首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although winter conditions play a major role in determining the productivity of the western Antarctic Peninsula (WAP) waters for the following spring and summer, a few studies have dealt with the seasonal variability of microorganisms in the WAP in winter. Moreover, because of regional warming, sea-ice retreat is happening earlier in spring, at the onset of the production season. In this context, this study describes the dynamics of the marine microbial community in the Melchior Archipelago (WAP) from fall to spring 2006. Samples were collected monthly to biweekly at four depths from the surface to the aphotic layer. The abundance and carbon content of bacteria, phytoplankton and microzooplankton were analyzed using flow cytometry and inverted microscopy, and bacterial richness was examined by PCR–DGGE. As expected, due to the extreme environmental conditions, the microbial community abundance and biomass were low in fall and winter. Bacterial abundance ranged from 1.2 to 2.8 × 105 cells ml?1 showing a slight increase in spring. Phytoplankton biomass was low and dominated by small cells (<2 μm) in fall and winter (average chlorophyll a concentration, Chl-a, of, respectively, 0.3 and 0.13 μg l?1). Phytoplankton biomass increased in spring (Chl-a up to 1.13 μg l?1), and, despite potentially adequate growth conditions, this rise was small and phytoplankton was still dominated by small cells (2–20 μm). In addition, the early disappearing of sea-ice in spring 2006 let the surface water exposed to ultraviolet B radiations (UVBR, 280–320 nm), which seemed to have a negative impact on the microbial community in surface waters.  相似文献   

2.
The seasonal variations of limnological (water temperature, light availability, turbidity, and chlorophyll a concentration) parameters were recorded continuously from January 2004 to February 2005 at two freshwater lakes: Oyako-ike and Hotoke-ike, Sôya Coast, East Antarctica. Water was in a liquid phase throughout the year, with temperatures ranging from 0 to 10°C. The maximum photosynthetically active radiation in Lake Oyako-ike was 23.16 mol m?2 day?1 (at 3.8 m) and Hotoke-ike was 53.01 mol m?2 day?1 (at 2.2 m) in summer, and chlorophyll a concentration ranged from ca. 0.5 to 2.5 μg L?1 (Oyako-ike) and from ca. 0.1 to 0.8 μg L?1 (Hotoke-ike) during the study period. Increase in chlorophyll a fluorescence occurred under dim-light conditions when the lakes were covered with ice in spring and autumn, but the signals were minimum in ice-free summer in both the lakes. During spring and summer, as a result of decreasing snow cover, the chlorophyll a concentration similarly decreased when PAR was relatively high, following periods of heavy winds. The autumnal and spring increase occurred under different PAR levels (ca. 20-fold and 90-fold stronger, respectively, in autumn in both the lakes). Differences in the autumn and spring increases suggest that the spring algal community is more shade-adapted than the autumn algal community. Antarctic phytoplankton appears especially adapted to low-light levels and inhibited by strong light regimes.  相似文献   

3.
Phosphorus has been considered as one of the most important limiting resources of large-scale production of microalgal biofuel. The approaches to increase biomass yield per phosphorus, along with the lipid accumulation properties of Scenedesmus sp. LX1, were investigated in this study. It was found that practical biomass yield per phosphorous was reduced with the increase of initial phosphorus (P) concentration, but increased with light intensity. The highest biomass yield per P of 4,500 kg-biomass/kg-P was achieved at initial phosphorus concentration of 0.05 mg?·?L?1 under the light intensity of 320 μmol photon?·?m?2?·?s?1. Furthermore, the lipid content per biomass and triacylglycerols (TAGs) content per lipid were found to be positively correlated to biomass yield per P. With the biomass yield increased from 2,800 kg-biomass/kg-P to 4,500 kg-biomass/kg-P, the lipid content per microalgal biomass and TAG content per lipid increased from 18.7 % to 35.0 % and from 69.5 % to 83.0 %. These results suggested a possible approach to achieve high biomass production and high lipid content simultaneously.  相似文献   

4.
Mesozooplankton were sampled at shelf and oceanic stations close to South Georgia, South Atlantic during austral autumn 2004 with a Longhurst Hardy Plankton Recorder. Onshelf biomass ranged from 2.18 to 5.75 g DM m?2 (0–200 m) and was dominated by the small euphausiid Thysanöessa spp. At the oceanic stations (10.57–14.71 g DM m?2, 0–1,000 m) large calanoids, principally Rhincalanus gigas comprised ~47–52% of biomass. Here Calanus simillimus was still active and reproducing in surface waters (0–11.2 eggs fem day?1) but R. gigas and Calanoides acutus were largely resident in the warm deep water and undergoing their seasonal descent. A comparison with spring and summer data indicated increased abundance and biomass from spring through to summer followed by a decline towards autumn particularly over the shelf. Autumn values in oceanic waters differed little from summer. Mesozooplankton biomass in the surface 200 m of the oceanic stations as a proportion of that found in the top 1,000 m ranged from 63 to 78% of the total in spring and 62–73% in summer, but was only 23–29% of the total in this study, following redistribution down the water column.  相似文献   

5.
Benthic microalgae are known to perform important ecosystem functions in shallow lakes. As such it is important to understand the environmental variables responsible for regulating community structure, positioning and biomass. We tested the hypothesis that the positioning (across a depth gradient of 2–22 m overlying water depth) and relative biomass (determined using bulk and lens tissue harvested chlorophyll (Chl) a concentrations) of the epipelon community would vary independently with season (12 monthly samples) and across natural gradients of light and habitat disturbance relative to the total benthic algal community (i.e. all viable microalgae in the surface sediments) in a shallow eutrophic loch. Total sediment microalgal Chl a concentrations (TS-Chl; range: 5–874 μg Chl a g−1 dw) were highest in winter and in the deepest site (20 m overlying water depth), apparently as a result of phytoplanktonic settling and sediment focussing processes. Epipelic Chl a concentrations (Epi-Chl; range: <0.10–6.0 μg Chl a g−1 dw) were highest in winter/spring, a period when water clarity was highest and TS-Chl lowest. Principal components analysis highlighted strong associations between Epi-Chl and sites of intermediate depths (2.5–5.5 m) in all seasons except autumn/winter. Autumn/winter represented the season with the highest average wind speeds preceding sampling, during which the highest Epi-Chl concentrations were associated with the deepest sites. Epi-Chl was associated with intermediate light and habitat disturbance during spring/summer and summer/autumn and varied positively with habitat disturbance, only, in autumn/winter and winter/spring. The epipelon community structure also varied with depth; diatoms dominated shallow water sediments, cyanobacteria dominated deep water sediments, and sediments at sites of intermediate depth returned the highest biovolume estimates and the most diverse communities. This study has strengthened the hypothesis that the structure and biomass of benthic microalgal communities in lakes are regulated by habitat disturbance and water clarity, both of which are expected to respond to climate change and eutrophication. The degree to which these structural responses reflect functional performance requires clarification.  相似文献   

6.
The small cyclopoid copepod Oithona is widely occurring in polar areas; however, knowledge of its biology and ecology is very limited. Here, we investigate the population dynamics, vertical distribution, and reproductive characteristics of Oithona spp. from late winter to summer, in a subarctic fjord of West Greenland. During winter–early spring, the abundance of Oithona spp. was low (1.8 × 103 ind. m?2) and the population was mainly composed of late copepodites and adults, whereas in summer, abundance peaked and younger stages dominated (1.1 × 106 ind. m?2). In general, all stages of Oithona spp. remained in the upper 100 m, with nauplii exhibiting a shallower distribution. Although no general seasonal migration was found, a deeper distribution of the adult females in winter was observed. The mean clutch size of Oithona spp. varied from 16 to 30 eggs per female, peaking in summer. Egg production rates (EPR) were low in winter–early spring (0.13 ± 0.03 eggs female?1 day?1) and reached maximum values in summer (1.6 ± 0.45 eggs female?1 day?1). EPR of Oithona spp. showed a significantly positive relationship with both temperature and protozooplankton biomass, and the development of the population seemed to be appreciably affected by temperature. Oithona spp. remained active throughout the study, stressing the key importance of these small copepods in high-latitude ecosystems, especially in periods when larger copepods are not present in the surface layer.  相似文献   

7.
In the last 40 years, the shallow steppe lake, Neusiedler See, was ice covered between 0 and 97 days. The North Atlantic Oscillation (NAO) as well as the Mediterranean Oscillation affected the lake and its conditions during winter. Both climate indices correlated negatively with the duration of ice cover and the timing of ice-out. Average winter phytoplankton biomass increased from less than 0.2 (0.05–0.84) mg FM l?1 in the late 1960s/beginning of 1970s to 3.1 (1.72–5.61) mg FM l?1 in the years 2001–2004. The increase in annual winter biomass of phytoplankton was associated with a significant shift in the composition of the algal assemblage. In the winter 1997/1998, diatoms contributed between 40 and 80% to the phytoplankton biomass while in 2006/2007 cyanoprokaryotes contributed 46%. Mean chlorophyll-a concentrations during winter were significantly correlated with those of total phosphorus (Ptot). Together with cold-water species (rotifer Rhinoglena fertöensis), perennial, eurythermal ones (copepod Arctodiaptomus spinosus) contributed to the zooplankton community. High zooplankton numbers were encountered when rotifers, particularly when densities of Rhinoglena fertöensis were high (r 2 = 0.928). Zooplankton abundance and biomass varied from year to year but correlated positively with Chl-a (biomass ? r 2 = 0.69; numbers ? r 2 = 0.536). Winter zooplankton populations were primarily influenced by winter conditions, but in early winter also by survival of autumn populations, i.e., the more adults of Arctodiaptomus spinosus survived into winter, the higher was the zooplankton biomass in early winter. Phyto- and zooplankton dynamics in shallow lakes of the temperate region seem to critically depend on the biomass in autumn and on winter conditions, specifically on ice conditions and thus are related to climate signals such as the NAO.  相似文献   

8.
Various local factors influence the decision of when to harvest grassland biomass for renewable energy including climate, plant composition, and phenological stage. However, research on biomass yield and quality related to a wide range of harvest timing from multiple environments and years is lacking. Our objective was to determine the effect of harvest timing on yield, moisture, and mineral concentration of switchgrass (Panicum virgatum L.) and native polyculture biomass. Biomass was harvested on 56 unique days ranging from late summer (2 September) to late spring (20 May) spanning 3 years (2009 to 2011) and seven sites in Minnesota, USA. Biomass yield varied considerably by location and year (range?=?0.7–11.7 Mg ha?1) and was lowest during the winter. On average, there was no difference in biomass yield harvested in early fall compared to late spring. Biomass moisture content was lowest in late spring, averaging 156 g kg?1 across all locations and years when harvested after 1 April. Biomass N concentration did not change across harvest dates; however, P and K concentrations declined dramatically from late summer to late spring. Considering the economic costs of replacing exported minerals and changes in revenues from biomass yield through time, biomass harvest should be conducted in late summer–early fall or late spring and avoided in winter. However, biomass managed for gasification should be harvested in spring to reduce concentrations of minerals that lead to slagging and fouling. Changes in biomass yield and quality through time were similar for switchgrass and native polyculture biomass. These biomass harvest recommendations are made from data spanning multiple years and locations and should be applicable to various growing conditions across the Upper Midwest.  相似文献   

9.
A new green microalgal species was isolated, identified and investigated for its biomass production and nutrient removal efficiency in dairy and winery wastewater in this study. The 18S rRNA-based phylogenetic analysis revealed that this new strain is a Diplosphaera sp. and was designated strain MM1. The growth of this strain was evaluated in different diluted dairy and winery wastewaters. The highest algal biomass production (up to 2.3 g L?1) was obtained in dairy wastewater (D3; dairy wastewater 1:2 deionised water) after 14 days of culture. However, for winery wastewater, the highest algal biomass production (up to 1.46 g L?1) was obtained in wastewater combination W2 (winery wastewater 1:1 deionised water) after 14 days of culture. Turbid dairy wastewater with high concentration of nitrogen and phosphorous slowed down the initial growth of the alga. However, at the end of day 14, biomass production was nearly twofold higher than that of winery wastewater. The findings from both types of wastewater suggest that Diplosphaera sp. MM1 has potential for its application in generating biomass with simultaneous remediation of nutrient-rich wastewater.  相似文献   

10.
为探究大陈岛海域浮游动物群落的季节变化,于2020年9月(夏季)、11月(秋季)和2021年1月(冬季)、4月(春季)分别对大陈岛海域的浮游动物及环境因子进行了4个航次的调查。结果共鉴定浮游动物90种,包括浮游幼体15类,其中夏季种类数最多(68种),冬季最少(20种),常见的优势种有:百陶箭虫(Sagitta bedoti)、微刺哲水蚤(Canthocalanus pauper)、中华哲水蚤(Calanus sinicus)等12种(Y>0.02)。浮游动物的年平均丰度和生物量分别为(153.40±214.73)个/m3、(411.93±561.76) mg/m3,二者存在明显的季节变化,平均丰度为春季(380.17±296.14)个/m3>夏季(135.30±112.59)个/m3>秋季(67.88±90.52)个/m3>冬季(25.30±19.11)个/m3;平均生物量为夏季(895.01±802.54) mg/m3>春季(623.39±358.73) mg/m3>秋季(91.08±82.36) mg/m3>冬季(45.96±84.95) mg/m3。多样性指数(H'')和均匀度指数(J'')的年平均值分别为1.71±0.96和0.53±0.20,均表现出夏秋季较高、冬春季较低的特征。聚类分析结果表明调查海域的浮游动物可划分为夏季类群、秋季类群、冬季类群和春季类群4组类群。Pearson相关性分析和冗余分析(RDA)结果表明,海水温度、盐度、叶绿素a浓度是影响大陈岛海域浮游动物群落特征的重要环境因素。此外,夏季大陈岛海域水母类浮游动物暴发的现象值得关注。研究结果将为大陈岛海域的生物多样性保护及渔业资源可持续开发利用提供可参考的数据资料。  相似文献   

11.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

12.
Periphyton biomass, nutrient dynamics in the biomass, and species composition were studied in two Florida Everglades sloughs from August 1991 to August 1992. Periphyton biomass on macrophytes was strongly season-dependent. Maximum biomasses, 1180, 161, and 59 g dry mass.m?2 on Eleocharis vivipara, E. cellulosa, and Nymphaea odorata, respectively, occurred in summer and early autumn; winter and spring periphyton biomass was very low (practically not measurable). Periphyton was dominated by blue-green algae (cyanobacteria) during the summer and autumn; diatoms dominated during the winter and spring. Green algae occurred mostly during the summer and autumn, but their growth was sparse and did not contribute significantly to periphyton biomass. Nitrogen-to-phosphorus ratios in the periphyton were very high (59–121:1), suggesting phosphorus limitation of periphyton growth. The periphyton contained large concentrations of calcium (up to 22.3% on dry mass basis) especially in late summer and autumn.  相似文献   

13.
Reed canarygrass, Phalaris arundinacea L., produces high biomass yields in cool climates and wetlands. The number and timing of harvests during a growing season directly affect biomass yield and biofuel quality. In order to determine optimum harvest management, seven cultivars of reed canarygrass were planted in field experiments at Ames, IA; McNay, IA; and Arlington, WI in the upper Midwestern USA and harvested once in autumn or in winter, twice in spring + autumn or spring + winter, or three times during the season as hay. Biomass yield varied considerably among harvest treatments, locations, and years, ranging up to 12.6 Mg ha?1. Dry matter percentage ranged from 37% for spring-harvested biomass to 84% for overwintered biomass. The three harvest hay and two harvest spring + autumn managements produced the highest biomass yield compared to other systems, but the advantage, if any, of hay management was small and probably does not justify the cost of additional fieldwork. More mature biomass, such as that found in the single harvest systems, had higher fiber concentrations. Overwintered biomass had superior biofuel quality, being low in P, K, S, and Cl and high in cell wall concentration. However, winter harvest systems had lower yield than autumn harvest and in some years, no harvest was possible due to lodging from snow compaction. The main limitation of a two harvest system is the high moisture content of the late spring/early summer biomass.  相似文献   

14.
Switchgrass (Panicum virgatum L.) may have value as forage and a bioenergy feedstock. Our objective was to evaluate how harvest system and N fertilizer rates affected biomass yield and nutrient composition of young stands of switchgrass (cv. Alamo) in the southern Great Plains, USA. Nitrogen fertilization increased biomass yields from 10.4, 10.8, and 12.2 Mg ha?1 at 0 kg N?ha?1 to 13.7, 14.6, and 21.0 Mg ha?1 at 225 kg N?ha?1 when harvested after seed set (October), after frost (December), and twice per year after boot stage (July) and frost, respectively. Nutrient concentrations and removal were generally twice as great when biomass was harvested twice versus once per year. Precipitation strongly affected biomass yields across the two years of these experiments. When late-summer precipitation is available to support regrowth in this environment, harvesting switchgrass twice per year will result in greater biomass yields. Harvesting twice per year, however, will increase fertilization requirements and reduce feedstock biomass quality. Switchgrass harvested during mid-summer after boot stage was of poor forage quality. To have value as a dual-purpose forage and bioenergy feedstock, switchgrass would need to be utilized during spring to early summer while in a vegetative stage.  相似文献   

15.
The monthly productivity, standing stock, plant size and density of Ecklonia radiata (C.Ag.) J. Agardh is presented for a 2-yr period. Annual production was 20.7 kg wet wt · m?2 with maximum growth of 0.9% per day in spring (October–December) and minimum growth of 0.2% per day in late summer. (March–April). A close negative correlation was found between spring and summer growth and water temperature. Maximum biomass (18 kg wet wt · m ?2) did not coincide with maximum growth but occurred in late summer. Minimum biomass (6 kg wet wt · m ?2) occurred in winter. An estimate of erosion of plant material from the kelp bed was made from these data and a hypothesis concerning the ultimate destination of eroded and removed kelp plants was formulated.  相似文献   

16.
Rapid economic development in China’s Lake Taihu basin during the past four decades has accelerated nitrogen (N) and phosphorus (P) loadings to the lake. This has caused a shift from mesotrophic to hypertrophic conditions, symptomized by harmful cyanobacterial blooms (CyanoHABs). The relationships between phytoplankton biomass as chlorophyll a (Chla) and nutrients as total nitrogen (TN) and total phosphorus (TP) were analyzed using historical data from 1992 to 2012 to link the response of CyanoHAB potential to long-term nutrient changes. Over the twenty year study period, annual mean Chla showed significantly positive correlations with both annual mean TN and TP (P < 0.001), reflecting a strong phytoplankton biomass response to changes in nutrient inputs to the lake. However, phytoplankton biomass responded slowly to annual changes in TN after 2002. There was not a well-defined or significant relationship between spring TN and summertime Chla. The loss of a significant fraction of spring N loading due to denitrification likely weakened this relationship. Bioavailability of both N and P during the summer plays a key role in sustaining cyanobacterial blooms. The frequency of occurrence of bloom level Chla (>20 μg L?1) was compared to TN and TP to determine nutrient-bloom thresholds. A decline in bloom risk is expected if TN remains below 1.0 mg L?1 and TP below 0.08 mg L?1.  相似文献   

17.
Weather variations change stream hydrological conditions, affecting the stream function. A seasonal study in three well-conserved first-order Pampean streams was carried out to test the hypothesis that rainfalls are the main drivers of whole-stream metabolism, through their effects on hydrology. We estimated the stream metabolism and metabolic contribution of six relevant communities (angiosperms, macroalgae, seston, epiphyton, epipelon, and hyporheos) during late spring, summer, and winter and examined the relation between gross primary production (GPP) and photosynthetic active radiation (PAR). Our results showed that the decrease in available streambed light due to the dissolved organic carbon after rainfalls was the main factor related to the decrease in the ecosystem and community metabolisms. For instance, GPP oscillated from ~10 gO2 m?2 d?1 in early spring (low flows) to ~3 gO2 m?2 d?1 in summer (high flows). Ecosystem respiration (ER) was less sensitive than GPP to rainfalls due to the increase of hyporheic respiration. Rainfalls also caused a significant loss of downstream macroalgal biomass. At a day scale, the high PAR of late spring and summer saturated GPP during the afternoon, and the low temperature of winter mornings constrained GPP. Hence, the knowledge of weather changes is key to understanding the main hydrological drivers of stream function.  相似文献   

18.
For the design of a large field of vertical flat plate photobioreactors (PBRs), the effect of four design parameters—initial biomass concentration, optical path length, spacing, and orientation of PBRs—on the biochemical composition and productivity of Chlorella zofingiensis was investigated. A two-stage batch process was assumed in which inoculum is generated under nitrogen-sufficient conditions, followed by accumulation of lipids and carbohydrates in nitrogen-deplete conditions. For nitrogen-deplete conditions, productivity was the most sensitive to initial biomass concentration, as it affects the light availability to individual cells in the culture. An initial areal cell concentration of 50 g m?2 inoculated into 3.8-cm optical path PBR resulted in the maximum production of lipids (2.42?±?0.02 g m?2 day?1) and carbohydrates (3.23?±?0.21 g m?2 day?1). Productivity was less sensitive to optical path length. Optical path lengths of 4.8 and 8.4 cm resulted in similar areal productivities (biomass, carbohydrate, and lipid) that were 20 % higher than a 2.4-cm optical path length. Under nitrogen-sufficient conditions, biomass productivity was 48 % higher in PBRs facing north–south during the winter compared to east–west, but orientation had little influence on biomass productivity during the spring and summer despite large differences in insolation. An optimal spacing could not be determined based on growth alone because a tradeoff was observed in which volumetric and PBR productivity increased as space between PBRs increased, but land productivity decreased.  相似文献   

19.
The objective of this study was to assess the relationship between river water quality and the distribution of benthic macroinvertebrate communities in the Haraz River in Iran. Using a surber net sampler, benthic macroinvertebrate communities along the stream was sampled in wet and dry seasons of 2015 at nine stations with three replications. The physicochemical water quality parameters were measured in the field by water checker. Hilsenhoff biotic Indices, Shannon Wiener Diversity Indices, Average Score per Taxon (ASPT) Index and Pielou Evenness Index were applied to carry out a biological assessment of water quality. A total of 3781 (spring 769, summer 1092, autumn 1095 and winter 825) benthic macroinvertebrate specimens belonging to 4 orders, 11 classes and 16 families were identified. The lowest number of taxa was recorded in spring while the highest was recorded in autumn. Station 9 had the lowest number of taxa while the highest number of taxa was recorded at station 3. The average values (±SD) of the water quality parameters were temperature 14.75?±?4.38 °C, pH 7.93?±?0.62, water flow 14.11?±?9.04 m3 s?1, electric conductivity 532.75?±?161.35 μmohs cm?1, total dissolved solids 296.61?±?76.21 mg L?1, salinity 0.28?±?0.07 mg L?1, turbidity 580.77?±?149.92 NTU and dissolved oxygen 8.08?±?0.75 mg L?1. The assessment of stations 1 to 6 indicated that water quality conditions were suitable. In addition, substantial level of organic pollution was observed in stations 7 and 8. In station 9 water quality was fairly poor, requiring a more favourable management based on the capacity of the self-purification of the Haraz River.  相似文献   

20.
Temperature and light intensity effects on biomass and lipid production were investigated in Ettlia oleoabundans to better understand some fundamental properties of this potentially useful but poorly studied microalgal species. E. oleoabundans entered dormant state at 5 °C, showed growth at 10 °C, and when exposed to light at 70 μmol photons per square meter per second at 10 °C, cells reached a biomass concentration of >2.0 g?L?1 with fatty acid methyl esters of 11.5 mg?L?1. Highest biomass productivity was at 15 °C and 25 °C regardless of light intensity, and accumulation of intracellular lipids was stimulated by nitrate depletion under these conditions. Although growth was inhibited at 35 °C, at 130 μmol photons per square meter per second lipid content reached 10.37 mg?L?1 with fatty acid content more favorable to biodiesel dominating; this occurred without nitrate depletion. In a two-phase temperature shift experiment at two nitrate levels, cells were shifted after 21 days at 15 °C to 35 °C for 8 days. Although after the shift growth continued, lipid productivity per cell was less than that in the 35 °C cultures, again without nitrate depletion. This study showed that E. oleoabundans grows well at low temperature and light intensity, and high temperature can be a useful trigger for lipid accumulation independent of nitrate depletion. This will prove useful for improving our knowledge about lipid production in this and other oleaginous algae for modifying yield and quality of algal lipids being considered for biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号