共查询到20条相似文献,搜索用时 15 毫秒
1.
Responsiveness to Exogenous Camp of a Saccharomyces Cerevisiae Strain Conferred by Naturally Occurring Alleles of Pde1 and Pde2 总被引:2,自引:0,他引:2 下载免费PDF全文
H. Mitsuzawa 《Genetics》1993,135(2):321-326
The Saccharomyces cerevisiae strain P-28-24C, from which cAMP requiring mutants derived, responded to exogenously added cAMP. Upon the addition of cAMP, this strain showed phenotypes shared by mutants with elevated activity of the cAMP pathway. Genetic analysis involving serial crosses of this strain to a strain with another genetic background revealed that the responsiveness to cAMP results from naturally occurring loss-of-function alleles of PDE1 and PDE2, which encode low and high affinity cAMP phosphodiesterases, respectively. In addition, P-28-24C was found to carry a mutation conferring slow growth that lies in CYR1, which encodes adenylate cyclase, and the slow growth phenotype caused by the cyr1 mutation was suppressed by the pde2 mutation. Therefore P-28-24C is fortuitously a pde1 pde2 cyr1 triple mutant. Responsiveness to cAMP conferred by pde mutations suggests that S. cerevisiae cells are permeable to cAMP to some extent and that the apparent absence of effect of exogenously added cAMP on wild-type cells is due to immediate degradation by cAMP phosphodiesterases. 相似文献
2.
In red-white sectored colonies of Saccharomyces cerevisiae, derived from mitotic cells grown to stationary phase and irradiated with a light dose of x-rays, all of the segregational products of gene conversion and crossing over can be ascertained. Approximately 80% of convertants are induced in G1, the remaining 20% in G2. Crossing over, in the amount of 20%, is found among G1 convertants but most of the crossovers are delayed until G2. About 20% of all sectored colonies had more than one genotype in one or the other sector, thus confirming the hypothesis that conversion also occurs in G2. The principal primary event in G2 conversion is a single DNA heteroduplex. It is suggested that the close contact that this implies carries over to G2 when crossing over and a second round of conversion occurs. 相似文献
3.
4.
Saccharomyces Cerevisiae Rad52 Alleles Temperature-Sensitive for the Repair of DNA Double-Strand Breaks 下载免费PDF全文
We have screened for mutations of the Saccharomyces cerevisiae RAD52 gene which confer a temperature-sensitive (ts) phenotype with respect to either the repair of DNA lesions caused by methyl methanesulfonate (MMS) or the recombination of an intrachromosomal recombination reporter. We were readily able to isolate alleles ts for the repair of lesions caused by MMS but were unable to find alleles with a severe ts deficiency in intrachromosomal recombination. We extensively characterized four strains conferring ts growth on MMS agar. These strains also exhibit ts survival when exposed to γ-radiation or when the HO endonuclease is constitutively expressed. Although none of the four alleles confers a severe ts defect in intrachromosomal recombination, two confer significant defects in tests of mitotic, interchromosomal recombination carried out in diploid strains. The mutant diploids sporulate, but the two strains with defects in interchromosomal recombination have reduced spore viability. Meiotic recombination is not depressed in the two diploids with reduced spore viability. Thus, in the two strains with reduced spore viability, defects in mitotic and meiotic recombination do not correlate. Sequence analysis revealed that in three of the four ts alleles the causative mutations are in the first one-third of the open reading frame while the fourth is in the C-terminal third. 相似文献
5.
Mitotic Transmission of Artificial Chromosomes in Cdc Mutants of the Yeast, Saccharomyces Cerevisiae 总被引:17,自引:3,他引:14 下载免费PDF全文
In the yeast, Saccharomyces cerevisiae, cell division cycle (CDC) genes have been identified whose products are required for the execution of different steps in the cell cycle. In this study, the fidelity of transmission of a 14-kb circular minichromosome and a 155-kb linear chromosome fragment was examined in cell divisions where specific CDC products were temporarily inactivated with either inhibitors, or temperature sensitive mutations in the appropriate CDC gene. All of the cdc mutants previously shown to induce loss of endogenous linear chromosomes also induced loss of a circular minichromosome and a large linear chromosome fragment in our study (either 1:0 or 2:0 loss events). Therefore, the efficient transmission of these artificial chromosomes depends upon the same trans factors that are required for the efficient transmission of endogenous chromosomes. In a subset of cdc mutants (cdc6, cdc7 and cdc16), the rate of minichromosome loss was significantly greater than the rate of loss of the linear chromosome fragment, suggesting that a structural feature of the minichromosome (nucleotide content, length or topology) makes the minichromosome hypersensitive to the level of function of these CDC gene products. In another subset of cdc mutants (cdc7 and cdc17), the relative rate of 1:0 events to 2:0 events differed for the minichromosome and chromosome fragment, suggesting that the type of chromosome loss event observed in these mutants was dependent upon chromosome structure. Finally, we show that 2:0 events for the minichromosome can occur by both a RAD52 dependent and RAD52 independent mechanism. These results are discussed in the context of the molecular functions of the CDC products. 相似文献
6.
Five spontaneous amplifications of the ADH4 gene were identified among 1,894 antimycin A-resistant mutants isolated from a diploid strain after growth at 15 degrees. Four of these amplifications are approximately 40-kb linear extrachromosomal palindromes carrying telomere homologous sequences at each end similar to a previously isolated amplification. ADH4 is located at the extreme left end of chromosome VII, and the extrachromosomal fragments appear to be the fusion of two copies of the end of this chromosome. The fifth amplification is a chromosomal amplification carrying an extra copy of ADH4 on both homologs of chromosome VII. These results suggest that the ADH system can be used to study amplification in Saccharomyces cerevisiae. 相似文献
7.
8.
The Sup35 Omnipotent Suppressor Gene Is Involved in the Maintenance of the Non-Mendelian Determinant [Psi(+)] in the Yeast Saccharomyces Cerevisiae 总被引:11,自引:2,他引:11 下载免费PDF全文
M. D. Ter-Avanesyan A. R. Dagkesamanskaya V. V. Kushnirov V. N. Smirnov 《Genetics》1994,137(3):671-676
The SUP35 gene of yeast Saccharomyces cerevisiae encodes a 76.5-kD ribosome-associated protein (Sup35p), the C-terminal part of which exhibits a high degree of similarity to EF-1α elongation factor, while its N-terminal region is unique. Mutations in or overexpression of the SUP35 gene can generate an omnipotent suppressor effect. In the present study the SUP35 wild-type gene was replaced with deletion alleles generated in vitro that encode Sup35p lacking all or a part of the unique N-terminal region. These 5'-deletion alleles lead, in a haploid strain, simultaneously to an antisuppressor effect and to loss of the non-Mendelian determinant [psi(+)]. The antisuppressor effect is dominant while the elimination of the [psi(+)] determinant is a recessive trait. A set of the plasmid-borne deletion alleles of the SUP35 gene was tested for the ability to maintain [psi(+)]. It was shown that the first 114 amino acids of Sup35p are sufficient to maintain the [psi(+)] determinant. We propose that the Sup35p serves as a trans-acting factor required for the maintenance of [psi(+)]. 相似文献
9.
Mdp1, a Saccharomyces Cerevisiae Gene Involved in Mitochondrial/Cytoplasmic Protein Distribution, Is Identical to the Ubiquitin-Protein Ligase Gene Rsp5 总被引:5,自引:0,他引:5 下载免费PDF全文
Alteration of the subcellular distribution of Mod5p-I, a tRNA modification enzyme, member of the sorting isozyme family, affects tRNA-mediated nonsense suppression. Altered suppression efficiency was used to identify MDP genes, which, when mutant, change the mitochondrial/cytosolic distribution of Mod5p-I,KR6. MDP2 is the previously identified VRP1, which encodes verprolin, required for proper organization of the actin cytoskeleton. MDP3 is identical to PAN1, which encodes a protein involved in initiation of translation and actin cytoskeleton organization. We report here the cloning and characterization of wild-type and mutant MDP1 alleles and the isolation and characterization of a multicopy suppressor of mdp1 mutations. MDP1 is identical to RSP5, which encodes ubiquitin-protein ligase, and mdp1 mutations are suppressed by high copy expression of ubiquitin. All four characterized mdp1 mutations cause missense changes located in the hect domain of Rsp5p that is highly conserved among ubiquitin-protein ligases. In addition to its well-known function in protein turnover, ubiquitination has been proposed to play roles in subcellular sorting of proteins via endocytosis and in delivery of proteins to peroxisomes, the endoplasmic reticulum and mitochondria. mdp1, as well as mdp2/vrp1 and mdp3/pan1 mutations, affect endocytosis. Further, mdp1 mutations show synthetic interactions with mdp2/vrp1 and mdp3/pan1. Identification of MDP1 as RSP5, along with our previous identification of MDP2/VRP1 and MDP3/PAN1, implicate interactions of the ubiquitin system, the actin cytoskeleton and protein synthesis in the subcellular distribution of proteins. 相似文献
10.
11.
Molecular and Genetic Analysis of the Snf7 Gene in Saccharomyces Cerevisiae 总被引:4,自引:0,他引:4 下载免费PDF全文
Mutations in the SNF7 gene of Saccharomyces cerevisiae prevent full derepression of the SUC2 (invertase) gene in response to glucose limitation. We report the molecular cloning of the SNF7 gene by complementation. Sequence analysis predicts that the gene product is a 27-kDa acidic protein. Disruption of the chromosomal locus causes a fewfold decrease in invertase derepression, a growth defect on raffinose, temperature-sensitive growth on glucose, and a sporulation defect in homozygous diploids. Genetic analysis of the interactions of the snf7 null mutation with ssn6 and spt6/ssn20 suppressor mutations distinguished SNF7 from the SNF2, SNF5 and SNF6 genes. The snf7 mutation also behaved differently from mutations in SNF1 and SNF4 in that snf7 ssn6 double mutants displayed a synthetic phenotype of severe temperature sensitivity for growth. We also mapped SNF7 to the right arm of chromosome XII near the centromere. 相似文献
12.
Saccharomyces Cerevisiae Null Mutants in Glucose Phosphorylation: Metabolism and Invertase Expression 总被引:7,自引:1,他引:7 下载免费PDF全文
A congenic series of Saccharomyces cerevisiae strains has been constructed which carry, in all combinations, null mutations in the three genes for glucose phosphorylation: HXK1, HXK2 and GLK1, coding hexokinase 1 (also called PI or A), hexokinase 2 (PII or B), and glucokinase, respectively: i.e., eight strains, all of which grow on glucose except for the triple mutant. All or several of the strains were characterized in their steady state batch growth with 0.2% or 2% glucose, in aerobic as well as respiration-inhibited conditions, with respect to growth rate, yield, and ethanol formation. Glucose flux values were generally similar for different strains and conditions, provided they contained either hexokinase 1 or hexokinase 2. And their aerobic growth, as known for wild type, was largely fermentative with ca. 1.5 mol ethanol made per mol glucose used. The strain lacking both hexokinases and containing glucokinase was an exception in having reduced flux, a result fitting with its maximal rate of glucose phosphorylation in vitro. Aerobic growth of even the latter strain was largely fermentative (ca. 1 mol ethanol per mol glucose). Invertase expression was determined for a variety of media. All strains with HXK2 showed repression in growth on glucose and the others did not. Derepression in the wild-type strain occurred at ca. 1 mM glucose. The metabolic data do not support- or disprove-a model with HXK2 having only a secondary role in catabolite repression related to more rapid metabolism. 相似文献
13.
Large Scale Identification of Genes Involved in Cell Surface Biosynthesis and Architecture in Saccharomyces Cerevisiae 总被引:9,自引:0,他引:9 下载免费PDF全文
M. Lussier A. M. White J. Sheraton T. di-Paolo J. Treadwell S. B. Southard C. I. Horenstein J. Chen-Weiner AFJ. Ram J. C. Kapteyn T. W. Roemer D. H. Vo D. C. Bondoc J. Hall W. Wei Zhong A. M. Sdicu J. Davies F. M. Klis P. W. Robbins H. Bussey 《Genetics》1997,147(2):435-450
The sequenced yeast genome offers a unique resource for the analysis of eukaryotic cell function and enables genome-wide screens for genes involved in cellular processes. We have identified genes involved in cell surface assembly by screening transposon-mutagenized cells for altered sensitivity to calcofluor white, followed by supplementary screens to further characterize mutant phenotypes. The mutated genes were directly retrieved from genomic DNA and then matched uniquely to a gene in the yeast genome database. Eighty-two genes with apparent perturbation of the cell surface were identified, with mutations in 65 of them displaying at least one further cell surface phenotype in addition to their modified sensitivity to calcofluor. Fifty of these genes were previously known, 17 encoded proteins whose function could be anticipated through sequence homology or previously recognized phenotypes and 15 genes had no previously known phenotype. 相似文献
14.
15.
Commitment to Meiosis in Saccharomyces Cerevisiae: Involvement of the Spo14 Gene 总被引:1,自引:0,他引:1 下载免费PDF全文
This paper describes the identification, cloning and phenotypic analysis of SPO14, a new gene required for meiosis and spore formation. Studies of strains carrying a temperature-sensitive mutation or a disruption/duplication allele indicate that spo14 mutants have the unusual property of being able to return to mitotic division, even from the late stages of meiotic development. Early meiotic events, such as DNA replication and intragenic and intergenic recombination, occur normally. In contrast, later meiotic processes are defective in spo14 mutants: the meiosis I division appears to be executed at slightly depressed levels, the meiosis II division is reduced more severely, and no spores are formed. Epistasis tests using mutants defective in recombination or reductional division support these findings. Based on these data, we suggest that the SPO14 gene product is involved in the coordinate induction of late meiotic events and that this induction is responsible for the phenomenon of commitment. 相似文献
16.
Physical Lengths of Meiotic and Mitotic Gene Conversion Tracts in Saccharomyces Cerevisiae 总被引:6,自引:8,他引:6 下载免费PDF全文
Physical lengths of gene conversion tracts for meiotic and mitotic conversions were examined, using the same diploid yeast strain in all experiments. This strain is heterozygous for a mutation in the URA3 gene as well as closely linked restriction site markers. In cells that had a gene conversion event at the URA3 locus, it was determined by Southern analysis which of the flanking heterozygous restriction sites had co-converted. It was found that mitotic conversion tracts were longer on the average than meiotic tracts. About half of the tracts generated by spontaneous mitotic gene conversion included heterozygous markers 4.2 kb apart; none of the meiotic conversions included these markers. Stimulation of mitotic gene conversion by ultraviolet light or methylmethanesulfonate had no obvious effect on the size or distribution of the tracts. Almost all conversion tracts were continuous. 相似文献
17.
Identification of Reo1, a Gene Involved in Negative Regulation of Cox5b and Anb1 in Aerobically Grown Saccharomyces Cerevisiae 总被引:3,自引:0,他引:3 下载免费PDF全文
In Saccharomyces cerevisiae, the COX5a and COX5b genes constitute a small gene family that encodes two forms of cytochrome c oxidase subunit V, Va and Vb, either of which can provide a function essential for cytochrome c oxidase activity and respiration. In aerobically grown wild-type yeast cells, Va is the predominant form of subunit V. The COX5b gene alone does not produce enough Vb to support a respiration rate sufficient to allow growth on nonfermentable carbon sources. By selecting for mutations that increase the respiratory capacity of a strain deleted for COX5a, we have identified a gene that is involved in negative regulation of COX5b expression under aerobic growth conditions. Each of four independently isolated reo1 mutations are shown to be recessive, unlinked to COX5b, but dependent on COX5b for phenotypic expression. The mutations define a single complementation and linkage group: designated as REO1 for regulator of expression of oxidase. reo1 mutations increase expression of COX5b in aerobically grown cells, but not in anaerobically grown cells, where expression is already elevated. These mutations have no effect on COX5a, the other member of this small gene family which is positively regulated by heme and oxygen. The REO1 gene does play a role in repression of ANB1, a gene that is normally repressed under aerobic but not anaerobic conditions. Neither rox1 or rox3 mutations, which have previously been shown to increase ANB1 expression, are in the same complementation group as reo1 mutations. 相似文献
18.
19.
Heteroduplexes formed between genes on homologous chromosomes are intermediates in meiotic recombination. In the HIS4 gene of Saccharomyces cerevisiae, most mutant alleles at the 5' end of the gene have a higher rate of meiotic recombination (gene conversion) than mutant alleles at the 3' end of the gene. Such gradients are usually interpreted as indicating a higher frequency of heteroduplex formation at the high conversion end of the gene. We present evidence indicating that the gradient of conversion at HIS4 primarily reflects the direction of mismatch repair rather than the frequency of heteroduplex formation. We also identify a site located between the 5' end of HIS4 and the 3' end of BIK1 that stimulates heteroduplex formation at HIS4 and BIK1. 相似文献
20.
Length and Distribution of Meiotic Gene Conversion Tracts and Crossovers in Saccharomyces Cerevisiae 总被引:4,自引:7,他引:4 下载免费PDF全文
We have measured gene conversion tract length in strains of the yeast Saccharomyces cerevisiae containing three to six restriction site heterozygosities in a 9-kb interval. Tetrads containing a conversion were identified genetically by nonmendelian segregation of a marker in the middle of the interval. Gene conversions accompanied by a crossover have a tract length of 1.4 kb +/- 0.7 kb, which is indistinguishable from a tract length of 1.6 +/- 0.8 for conversions without an associated exchange. Among tetrads identified first as having a crossover in the interval, the average gene conversion tracts were apparently significantly shorter (0.71 +/- 1). We provide evidence that this apparent difference is due to the method of measuring conversion tracts and does not reflect a real difference in tract length. We also provide evidence that the number and position of restriction site markers alters the apparent distribution of the conversion tracts. More than ninety percent of the conversion tracts spanning three or more sites were continuous. 相似文献