首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The encapsulation of soybean lipoxygenase-1 (LOX-1) in silica gels and its application in an aqueous medium, were studied. The main silica precursor was tetramethoxysilane (TMOS) but the introduction of hydrophobic SiCH3 groups brought with methyltrimethoxysilane (MTMS) was evaluated. Other sol–gel synthesis parameters investigated comprised partial or complete drying by evaporation and CO2 supercritical drying. The influence on LOX-1 activity of the various chemicals with which the enzyme was in contact during encapsulation (acetone, methanol, polyvinyl alcohol), as well as the temperature and pH, were examined. The activity of free and encapsulated LOX-1 was assayed on the oxygenation reaction of linoleic acid by dioxygen from air dissolved in aqueous medium, in a UV–vis spectrophotometer. With free LOX-1, the reaction advancement could be followed in continuous in the spectrophotometer. With the gels, in a first approach, the conversion was simply determined after 15 min reaction after filtration of the liquid, to discriminate between active and inactive gels. For the most interesting gels, the kinetics were then assessed by continuous recording in the UV spectrophotometer, after placing a small piece of gel (≈15 mg) directly in the cell. The best gels had an activity ≈30% of free LOX. The present studies, supplemented by characterization of the gels texture and structure, respectively by nitrogen adsorption and 29Si MAS NMR, showed that drying a gel before use in aqueous media was detrimental to the activity. This effect is due to a contraction of the gel network which occurs when a dry aerogel sample is dipped in water after drying. Hence gels containing LOX-1 enzyme must not be dried but kept in water impregnated state, for optimum use.  相似文献   

2.
This paper presents an experimental comparison of the kinetics of esterification catalyzed with the lipase from Burkholderia cepacia, either free, or encapsulated in a silica aerogel dried by the supercritical CO2 method. The operational characteristics, in terms of pre-equilibration at given water thermodynamic activity aw, mass of enzyme in the gel, size of aerogel particles, are presented. The kinetic model known as BiBi Ping Pong with inhibition by both substrates has been found to fit relatively well with the experimental results, except when both substrate concentrations were high with the encapsulated enzyme. All kinetics constants were found to be increased by aerogel encapsulation. In particular Vmax was increased by a factor of the order of 10 per mg of enzyme.  相似文献   

3.
Lipase from Candida rugosa was encapsulated within a chemically inert sol–gel support prepared by polycondensation of three precursor types (tetraethoxysilane (TEOS), methyltrimethoxysilane (MTMS) and polydimethylsilane (PDMS)) in the presence and absence of polyethylene glycol (PEG) and polyvinyl alcohol (PVA) as additives. Silica and their derivatives were characterised with regard to mean pore diameter, specific surface area, pore size distribution (BET method), weight loss upon heating thermogramivemetric analysis (TGA), chemical composition Fourier transform infrared spectroscopy (FT-IR), and catalytic activities. Immobilisation yields based on the recovered lipase activity vary from 3.02 to 31.98% and the highest efficiency was attained when lipase was encapsulated using TEOS in the presence of the PEG. Further information was obtained by testing the derivatives in esterification reactions and a different reactivity profile was found. Better performance was obtained with derivatives containing lipase encapsulated within gels prepared with MTMS as precursor in the presence of PEG. This lipase preparation exhibits increased esterification activity (155 μmol g−1 min−1), up to of three times greater than that prepared with TEOS (52 μmol g−1 min−1), and almost twice that prepared with MTMS/PDMS (89 μmol g−1 min−1) as precursors.  相似文献   

4.
Lipase from Candida rugosa was encapsulated within a chemically inert sol–gel support prepared by polycondensation of the precursor tetraethoxysilane (TEOS) in the presence of polyethylene glycol (PEG) as additive. The properties of silica and their derivatives with regard to mean pore diameter, specific surface area, mean pore size, weight loss upon heating (thermogravimetric analysis, TGA) and 29Si and 13C NMR are reported. The pH optimum shifted from 7.8 to 6.7 and optimum temperature jumped from 36 to 60 °C upon enzyme encapsulation. Encapsulated lipase in presence of PEG (EN-PEG) exhibited higher stability in the range of 37–45 °C, but from 50 to 65 °C the EN-PEG was inactivated after seven cycles. Hydrolytic activity during long-term storage at room temperature decreased to 50% after 94 days. High diffusional resistance was observed for large oil concentration reducing hydrolytic effectiveness by 60% in the case of the encapsulated lipase. NMR, pore size and specific surface area data suggested an active participation of the lipase enzyme during gelling of the silica matrix. This lead to reduction of available Si–OH groups, larger pores and smaller surface area. Larger pores increase substrate diffusion that correlates well with higher hydrolytic activity of the TEOS–PEG sol–gel matrix encapsulated enzyme in comparison with other sol–gel supports.  相似文献   

5.
Two types of commercial lipases preparations, one from Burkholderia cepacia, the other one from Candida antartica, were encapsulated in silica aerogels reinforced with silica quartz fibre felt and dried by the CO2 supercritical technique. These immobilized biocatalysts were applied in biodiesel synthesis by transesterification of sunflower seed oil with methyl acetate. They were found to be efficient even with mixtures of both substrates without any solvent addition. The aerogel encapsulation technique made it possible to maintain the enzymes in a dispersion state similar to the dispersion prevailing in an aqueous solution, even for further use in organic hydrophobic media. In transesterification in excess iso-octane, the two lipases encapsulated in aerogels made from 40% MTMS, were found to have activities relatively close to each other and comparable with commercial Novozyme 435. On the other in transesterification with mixture of oil and methyl acetate without any solvent, the kinetics were severely limited by substrate diffusion inside the aerogels. This was particularly true with the C. antartica, so that the corresponding aerogel encapsulated enzyme was much less active than commercial Novozyme 435, although it improved after a few tests.  相似文献   

6.
Bioimprinting and sol–gel encapsulation of lipases by silane precursors are efficient methods of enhancing lipase performance in non-aqueous medium. The correlation between bioimprinting, the alkyl-chain length of silane precursors, and the catalytic activity of gel-encapsulated lipase was investigated using a series of silane precursors: methyltrimethoxysilane (MTMS), vinyltrimethoxysilane (VTMOS), vinyltriethoxysilane (VTEOS), and n-octyltrimethoxysilane (OTMOS). The optimal parameters for lipase immobilization were also determined. Both bioimprinting and increasing the chain-length of alkyl groups, apparently by increasing hydrophobicity, significantly improved the specific activity and the total activity of the immobilized lipase. Compared to a non-imprinted MTMS/TMOS gel, the specific activity of an imprinted OTMOS/TMOS gel improved 14.4-fold, and the total activity improved 6.8-fold. Nitrogen adsorption–desorption assays and gel matrix surface characterization showed that the bioimprinting molecule and the hydrophobic alkyl groups of silane triggered lipase to change from the closed to the open conformation, and contributed to creating sol–gel matrices that were more porous and with less mass transfer resistance structure, apparently improving the activity of encapsulated lipase.  相似文献   

7.
Candida rugosa lipase is a very useful catalyst, but its rapid inactivation by simple alcohols is a drawback. The present study was focussed on the encapsulation of this enzyme in silica aerogels reinforced with quartz fiber felt. The activity of the immobilized lipase in an organic solvent could be significantly improved over that of the free enzyme and of previous immobilization techniques, by evaporating the alcohol formed during a pre-hydrolysis of the silica precursor, before adding the aqueous enzyme solution. The alcohol evaporation technique was previously used by other authors to immobilized enzymes, but applied to xerogels dried by evaporation, while in the present case the wet gels obtained were dried by the CO2 supercritical method to obtain aerogels. Besides, such silica aerogels were also reinforced by impregnating a commercial ceramic quartz fiber felt of St. Gobain with the silica sol containing the enzyme, before gelation. The ceramic composites heterogeneous biocatalysts obtained could be used for a large number of times without any apparent deterioration.  相似文献   

8.
During the last decade, lipase has gained interest as a biocatalyst for synthesis in organic solvent systems. The paper describes the lipase catalyzed oligocondensation of bis(2-chloroethyl) succinate and 1,4-butanediol to obtain poly (1,4-butanediol succinate). The reaction was carried out at 37°C in organic solvents without any addition of water. Various lipases and solvents were screened to obtain a maximum degree of polymerization. Based on gel permeation chromatography, the highest average molecular weight of the oligomer obtained was 1570 g/mol with a polydispersity of 1.2 when a mixture of 70% diisopropyl ether and 30% chloroform was used as a solvent. The degree of polymerization was 8 in this case. According to thin-layer chromatography, a trimer (HO(CH2)4OCO(CH2)2COO(CH2)4OH) was formed at an early stage, with a subsequent condensation with bis(2-chloroethyl) succinate to give higher oligomers. The structure of the oligomers was confirmed by 13C NMR and IR spectra.  相似文献   

9.
An acyl-enzyme intermediate proposed in the reaction mechanism of lipase was inspected by the exchange of oxygen between substrate (oleic acid) and solvent (18O-labelled water). Gas chromatography-mass spectrometry analysis supported the formation of an acyl-enzyme intermediate in the reaction mechanism through the observed incorporation of 18O into oleic acid. The incorporation did not occur in the absence of the lipase. When Ser residues were modified with diisopropylfluorophosphate, the activity of lipase OF 360 was markedly decreased. Photooxidation of His residues also resulted in a decrease in the activity of the lipase. Chemical modification studies suggested the existence of a charge relay system (Ser-His-Asp/Glu) in the active site. Based on these results, a model of the active site and reaction mechanism of the lipase are presented.  相似文献   

10.
Candida rugosa lipase was entrapped in hybrid organic–inorganic sol-gel powder prepared by acid-catalyzed polymerization of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes, and used in catalyzing esterification reactions between ethanol and butyric acid in hexane. Optimum preparation conditions were studied, which are gels made from propyltrimethoxysilane (PTMS)/TMOS molar ratio=4:1, hydrolysis time of silane precursor=30 min, water/silane molar ratio=24, enzyme loading=6.25% (w/w) of gel, and 1 mg PVA/mg lipase. The percentage of protein immobilization was 95% and the resulting lipase specific activity was 59 times higher than that of a non-immobilized lyophilized lipase. To prepare magnetic lipase-immobilized sol-gel powder (MLSP) for easier recovery of the biocatalyst, Fe3O4 nanoparticles were prepared and co-entrapped with lipase during gel formation. This procedure induced surface morphological change of the sol-gel powder and showed adverse effect on enzyme activity. Hence, although only 9% decrease in protein immobilization efficiency was observed, the corresponding reduction in enzyme activity could be up to 45% when sol-gel powder was doped with 25% (v/v) Fe3O4 magnetic nanoparticles solution. Lipase-immobilized sol-gel polymer was also formed within the pores of different porous supports to improve its mechanical stability. Non-woven fabric, with a medium pore size of all the supports tested, was found to be the best support for this purpose. The thermal stability of lipase increased 55-fold upon entrapment in sol-gel materials. The half-lives of all forms of sol-gel-immobilized lipase were 4 months at 40 °C in hexane.  相似文献   

11.
Fifty different hydrolases were screened for retention of high esterification activity in an organic solvent with citronellol as substrate. Although 22 hydrolases were very active as catalysts in the organic solvent, lipase from Candida cylindracea (lipase OF 360) was selected for further examination of the effects of reaction conditions on enzyme activity, with regard to catalyst availability and activity retention after immobilization. When the enzyme was entrapped in hydrophobic polyurethane gels, water-saturated isooctane was found to be the most suitable solvent, whereas polar solvents caused reversible catalyst inactivation. Entrapment significantly enhanced the operational stability of the lipase in the organic solvent.  相似文献   

12.
A variation of the emulsion techniques for microbial cell immobilization by encapsulation in gel beads is described. The utilized gels are silica gel or natural polymers like agar, agarose, phytagel or carrageenan. This technique utilizes the interfacial tension that is formed between two liquids of different polarity. The gel-beads are easily obtained and homogeneous in size.  相似文献   

13.
近年来溶胶-凝胶法固定脂肪酶已成为研究热点。选用TMOS、MTMS、ETMS和PTMS 4种硅烷试剂对黑曲霉脂肪酶进行了固定化研究。固定化的最佳配方为ETMS/TMOS=5:1、水与硅烷试剂分子比为8;固定化脂肪酶的固定率为80.2%、相对活性为136.3%;以乳化橄榄油作为底物,在50℃和pH4.0的条件下,固定化脂肪酶与游离脂肪酶Km分别为1.899×10-4M和2.789×10-4M;最适反应pH均为pH4.0,固定化脂肪酶在pH4.0~pH5.5之间其活性能保持95%以上;固定化脂肪酶最适反应温度为60℃,较游离脂肪酶提高了10℃;固定化脂肪酶的酸碱稳定性和热稳定性较非固定化酶有显著的提高。固定化脂肪酶的使用寿命和保存稳定性良好,使用12次后仍能够保留71.7%活性,在室温避光条件下保存180天后仍可保留79.2%活性。  相似文献   

14.
Candida rugosa lipase immobilized by adsorption on swollen Sephadex LH-20 could almost completely hydrolyze 60% (v/v) olive oil in isooctane. Kinetic analysis of the lipase-catalyzed hydrolysis reaction was found to be possible in this system. Amount of fatty acids produced was linearly proportional to the enzyme concentration of 720 mug/g wet gel. The specific enzyme activity was 217 units/mg protein at 60% (v/v) olive oil concentration. When the initial rate is plotted versus concentration of olive oil, this system did not follow Michaelis-Menten kinetics. Maximum activity was obtained at pH 7, but optimum temperature shifted towards higher one with the increase of olive oil concentration. Among the various chemical compounds tested, Hg(2+) and Fe(2+) inhibited the lipase seriously. As the concentration of olive oil increased, the rate of the hydrolysis also increased, but degree of the hydrolysis was observed to decrease. The supply of water from the inside of the gel to the surface of the gel was the main factor for the control of the rate of hydrolysis in batch hydrolysis. The immobilized lipase was used to hydrolyze olive oil two times. Achievement of chemical equilibrium took a longer time with the addition of water and the degree of hydrolysis decreased in the second consecutive trial. After the second hydrolysis trial, the gels were regenerated in a packed column first by eluting out both residual fatty acids around the gel particles and the accumulated glycerol with ethanol and then with 0.05M phosphate buffer, pH 7. The immobilized lipase on the regenerated gel showed the same hydrolysis activity as the original one.  相似文献   

15.
We have examined a lipase-catalyzed bidirectional ester synthesis/hydrolysis reaction in a water-in-oil microemulsion system. The reactants were cholesterol (alcohol), oleic acid (acid) and cholesterol oleate (ester), and the solvent system consisted of sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water. The reactions were assayed by using [3H]oleic acid, [3H]cholesterol, or [3H]cholesterol oleate for the synthesis and hydrolysis reactions, respectively (separate incubations). The lipase that we used derived from Candida cylindracea, and was used at a concentration of 0.1mg/ml microemulsion. The reactions were performed at 22°C as the reactions proceeded more slowly at higher temperatures. With the initial reactant concentrations set to 10 mM cholesterol, 1 min oleic acid, and 1 mM cholesterol oleate, it was observed that the optimal [H2O]/[AOT] ratio was at about 9 both for the esterification reaction and for the hydrolysis reaction (after 24 h). The hydrolysis reaction was slower than the synthesis reaction at all [H2O]/[AOT] ratios studied (0-20), but the difference in reaction yield for the synthesis and the hydrolysis reactions became smaller as the reaction time increased (up to 11 days). When the reaction yield was followed as a time function, it was observed that about 80% of the oleic acid was esterified within 3 days of reaction ([H2O]/[AOT] ratio of 6), whereas the corresponding value of 80% hydrolysis of cholesterol oleate was reached within 11 days. The results of the present study indicate that by choosing optimal reactant concentrations and reaction conditions, it is at least in part possible to determine the direction of the lipase-catalyzed synthesis/hydrolysis reaction.  相似文献   

16.
Supercritical point drying of gels is a common technique for the production of a specific category of nano-porous materials called aerogels. We have successfully prepared chitin aerogels by extracting the solvent from the alcogels (gels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. The produced nano-porous materials exhibit the typical properties of aerogels such as high porosity, high surface area, and low density, which make them quite attractive for many applications. The use of chitin, however, is of particular interest for the production of aerogels not only for being abundant and cheap but also because it has important inherent properties such as biocompatibility, non toxicity, thermal and chemical stability. In this work we examine the influence of different parameters on the porosity characteristics of the aerogels, such as the drying conditions (temperature and pressure), the nature of the solvent, and the gel concentration. Since these aerogels collapse in liquid medium, we also investigated the possibility of their utilization as carbon aerogel precursors.  相似文献   

17.
Pectin gels were made with amidated low methoxyl pectin using sucrose, glucose, fructose and sorbitol as sweetening agents. The adsorption of water at controlled activity was measured by determining sorption isotherms and by differential scanning calorimetry. These results were correlated with the gel formation mechanism. 1H NMR spectra were measured for sugar with and without Ca2+ or La3+ cations. Results demonstrated no correlation between water adsorption on sugars and gel rigidity. The effects of the different sugars appear to be associated with the competition between each sugar and the pectin for calcium cations.  相似文献   

18.
Selective lipase-catalyzed synthesis of glucose fatty acid esters in two-phase systems consisting of an ionic liquid (1-butyl-3-methyl imidazolium tetrafluoroborate [BMIM][BF4] or 1-butyl-3-methyl imidazolium hexafluorophosphate [BMIM][PF6]) and t-butanol as organic solvent was investigated. The best enzyme was commercially available lipase B from Candida antarctica (CAL-B), but also lipase from Thermomyces lanuginosa (TLL) gave good conversion. After thorough optimization of several reaction conditions (chain-length and type of acyl donor, temperature, reaction time, percentage of co-solvent) conversions up to 60% could be achieved using fatty acid vinyl ester as acyl donors in [BMIM][PF6] in the presence of 40% t-BuOH with CAL-B at 60 °C.  相似文献   

19.
非水体系中脂肪酶催化合成乳酸乙基糖苷酯的工艺研究   总被引:3,自引:0,他引:3  
在非水体系中 ,通过固定化脂肪酶催化合成一种新型α 羟基酸衍生物 乳酸糖苷酯。考察了常压下有机溶剂、酰基供体、不同种固定化酶、乙基糖苷的浓度、酶量和反应温度对反应的影响。研究表明在无溶剂体系中以乳酸丁酯作为酰基供体可有效地合成乳酸糖苷酯 ,固定化酶Novozym435和来源于Candida sp .菌株的细胞固定化酶 ,化学修饰的干酶粉均是合适的催化剂。最佳反应条件为 :酶浓度 75g L ,乙基葡萄糖苷的浓度为 0.4mol L ,温度为 70℃ ,转速 200r min ,反应 50h ,转化率可达 71%。在真空度为 0.09MPa的压力下 ,反应温度 65℃ ,酶浓度 75g L ,乙基葡萄糖苷 0.35mol L时 ,反应初速率可达到 607(mmol·L-1·h-1 ) ,40h后转化率可达到 90%。反应产物经过萃取法和硅胶柱层析方法分离 ,纯度达到 95 % (W/W)。  相似文献   

20.
The synthesis of ethyl-oleate by the lipase from the newly isolated strain Burkholderia cepacia LTEB11 in three different systems has been studied - immobilization on a hydrophobic support (Accurel EP 100®), encapsulation in reverse micelles, and direct addition of powdered free enzyme to the reaction medium. The immobilized enzyme performed best, giving a 70% ester yield in 10 h, this yield being five-fold greater than that obtained for reversed micelles, and two and a half times greater than that obtained for direct addition. An increase in the amount of immobilized enzyme preparation added gave a 100% ester yield in 3 h. The immobilized preparation was quite stable, giving a 100% yield of ethyl-oleate during 11 repeated reactions, and 50% yield after 24 reactions. These results suggest that the lipase of our strain of B. cepacia LTEB11 immobilized on Accurel has good potential for application in biocatalysis in organic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号