首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The loss of Bacillus subtilis penicillin-binding protein (PBP) 2a, encoded by pbpA, was previously shown to slow spore outgrowth and result in an increased diameter of the outgrowing spore. Further analyses to define the defect in pbpA spore outgrowth have shown that (i) outgrowing pbpA spores exhibited only a slight defect in the rate of peptidoglycan (PG) synthesis compared to wild-type spores, but PG turnover was significantly slowed during outgrowth of pbpA spores; (ii) there was no difference in the location of PG synthesis in outgrowing wild-type and pbpA spores once cell elongation had been initiated; (iii) outgrowth and elongation of pbpA spores were dramatically affected by the levels of monovalent or divalent cations in the medium; (iv) there was a partial redundancy of function between PBP2a and PBP1 or -4 during spore outgrowth; and (v) there was no difference in the structure of PG from outgrowing wild-type spores or spores lacking PBP2a or PBP2a and -4; but also (vi) PG from outgrowing spores lacking PBP1 and -2a had transiently decreased cross-linking compared to PG from outgrowing wild-type spores, possibly due to the loss of transpeptidase activity.  相似文献   

2.
pbpA, a gene encoding penicillin-binding protein (PBP) 1 of Staphylococcus aureus, was cloned in an Escherichia coli MC1061 transformant which grew on a plate containing 512 μg of vancomycin per ml. This gene encodes a 744-amino-acid sequence which conserves three motifs of PBPs, SXXK, SXN, and KTG. The chromosomal copy of pbpA could be disrupted only when RN4220, a methicillin-sensitive S. aureus strain, had additional copies of pbpA in its episome. Furthermore, these episomal copies of pbpA could not be eliminated by an incompatible plasmid when the chromosomal copy of pbpA was disrupted beforehand. Based on these observations, we concluded that pbpA is essential for the growth of methicillin-sensitive S. aureus.  相似文献   

3.
4.
5.
6.
Bacterial cells sense external nutrient availability to regulate macromolecular synthesis and consequently their growth. In the Gram-positive bacterium Bacillus subtilis, the starvation-inducible nucleotide (p)ppGpp negatively regulates GTP levels, both to resist nutritional stress and to maintain GTP homeostasis during growth. Here, we quantitatively investigated the relationship between GTP level, survival of amino acid starvation, and growth rate when GTP synthesis is uncoupled from its major homeostatic regulator, (p)ppGpp. We analyzed growth and nucleotide levels in cells that lack (p)ppGpp and found that their survival of treatment with a nonfunctional amino acid analog negatively correlates with both growth rate and GTP level. Manipulation of GTP levels modulates the exponential growth rate of these cells in a positive dose-dependent manner, such that increasing the GTP level increases growth rate. However, accumulation of GTP levels above a threshold inhibits growth, suggesting a toxic effect. Strikingly, adenine counteracts GTP stress by preventing GTP accumulation in cells lacking (p)ppGpp. Our results emphasize the importance of maintaining appropriate levels of GTP to maximize growth: cells can survive amino acid starvation by decreasing GTP level, which comes at a cost to growth, while (p)ppGpp enables rapid adjustment to nutritional stress by adjusting GTP level, thus maximizing fitness.  相似文献   

7.
To determine possible functions of the calmodulinlike protein of Bacillus subtilis, the time course of its expression during sporulation and its cellular localization were studied. The protein was expressed in a constitutive manner from the end of logarithmic growth through 8 h of sporulation as determined by antibody cross-reactivity immunoblots and enzyme-linked immunosorbent assays (ELISAs). In partially purified extracts, the immunopositive protein comigrated upon electrophoresis with a protein which selectively bound [(45)Ca]CaCl(2), ruthenium red, and Stains-all. Previous studies showed increased extractability of the calmodulinlike protein from B. subtilis cells when urea and 2-mercaptoethanol were used in breakage buffers, implying that the protein might be partially associated with the membrane fraction. This was confirmed by demonstrating that isolated membrane vesicles of B. subtilis also gave positive immunological tests with Western blotting and ELISAs. To more precisely locate the protein in cells, thin sections of late-log-phase cells, sporulating cells, and free spores were reacted first with bovine brain anticalmodulin specific antibodies and then with gold-conjugated secondary antibodies; the thin sections were examined by transmission electron microscopy. The calmodulinlike protein was found almost exclusively associated with the cell envelope of these fixed, sectioned cells. A possible function of the calmodulinlike protein in sensing calcium ions or regulating calcium ion transport is suggested.  相似文献   

8.
The YvcK protein has been shown to be necessary for growth under gluconeogenic conditions in Bacillus subtilis. Amazingly, its overproduction rescues growth and morphology defects of the actin-like protein MreB deletion mutant by restoration of PBP1 localization. In this work, we observed that YvcK was phosphorylated at Thr-304 by the protein kinase PrkC and that phosphorylated YvcK was dephosphorylated by the cognate phosphatase PrpC. We show that neither substitution of this threonine with a constitutively phosphorylated mimicking glutamic acid residue or a phosphorylation-dead mimicking alanine residue nor deletion of prkC or prpC altered the ability of B. subtilis to grow under gluconeogenic conditions. However, we observed that a prpC mutant and a yvcK mutant were more sensitive to bacitracin compared with the WT strain. In addition, the bacitracin sensitivity of strains in which YvcK Thr-304 was replaced with either an alanine or a glutamic acid residue was also affected. We also analyzed rescue of the mreB mutant strain by overproduction of YvcK in which the phosphorylation site was substituted. We show that YvcK T304A overproduction did not rescue the mreB mutant aberrant morphology due to PBP1 mislocalization. The same observation was made in an mreB prkC double mutant overproducing YvcK. Altogether, these data show that YvcK may have two distinct functions: 1) in carbon source utilization independent of its phosphorylation level and 2) in cell wall biosynthesis and morphogenesis through its phosphorylation state.  相似文献   

9.
Developing forespores were isolated from Bacillus subtilis at different stages of sporulation and protein synthesis in the forespore compartment was examined. Pulse-labeling experiments indicated that [14C]phenylalanine was continuously incorporated into the sporangium throughout sporulation, and at t5 (early stage V of sporulation) 58% of the radioactivity was located in the forespore compartment. Significantly high incorporation of [14C]phenylalanine was observed when the isolated forespores at t5 were incubated with the corresponding mother-cell cytoplasmic fraction or an amino acid mixture. About 73% of the radioactivity incorporated into the isolated forespore at t5 was found in the cytoplasmic fraction and 26% in the membranous fraction. Analysis by sodium dodecyl sulfate-gel electrophoresis showed that the 14C-labeled cytoplasmic protein had a molecular weight of about 20,000, and that a protein having the same molecular weight was present in the t5 forespore as a slight protein band and also in the mature spore as a clear protein band. Gel electrophoresis also revealed that the 14C-labeled membranous-soluble protein (prepared by solubilization with detergents) had broad peaks with molecular weights of about 74,000, 33,000, 20,000, and 12,000.  相似文献   

10.
11.
Abstract: The influence of divalent cations on glycosphingolipid metabolism was examined in the NB41A mouse neuroblastoma clonal cell line. HPLC methods were utilized to quantitate the effects on neutral glycolipids and monosialogangliosides. NB41A cells were shown to contain GM3, GM2, GM1, GD3, and GD1a by HPLC and TLC. The neutral glycosphingolipids consisted of glucosylceramide (GlcCer), lactosylceramide (LacCer), GaINAc(β1→4) Gal(β1→4)Glc(β1→1)Cer (GgOse3Cer), and GaINAc(β1→3)Gal(α1→4) Gal-(β1→4)Glc(β1→1)Cer (GbOse3Cer) according to their HPLC behavior. Cells grown in the presence of 1.85 mm -EGTA showed a two- to threefold increase in GM3 whereas other glycosphingolipids were only slightly affected. When cells were grown in the presence of 1.45 mm -EGTA plus 0.4 mm -EDTA a similar increase in GM3 was observed but this change was now accompanied by decreases in GM2, GM1 GgOse3Cer, and GbOse4Cer. The EGTA-EDTA effects were reversed when growth was in the presence of Ca2+ sufficient to bind all chelator. Mn2+ replacement reversed the chelator effects differentially; GM2 and GM1 levels were the most sensitive to increases in Mn2+ concentration; GgOse3Cer and GbOse4Cer were also sensitive, whereas GM3 was the least affected. These results suggest calcium serves an important regulatory role on GM3 levels and that manganese concentration may regulate the levels of galactosamine-containing glycolipids in mouse NB41A neuroblastoma cells.  相似文献   

12.
The peptidoglycan cortex of endospores of Bacillus species is required for maintenance of spore dehydration and dormancy, and the structure of the cortex may also allow it to function in attainment of spore core dehydration. A significant difference between spore and growing cell peptidoglycan structure is the low degree of peptide cross-linking in cortical peptidoglycan; regulation of the degree of this cross-linking is exerted by d,d-carboxypeptidases. We report here the construction of mutant B. subtilis strains lacking all combinations of two and three of the four apparent d,d-carboxypeptidases encoded within the genome and the analysis of spore phenotypic properties and peptidoglycan structure for these strains. The data indicate that while the dacA and dacC products have no significant role in spore peptidoglycan formation, the dacB and dacF products both function in regulating the degree of cross-linking of spore peptidoglycan. The spore peptidoglycan of a dacB dacF double mutant was very highly cross-linked, and this structural modification resulted in a failure to achieve normal spore core dehydration and a decrease in spore heat resistance. A model for the specific roles of DacB and DacF in spore peptidoglycan synthesis is proposed.Peptidoglycan (PG) is the structural element of the bacterial cell wall which determines cell shape and which resists the turgor pressure within the cell. The bacterial endospores produced by species of Bacillus, Clostridium, and several other bacterial genera are modified cells that are able to survive long periods and extreme conditions in a dormant, relatively dehydrated state. The PG wall within the endospore is required for maintenance of the dehydrated state (10, 11), which is the major determinant of spore heat resistance (2, 17, 22). Spore PG appears to be comprised of two distinct though contiguous layers. The thin inner layer, the germ cell wall, appears to have a structure similar to that of the vegetative wall and serves as the initial cell wall of the germinated spore (1, 20, 21, 31). The thicker outer layer, the spore cortex, has a modified structure which may determine its ability to carry out roles specific to the spore, and is rapidly degraded during spore germination (1, 20, 35, 37). The most dramatic of the cortex structural modifications results in partial cleavage or complete removal of ∼75% of the peptide side chains from the glycan strands. Loss of these peptides limits the cross-linking potential of the PG and results in the formation of only one peptide cross-link per 35 disaccharide units in the spore PG, compared to one peptide cross-link per 2.3 to 2.9 disaccharide units in the vegetative PG (1, 20, 36). This low degree of cross-linking has been predicted to give spore PG a flexibility that allows it to have a role in attainment of spore core dehydration (14, 34) in addition to its clear role in maintenance of dehydration. We are studying the structure and mechanism of synthesis of spore PG in an attempt to discern the roles of this structure and its individual components in determining spore properties.A family of proteins called the penicillin-binding proteins (PBPs) polymerizes PG on the external surface of the cell membrane (reviewed in reference 7). The high-molecular-weight (high-MW) members of this family (generally ≥60 kDa) carry the transglycosylase and transpeptidase activities involved in polymerization and cross-linking of the glycan strands. The low-MW PBPs have commonly been found to possess d,d-carboxypeptidase activity. This activity can remove the terminal d-alanine of the peptide side chains and thereby prevent the side chain from serving as a donor in the formation of a peptide cross-link. Analysis of the B. subtilis genome reveals six low-MW PBP-encoding genes: dacA (33), dacB (4), dacC (19), dacF (38), pbpE (23), and pbpX (accession no. Z99112). The four dac gene products exhibit very high sequence similarity to proven d,d-carboxypeptidases, and this activity has been demonstrated in vitro for the dacA and dacB products, PBP5 (12) and PBP5* (32), respectively. The sequences of the pbpE and pbpX products are more distantly related, and no activity has yet been established or ruled out for them.PBP5 is the major penicillin-binding and d,d-carboxypeptidase activity found in vegetative cells (12). Although dacA expression declines significantly during sporulation, a significant amount of PBP5 remains during the time of spore PG synthesis (29). A dacA-null mutation results in no obvious effects on vegetative growth, sporulation, spore characteristics, or spore germination (3, 33). However, loss of PBP5 does result in a reduction of cleavage of peptide side chains from the tetrapeptide to the tripeptide form in the spore PG (20). PBP5* is expressed only during sporulation and only in the mother cell compartment of the sporangium, under the control of the RNA polymerase ςE subunit (4, 5, 28, 29). A dacB-null mutation leading to loss of this d,d-carboxypeptidase results in a fourfold increase in the effective cross-linking of the spore PG (1, 20, 22). This structural change is accompanied by only slight decreases in spore core dehydration and heat resistance (3, 22). The suspected d,d-carboxypeptidase activities of the products of the dacC and dacF genes have not been demonstrated. The latter two genes are expressed only during the postexponential growth phase: dacC is expressed during early stationary phase under the control of ςH (19) and dacF is expressed only within the forespore under the control of ςF (27, 38). Null mutations effecting either gene result in no obvious phenotype and no change in spore PG structure (19, 38).The multiplicity of these proteins in sporulating cells and the lack of effect of loss of some of them suggested redundancy of function among these proteins, a situation observed previously with PBPs of a high-MW class (25, 30, 39). In order to examine this possibility we have constructed mutants lacking multiple low-MW PBPs and have examined their sporulation efficiency, spore PG structure, spore heat resistance and wet density, and spore germination and outgrowth. The present study demonstrates a role for the dacF gene product in synthesis of spore PG, and we also present a model for the roles of the dacB and dacF gene products in spore PG formation.  相似文献   

13.
A procedure for the isolation of exo-beta-N-acetylglucosaminidase mutants, by using a plate assay method incorporating a fluorescent substrate, has been developed. A mutant lacking exo-beta-N-acetylglucosaminidase activity has been isolated and shown to grow, divide, autolyze, and sporulate as well as the parental strain.  相似文献   

14.
This study examined the hypothesis that ATP, released together with norepinephrine (NE) from brain noradrenergic nerve terminals, may serve as a cosubstrate for an extracellular protein phosphorylation system that regulates the reuptake of the transmitter, NE. The possible regulation of high-affinity uptake (uptake 1) of [3H]NE by divalent cations and ATP, both of which are involved in protein phosphorylation, was examined in rat cerebral cortical synaptosomes. A marked inhibition of uptake 1 by 5'-adenylylimidodiphosphate [App(NH)p], a nonhydrolyzable, competitive antagonist of ATP, was observed. A similar inhibition of uptake was observed when Ca2+ and Mg2+ were both omitted from the incubation medium. App(NH)p distinguished the actions of Ca2+ from those of Mg2+: Ca2+-stimulated uptake 1 was blocked by App(NH)p; Mg2+-stimulated uptake was not. In parallel experiments, the patterns of protein phosphorylation in crude and purified preparations of synaptosomes were examined under conditions similar to those used in uptake assays. A striking correlation was found between the inhibition of uptake 1, by either App(NH)p or Ca-omission, and inhibition of the phosphorylation of one specific, 39,000-dalton, Ca2+-dependent, protein component in synaptosomes. This 39K protein was distinct from the alpha subunit of pyruvate dehydrogenase, a mitochondrial protein of similar electrophoretic mobility. These findings are consistent with the possibility that an ectokinase on synaptosomes utilizes extracellular ATP and Ca2+ in phosphorylating a protein(s) associated with the regulation of NE uptake.  相似文献   

15.
Summary The minicell producing strain Bacillus subtilis IA292 was transformed with plasmids encoding the Bacillus enzymes -glucanase, -amylase and neutral protease. Purified minicells were shown to be free of detectable proteolytic activity. Minicells containing plasmids were found to synthesise all three enzymes internally, but evidence of secretion was only observed in the unique case of neutral protease secretion by minicells prepared from cultures grown in BHI medium.  相似文献   

16.
Gain- and loss-of-function studies indicate that the adherens junction protein shrew-1 acts as a novel modulator of E-cadherin internalization induced by epithelial growth factor (EGF) or E-cadherin function-blocking antibody during epithelial cell dynamics. Knocking down shrew-1 in MCF-7 carcinoma cells preserves E-cadherin surface levels upon EGF stimulation. Overexpression of shrew-1 leads to preformation of an E-cadherin/EGF receptor (EGFR) HER2/src-kinase/shrew-1 signaling complex and accelerated E-cadherin internalization. Shrew-1 is not sufficient to stimulate E-cadherin internalization, but facilitates the actions of EGFR and thus may promote malignant progression in breast cancer cells with constitutive EGFR stimulation by reducing surface E-cadherin expression.  相似文献   

17.
International Journal of Peptide Research and Therapeutics - The proteolytic action from encapsulated Bacillus subtilis cells into polymeric system based in sodium alginate-chitosan-poly (ethylene...  相似文献   

18.
The general protein secretion pathway of Bacillus subtilis has a high capacity for protein export from the cytoplasm, which is exploited in the biotechnological production of a wide range of enzymes. These exported proteins pass the membrane in an unfolded state, and accordingly, they have to fold into their active and protease-resistant conformations once membrane passage is completed. The lipoprotein PrsA and the membrane proteins HtrA and HtrB facilitate the extracytoplasmic folding and quality control of exported proteins. Among the native exported proteins of B. subtilis are at least 10 proteases that have previously been implicated in the degradation of heterologous secreted proteins. Recently, we have shown that these proteases also degrade many native membrane proteins, lipoproteins, and secreted proteins. The present studies were therefore aimed at assessing to what extent these proteases also degrade extracytoplasmic catalysts for protein folding. To this end, we employed a collection of markerless protease mutant strains that lack up to 10 different extracytoplasmic proteases. The results show that PrsA, HtrA, and HtrB are indeed substrates of multiple extracytoplasmic proteases. Thus, improved protein secretion by multiple-protease-mutant strains may be related to both reduced proteolysis and improved posttranslocational protein folding and quality control.  相似文献   

19.
Gram-positive sporulating Bacillus subtilis secretes high levels of protein. Its complete genome sequence, published in 1997, encodes 4,106 proteins. Bioinformatic searches have predicted that about half of all B. subtilis proteins are related to the cell membrane through export to the extracellular medium, insertion, and attachment. Key features of the B. subtilis protein secretion machinery are the absence of an Escherichia coli SecB homolog and the presence of an SRP (signal recognition particle) that is structurally rather similar to human SRP. In addition, B. subtilis contains five type I signal peptidases (SipS, T, U, V, and W). Our in vitro assay system indicated that co-operation between the SRP-protein targeting system to the cell membrane and the Sec protein translocation machinery across the cytoplasmic membrane constitutes the major protein secretion pathway in B. subtilis. Furthermore, the function of the SRP-Sec pathway in protein localization to the cell membrane and spore was analyzed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号