloroplast is particularly well suited to the production of endolysins as it mimics the native bacterial expression environment of these proteins while being devoid of their cell wall target. In this study, the endolysins Cpl‐1 and Pal, specific to the major human pathogen Streptococcus pneumoniae, were produced in the C. reinhardtii chloroplast. The antibacterial activity of cell lysates and the isolated endolysins was demonstrated against different serotypes of S. pneumoniae, including clinical isolates and total recombinant protein yield was quantified at ~1.3 mg/g algal dry weight.  相似文献   

15.
Despite 40+ years of research on aluminum (Al) toxicity in aquatic organisms, Al transport mechanisms through biological membranes, and the intracellular fate of Al once assimilated, remain poorly understood. The trivalent metal scandium shares chemical similarities with Al and, unlike Al, it has a convenient radioactive tracer (Sc-46) allowing for relatively simple measurements at environmentally relevant concentrations. Thus, we investigated the potential of Sc to substitute for Al in uptake and intracellular fate studies with the green alga Chlamydomonas reinhardtii. Short-term (<60 min) competitive uptake experiments indicated that Al does not inhibit Sc influx, implying that these metals do not share a common transport mechanism. Also, internalized Al concentrations were ~4 times higher than Sc concentrations after long-term (72 h) exposures under similar conditions (4.5 μM AlT or ScT, 380 μM FT, pH 7.0, 3.8 pM Al calc 3+ and 1.0 pM Sc calc 3+ ). However, interesting similarities were observed in their relative subcellular distributions, suggesting possible common toxicity/tolerance mechanisms. Both metals mostly distributed to the organelles fraction and almost no association was found with the cytosolic proteins. The greatest difference was observed in the cellular debris fraction (membranes and nucleus) where Al was much more concentrated than Sc. However, it is not clear whether or not this fraction contained extracellular metal associated with the algal surface. To summarize, Sc does not seem to be an adequate substitute of Al for transport/uptake studies, but could be for investigations of toxicity/tolerance mechanisms in C. reinhardtii. Further work is needed to verify this latter suggestion.  相似文献   

16.
Residues from the fermentation of cellulose by the anaerobic bacteria Ruminococcus albus (strain 7) or Ruminococcus flavefaciens (strains FD-1 or B34b) containing residual cellulose, bacterial cells and their associated adhesins, were examined for their ability to serve as components of adhesives for plywood fabrication. The residues contained differing amounts of protein (0.4–4.2% of dry weight), but the ratios of monosaccharides recovered following two-stage treatment of the residue with detergent (pH 7) and TFA were similar for all three strains (0.71 glucose:0.18 xylose:0.08 mannose:0.02 galactose), suggesting similarities in exopolysaccharide composition. Three-ply aspen panels prepared with fermentation residues (FR) displayed better shear strength and wood failure under dry conditions than following a vacuum/pressure/soak/dry treatment, but adhesive properties were inferior to those prepared with conventional phenol-formaldehyde (PF) adhesives. However, panels prepared by incorporating the R. albus 7 FR into PF formulation, at 73% by weight of the total adhesive, exhibited shear strength and wood failure similar to that obtained with PF adhesive alone. Use of residues from fermentations by these bacteria as components of adhesives may add value to biomass fermentations aimed primarily at producing ethanol and other chemical products.Mention of specific products is for informational purposes only and does not imply an endorsement or warranty by the United States Department of Agriculture, over similar products that may also be suitable.  相似文献   

17.
This study investigated the production of triacylglycerols in cells of the wild type of Escherichia coli and of a strain with a deleted diacylglycerol kinase gene (dgkA). By overexpression of atfA from Acinetobacter baylyi ADP1 and fadD from E. coli in the dgkA deletion mutant, cellular contents of up to 4.9 % (w/w) triacylglycerols could be achieved in batch cultivation. Furthermore, heterologous expression of atfA relieves the negative effects of dgkA deletion on growth. Process optimization and fed-batch fermentation resulted in the production of 530 mg l ?1 triacylglycerols and a maximal content of 8.5 % (w/w) triacylglycerols of the cell dry mass. This clearly exceeded all previous results concerning triacylglycerol production in E. coli. Furthermore, the production of extracellular free fatty acids and fatty acid ethyl esters was investigated. Like triacylglycerols, both products are potential biofuels, and we show their continuous production in a repeated batch process, with recovery of the production cells.  相似文献   

18.
We have investigated the potential of new methods of analysis of sedimentation velocity (SV) analytical ultracentrifugation (AUC) for the characterization of detergent-solubilized membrane proteins. We analyze the membrane proteins Ca++-ATPase and ExbB solubilized with DDM (dodecyl-β-d-maltoside). SV is extremely well suited for characterizing sample heterogeneity. DDM micelles (s 20w?=?3.1 S) and complexes (Ca++-ATPase: s 20w?=?7.3 S; ExbB: s 20w?=?4 S) are easily distinguished. Using different detergent and protein concentrations, SV does not detect any evidence of self-association for the two proteins. An estimate of bound detergent of 0.9 g/g for Ca++-ATPase and 1.5 g/g for ExbB is obtained from the combined analysis of SV profiles obtained using absorbance and interference optics. Combining s 20w with values of the hydrodynamic radius, R s?=?5.5 nm for Ca++-ATPase or R s?=?3.4 nm for ExbB, allows the determination of buoyant molar masses, M b. In view of their M b and composition, Ca++-ATPase and ExbB are monomers in our experimental conditions. We conclude that one of the main advantages of SV versus other techniques is the possibility to ascertain the homogeneity of the samples and to focus on a given complex even in the presence of other impurities or aggregates. The relative rapidity of SV measurements also allows experiments on unstable samples.  相似文献   

19.
Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI–LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI–LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI–LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI–LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~?12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~?675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.  相似文献   

20.
In spite of numerous advantages on operating fermentation at elevated temperatures, very few thermophilic bacteria with polyhydroxyalkanoates (PHAs)-accumulating ability have yet been found in contrast to the tremendous mesophiles with the same ability. In this study, a thermophilic poly(3-hydroxybutyrate) (PHB)-accumulating bacteria (Chelatococcus daeguensis TAD1), isolated from the biofilm of a biotrickling filter used for NOx removal, was extensively investigated and compared to other PHB-accumulating bacteria. The results demonstrate that C. daeguensis TAD1 is a growth-associated PHB-accumulating bacterium without obvious nutrient limitation, which was capable of accumulating PHB up to 83.6 % of cell dry weight (CDW, w/w) within just 24 h at 45 °C from glucose. Surprisingly, the PHB production of C. daeguensis TAD1 exhibited strong tolerance to high heat stress as well as nitrogen loads compared to that of other PHB-accumulating bacterium, while the optimal PHB amount (3.44?±?0.3 g l?1) occurred at 50 °C and C/N?=?30 (molar) with glucose as the sole carbon source. In addition, C. daeguensis TAD1 could effectively utilize various cheap substrates (starch or glycerol) for PHB production without pre-hydrolyzed, particularly the glycerol, exhibiting the highest product yield (Y P/S, 0.26 g PHB per gram substrate used) as well as PHB content (80.4 % of CDW, w/w) compared to other carbon sources. Consequently, C. daeguensis TAD1 is a viable candidate for large-scale production of PHB via utilizing starch or glycerol as the raw materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号