首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weanling male rats were fed a riboflavin-deficient diet for 5-8 weeks, and the decrease in NADPH-cytochrome P-450 reductase (FpT) activity in the liver microsomes was compared with the contents of riboflavin derivatives. The decrease of FpT activity for the reduction of cytochrome c was greater than that for the reduction of ferricyanide. The FpT's of riboflavin-deficient and control rats were indistinguishable in the Ouchterlony immunodiffusion test against anti-FpT, and were shown to have the same molecular weight of 78,000 by SDS-polyacrylamide slab gel electrophoresis. However, the purified FpT of the riboflavin-deficient rats contained 14.2, 4.9, and 1.9 nmol of FAD, FMN, and riboflavin per mg of protein, respectively, while that of the control rats contained 10.6 and 9.5 nmol of FAD and FMN per mg of protein, respectively. After riboflavin injection into the riboflavin-deficient rats, NADPH-cytochrome c reductase activity and FMN content of the FpT were restored to the control levels in 36 h, NADPH-ferricyanide reductase activity recovered in 18 h, and riboflavin content diminished in 18 h. On incubation of the purified FpT of the riboflavin-deficient rats with FMN, NADPH-cytochrome c reductase activity and FMN content were restored to those of control rats. These results indicated that a part of FMN in the FpT of the riboflavin-deficient rats was replaced with FAD and riboflavin.  相似文献   

2.
The alterations of the microsomal aryl hydrocarbon hydroxylase system in mice during riboflavin depletion and repletion have been examined. During the development of riboflavin deficiency, there was a decrease in the activity of the flavoprotein NADPH-cytochrome c reductase accompanied by an increase in cytochrome P-450 concentration. The aryl hydroxylase activities of the deficient animals were only slightly lower than the controls when isolated microsomes were used for the assay and the extent of decrease was more pronounced when liver homogenates were used for the assay. Upon repletion of flavin to the deficient mice, there were sharp rises in both the NADPH-cytochrome c reductase and aryl hydroxylase activities and a moderate decrease in cytochrome P-450 concentration in the first 2 days. The aryl hydroxylase activity of the microsomes of deficient mice can be elevated by preincubating with FAD or FMN, suggesting that the flavin coenzyme and hence the holo-reductase is rate limiting for the overall hydroxylation. During the recovery from riboflavin deficiency, the aryl hydroxylase can be induced by 3-methylcholanthrene to a greater extent than with the controls. The implications of these observations are discussed.  相似文献   

3.
Incubation of rabbit liver microsomes with alkaline phosphatase resulted in a marked decrease of NADPH-dependent monooxygenase activities. This decrease was found to be correlated with the decrease of NADPH-cytochrome c reductase activity catalyzed by NADPH-cytochrome P-450 reductase. Neither the content of cytochrome P-450, as determined from its CO difference spectrum, nor the peroxide-supported demethylase activity catalyzed by cytochrome P-450 alone was affected by the phosphatase treatment. NADH-cytochrome b5 reductase and cytochrome b5 were not affected by the phosphatase either. NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes lost its NADPH-dependent cytochrome c reductase activity upon incubation with phosphatase in a way similar to that of microsome-bound reductase. Flavin analysis showed that the phosphatase treatment caused a decrease of FMN with concomitant appearance of riboflavin. Alkaline phosphatase, therefore, inactivates the reductase by attacking its FMN, and the inactivation of the reductase, in turn, leads to a decrease of the microsomal monooxygenase activities.  相似文献   

4.
NADPH-cytochrome c reductase [NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4] was highly purified from the membrane fraction of porcine polymorphonuclear leukocytes by column chromatographies on DEAE cellulose DE-52, 2',5'-ADP-agarose, Sephacryl S-300, and Bio-gel HTP. Upon sodium dodecyl sulfate polyacrylamide gel electrophoresis, the purified preparation gave a main band with a molecular weight of 80,000. The enzyme contained 0.79 mol of FAD and 0.88 mol of FMN per mol, and was capable of exhibiting a benzphetamine N-demethylation activity in the presence of cytochrome P-450 purified from rabbit liver microsomes and dilauroylphosphatidylcholine, as is the case with liver NADPH-cytochrome P-450 reductase. The cytochrome c reductase activity of the polymorphonuclear leukocytes (PMN) enzyme was precipitated with rabbit anti-guinea pig liver NADPH-cytochrome P-450 reductase IgG followed by addition of guinea pig anti-rabbit IgG antibody. The biochemical and immunological properties of the PMN enzyme so far examined were similar to those of the liver enzyme, although its function in leukocytes has not yet been determined.  相似文献   

5.
FMN or methyl viologen stimulated anaerobic reduction of tertiary amine N-oxides by liver microsomes and this stimulatory effect was completely inhibited by carbon monoxide. Spectral study indicated that FMN or methyl viologen is reduced by NADPH-cytochrome c reductase and reduced FMN or methyl viologen is reoxidized by cytochrome P-450 in the presence of tertiary amine N-oxides. In the presence of FMN, xanthine oxidase-hypoxanthine system rapidly reduced tiaramide N-oxides through the reduction of cytochrome P-450: the maximum reduction rate of tiaramide N-oxide was about 100 nmoles/mg protein/min.  相似文献   

6.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

7.
Purified hepatic NADPH-cytochrome P-450 reductase, which was reconstituted with dilauroylphosphatidylcholine, catalyzed a one-electron reductive denitrosation of 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)-1-nitrosourea ([14C]CCNU) to give 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)urea at the expense of NADPH. Ambient oxygen or anoxic conditions did not alter the rates of [14C]CCNU denitrosation catalyzed by NADPH-cytochrome P-450 reductase with NADPH. Electron equivalents for reduction could be supplied by NADPH or sodium dithionite. However, the turnover number with NADPH was slightly greater than with sodium dithionite. Enzymatic denitrosation with sodium dithionite or NADPH was observed in anaerobic incubation mixtures which contained NADPH-cytochrome P-450 reductase with or without cytochrome P-450 purified from livers of phenobarbital (PB)-treated rats; PB cytochrome P-450 alone did not support catalysis. PB cytochrome P-450 stimulated reductase activity at molar concentrations approximately equal to or less than NADPH-cytochrome P-450 reductase concentration, but PB cytochrome P-450 concentrations greater than NADPH-cytochrome P-450 reductase inhibited catalytic denitrosation. Cytochrome c, FMN, and riboflavin demonstrated different degrees of stimulation of NADPH-cytochrome P-450 reductase-dependent denitrosation. Of the flavins tested, FMN demonstrated greater stimulation than riboflavin and FAD had no observable effect. A 3-fold stimulation by FMN was not observed in the absence of NADPH-cytochrome P-450 reductase. These studies provided evidence which establish NADPH-cytochrome P-450 reductase rather than PB cytochrome P-450 as the enzyme in the hepatic endoplasmic reticulum responsible for CCNU reductive metabolism.  相似文献   

8.
When NADPH-cytochrome P-450 reductase isolated from rat liver microsomes was aerobically incubated with bleomycin, FeCl3, NADPH and DNA parallel NADPH and oxygen were consumed and malondialdehyde was formed. A similar parallelism of NADPH- and oxygen-consumption and malondialdehyde formation was observed when ceil nuclei isolated from rat liver were incubated under the same conditions. The formation of malondialdehyde which was identified by HPLC and which was most likely released from oxidative cleavage of deoxyribose of nuclear DNA required oxygen, bleomycin, FeCl3 and NADPH. This indicates that a nuclear NADPH-enzyme, presumably NADPH-cytochrome P-450 reductase, is able to redox cycle a bleomycin-iron-complex which in the reduced form can activate oxygen to a DNA-damaging reactive species. The data suggest that the activity of this enzyme in the cell nucleus could play an important role in the cytotoxicity of bleomycin in tumor cells.  相似文献   

9.
《Free radical research》2013,47(4-6):271-277
When NADPH-cytochrome P-450 reductase isolated from rat liver microsomes was aerobically incubated with bleomycin, FeCl3, NADPH and DNA parallel NADPH and oxygen were consumed and malondialdehyde was formed. A similar parallelism of NADPH- and oxygen-consumption and malondialdehyde formation was observed when ceil nuclei isolated from rat liver were incubated under the same conditions. The formation of malondialdehyde which was identified by HPLC and which was most likely released from oxidative cleavage of deoxyribose of nuclear DNA required oxygen, bleomycin, FeCl3 and NADPH. This indicates that a nuclear NADPH-enzyme, presumably NADPH-cytochrome P-450 reductase, is able to redox cycle a bleomycin-iron-complex which in the reduced form can activate oxygen to a DNA-damaging reactive species. The data suggest that the activity of this enzyme in the cell nucleus could play an important role in the cytotoxicity of bleomycin in tumor cells.  相似文献   

10.
T Iyanagi  F K Anan  Y Imai  H S Mason 《Biochemistry》1978,17(11):2224-2230
Hepatic microsomal NADPH-cytochrome P-450 reductase was solubilized from rabbit liver microsomes in the presence of detergents and purified to homogeneity by column chromatography. The purified reductase had a molecular weight of 78 000 and contained 1 mol each of FAD and FMN per mol of enzyme. On reduction with NADPH in the presence of molecular oxygen, an 02-stable semiquinone containing one flavin free radical per two flavins was formed, in agreement with previous work on purified trypsin-solubilized reductase. The reduction of oxidized enzyme by NADPH, and autoxidation of NADPH-reduced enzyme by air, proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The reductase reduced cytochrome P-450 (from phenobarbital-treated rabbits) and cytochrome P-448 (from 3-methylcholanthrene-treated rabbits). The rate of reduction of cytochrome P-450 increased in the presence of a substrate, benzphetamine, but that of cytochrome P-448 did not.  相似文献   

11.
A flavoprotein catalyzing the reduction of cytochrome c by NADPH was solubilized and purified from microsomes of yeast grown anaerobically. The cytochrome c reductase had an apparent molecular weight of 70,000 daltons and contained one mole each of FAD and FMN per mole of enzyme. The reductase could reduce some redox dyes as well as cytochrome c, but could not catalyze the reduction of cytochrome b5. The reductase preparation also catalyzed the oxidation of NADPH with molecular oxygen in the presence of a catalytic amount of 2-methyl-1,4-naphthoquinone (menadione). The Michaelis constants of the reductase for NADPH and cytochrome c were determined to be 32.4 and 3.4 micron M, respectively, and the optimal pH for cytochrome c reduction was 7.8 to 8.0. It was concluded that yeast NADPH-cytochrome c reductase is in many respects similar to the liver microsomal reductase which acts as an NADPH-cytochrome P-450 reductase [EC 1.6.2.4].  相似文献   

12.
NADPH-cytochrome P-450 reductase was purified to apparent homogeneity from detergent-solubilized guinea pig liver microsomes. The reductase had a mol. wt of 78,000 and contained one mole each of FAD and FMN. Electron transfer activity to cytochrome c was optimal at a pH of 8.0 and an ionic strength of 0.43. The results of kinetic experiments were consistent with a ternary-complex mechanism for the interaction of the reductase with cytochrome c and NADPH. Km values for NADPH and cytochrome c were 3.1 and 26.7 microM, respectively. Inhibition by NADP+ and 2'-AMP was competitive with respect to NADPH; Ki values were 12.1 microM for NADP+ and 46.7 microM for 2'-AMP.  相似文献   

13.
The effects of starvation on rat renal cytochrome P-450s were studied. The content of spectrally measured cytochrome P-450 in the renal microsomes of male rats increased 2-fold with 72 h starvation, but cytochrome b5 and NADPH-cytochrome P-450 reductase were not induced. 7-Ethoxycoumarin O-dealkylation and aniline hydroxylation activities of the renal microsomes of control male rats were very low but were induced 2.5-3-fold by 72 h starvation. Aminopyrine N-demethylation and lauric acid hydroxylation activities were induced 1.5-2-fold by 72 h starvation. The changes in catalytic activities suggested that the contents of individual cytochrome P-450s in the renal microsomes were altered by starvation. The contents of some cytochrome P-450s were measured by Western blotting. P450 DM (P450IIE1), a typical form of cytochrome P-450 induced by starvation in rat liver, was barely detected in rat kidney and was induced 2-fold by 72 h starvation. P450 K-5, a typical renal cytochrome P-450 and lauric acid hydroxylase, accounted for 81% of the spectrally measured cytochrome P-450 in the renal microsomes of control male rats and was induced 2-fold by 72 h starvation. P450 K-5 was not induced in rat kidney by treatment with chemicals such as acetone or clofibrate. The renal microsomes of male rats contained 6-times as much P450 K-5 as those of female rats. These results suggest that P450 K-5 is regulated by an endocrine factor.  相似文献   

14.
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH*/FMNH2 couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.  相似文献   

15.
NADPH-cytochrome P-450 reductase was highly purified from liver microsomes of phenobarbital-induced rats by column chromatography on DEAE-cellulose, DEAE-Sephadex A-50, and hydroxylapatite in the presence of deoxycholate or Renex 690, a nonionic detergent. The purified enzyme gave a single major band with a molecular weight of 79,000 daltons on SDS-polyacrylamide gel electrophoresis. FMN and FAD were present in about equal amounts. The most active reductase preparation catalyzed the reduction of 40.9 μmoles of cytochrome c per min per mg of protein and, as an indirect measure of cytochrome P-450 reduction, the oxidation of 2.0 μmoles of NADPH per min per mg of protein in a reconstituted hydroxylation system containing benzphetamine as the substrate.  相似文献   

16.
Cytochrome P-450 was isolated in highly purified form from liver microsomes of adult male rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Preparations average 17.8 ± 0.8 nmoles cytochrome P-450 per mg protein and have an estimated molecular weight of 54,500. The visible absorption spectrum of the purified cytochrome displays absorption spectral maxima characteristic of high spin forms of cytochrome P-450. When reconstituted with highly purified NADPH-cytochrome P-450 reductase, this cytochrome catalyzes the hydroxylation of acetanilide and the O-deethylation of 7-ethoxyresorufin, two activities induced by TCDD.  相似文献   

17.
The effect of riboflavin deficiency on the activity of L-gulonolactone oxidase [L-gulono-γ-lactone : oxygen 2-oxidoreductase, EC 1.1.3.8] and on vitamin C status was studied. A marked decrease in the specific activity of L-gulonolactone oxidase was observed in the liver microsomes isolated from riboflavin-deficient rats: the specific activity was approx. one-third of that in the microsomes isolated from control rats. The L-ascorbic acid content in the liver of the riboflavin-deficient rats was approx. one-half of that in the liver of the control rats. It seems that the rate of production of L-ascorbic acid in the riboflavin-deficient rats is limited by the decreased level of L-gulonolactone oxidase activity. Immunotitration using rabbit antiserum directed to L-gulonolactone oxidase revealed that a substantial amount of an inactive form of this enzyme is present in the liver microsomes of the riboflavin-deficient rats. L-Gulonolactone oxidase activity in the microsomes of these rats increased by approx. 35% upon addition of FAD, but it was slightly decreased by the addition of FMN or riboflavin. These results indicate that the liver microsomes of the riboflavin-deficient rats contain a protein which exhibits L-gulonolactone oxidase activity upon addition of FAD.  相似文献   

18.
T D Porter  T W Beck  C B Kasper 《Biochemistry》1990,29(42):9814-9818
cDNA clones to rat liver NADPH-cytochrome P-450 oxidoreductase were used to isolate genomic clones from a Wistar-Furth inbred rat genomic DNA library. Fifteen exons containing the coding region and 3'-nontranslated segment of the P-450 reductase gene were identified, spanning 20 kilobases of DNA contained in 3 lambda-Charon 35 clones. The organization of this single copy gene reveals a general correspondence between exons and structural domains of the protein, with the segment responsible for anchoring the reductase to the microsomal membrane and several segments involved in FMN, FAD, and NADPH binding encoded by discrete exons.  相似文献   

19.
An NADPH-hepatoredoxin reductase was purified from mitochondria of rabbit hepatocytes. The optical absorption spectrum showed a typical flavoprotein. The NADPH-hepatoredoxin reductase has an FAD as a coenzyme and the molecular weight of the NADPH-hepatoredoxin reductase was estimated to be 51000 by SDS-polyacrylamide gel electrophoresis. The NADPH-hepatoredoxin reductase was immunochemically similar to NADPH-adrenodoxin reductase of bovine and pig adrenocortical mitochondria, but not NADPH-cytochrome P-450 reductase of rabbit liver microsomes. The NADPH-cytochrome c reductase activity of the NADPH-hepatoredoxin reductase and hepatoredoxin complex, unlike NADPH-cytochrome P-450 reductase, was decreased by increasing ionic strength.  相似文献   

20.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37 degrees C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号