首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The loss of Bacillus subtilis penicillin-binding protein (PBP) 2a, encoded by pbpA, was previously shown to slow spore outgrowth and result in an increased diameter of the outgrowing spore. Further analyses to define the defect in pbpA spore outgrowth have shown that (i) outgrowing pbpA spores exhibited only a slight defect in the rate of peptidoglycan (PG) synthesis compared to wild-type spores, but PG turnover was significantly slowed during outgrowth of pbpA spores; (ii) there was no difference in the location of PG synthesis in outgrowing wild-type and pbpA spores once cell elongation had been initiated; (iii) outgrowth and elongation of pbpA spores were dramatically affected by the levels of monovalent or divalent cations in the medium; (iv) there was a partial redundancy of function between PBP2a and PBP1 or -4 during spore outgrowth; and (v) there was no difference in the structure of PG from outgrowing wild-type spores or spores lacking PBP2a or PBP2a and -4; but also (vi) PG from outgrowing spores lacking PBP1 and -2a had transiently decreased cross-linking compared to PG from outgrowing wild-type spores, possibly due to the loss of transpeptidase activity.  相似文献   

2.
Phosphorothioate oligodeoxynucleotides (ODNs) have been extensively investigated in vivo and in vitro for antisense control of gene expression. It has been shown that cellular uptake of phosphorothioate ODNs in some in vitro cell systems increases in the presence of divalent cations. In this work, we analyze the conformation of phosphorothioate ODNs and specific changes induced in it by various divalent cations using circular dichroism (CD) spectroscopy. CD data were obtained with several phosphorothioate ODNs in the absence and presence of the divalent cations Mg2+, Ca2+, Sr2+, Ba2+ and Mn2+. All CD spectra indicated stable conformations of the ODNs in solution. The spectra were strongly dependent on ODN sequence and composition. Some ODNs such as T23 and another with ‘random’ distribution of bases showed CD spectra characteristic of B-form DNA. Other ODNs which had at least three consecutive guanines in their sequences exhibited spectra characteristic of parallel G-tetraplexes. CD spectra of antisense ODNs exhibited specific responses to divalent cations. Changes in the conformation were not simply due to ionic strength effects. Mn2+ diminished secondary structure in some ODNs. Group II divalent ions stabilized the parallel G-tetraplexes, and Mg2+ generally had the weakest stabilizing efficiency. Each sequence/ion combination had a specific response so these effects cannot be generalized. These sequence-dependent, divalent ion-sensitive, and structurally unique solution conformations may be related to ion-mediated ODN uptake.  相似文献   

3.
The regimen conferring competence for uptake of transforming DNA is shown to render Escherichia coli osmolabile. Three different K-12 strains were exposed to the standard procedure of competence induction, i.e. incubation in the presence of 0.1 M Ca2+ or Mg2+ for 50 min at 0°C, interrupted by a heat shock for 5 min at 37°C. Upon osmotic challenge of competent cells formation of protoplasts was observed in approximately 2% of the treated cells. Incubation of competent cells of strain W1485 in phosphate-buffered saline for 1, 2, and 3 h reduced the viable counts to 67, 58, and 41%, respectively. Competence induction with divalent cations altered the affinity of penicillin-binding proteins (PBPs) for [125I]ampicillin. In isolated cell envelopes the presence of Ca2+ and Mg2+ stimulated the binding of [125I]ampicillin to PBPs 1, 3, 4, 5, and 6, whereas the binding to PBP 2 remained unchanged. The binding to PBP 1 C was inhibited by 0.23 M Ca2+. In living cells the binding to PBPs 1, 3, and 4 was enhanced, while the binding to PBP 8 was inhibited. Newly [125I]ampicillin-labelled proteins of M r 55,000 and 45,000 were apparent, especially after competence induction with Ca2+. Interaction of divalent cations with PBPs is suggested to contribute to osmolability of competent cells. Disintegration of the cell wall may be necessary for uptake of transforming DNA.Abbreviations PBP(s) penicillin-binding protein(s) - PBS phosphate-buffered saline - k kilodaltons - SDS sodium dodecyl sulfate  相似文献   

4.
Senior A  Moir A 《Journal of bacteriology》2008,190(18):6148-6152
The GerT protein of Bacillus cereus shares 74% amino acid identity with its homolog GerN. The latter is a Na+/H+-K+ antiporter that is required for normal spore germination in inosine. The germination properties of single and double mutants of B. cereus ATCC 10876 reveal that unlike GerN, which is required for all germination responses that involve the GerI germinant receptor, the GerT protein does not have a significant role in germination, although it is required for the residual GerI-mediated inosine germination response of a gerN mutant. In contrast, GerT has a significant role in outgrowth; gerT mutant spores do not outgrow efficiently under alkaline conditions and outgrow more slowly than the wild type in the presence of high NaCl concentrations. The GerT protein in B. cereus therefore contributes to the success of spore outgrowth from the germinated state during alkaline or Na+ stress.  相似文献   

5.
The effect of gastrointestinal mucus on protease activity in Vibrio anguillarum was investigated. Protease activity was measured by using an azocasein hydrolysis assay. Cells grown to stationary phase in mucus (200 μg of mucus protein/ml) exhibited ninefold-greater protease activity than cells grown in Luria-Bertani broth plus 2% NaCl (LB20). Protease induction was examined with cells grown in LB20 and resuspended in mucus, LB20, nine-salts solution (NSS [a carbon-, nitrogen-, and phosphorus-free salt solution]), or marine minimal medium (3M) (~109 CFU/ml). Induction of protease activity occurred 60 to 90 min after addition of mucus and was ≥70-fold greater than protease activity measured in cells incubated in either LB20 or 3M. Mucus was fractionated into aqueous and chloroform-methanol-soluble fractions. The aqueous fraction supported growth of V. anguillarum cells, but did not induce protease activity. The chloroform-methanol-soluble fraction did not support growth, nor did it induce protease activity. When the two fractions were mixed, protease activity was induced. The chloroform-methanol-soluble fraction did not induce protease activity in cells growing in LB20. EDTA (50 mM) inhibited the protease induced by mucus. Upon addition of divalent cations, Mg2+ (100 mM) was more effective than equimolar amounts of either Ca2+ or Zn2+ in restoring activity, suggesting that the mucus-inducible protease was a magnesium-dependent metalloprotease. An empA mutant strain of V. anguillarum did not exhibit protease activity after exposure to mucus, but did grow in mucus. Southern analysis and PCR amplification confirmed that V. anguillarum M93 contained empA. These data demonstrate that the empA metalloprotease of V. anguillarum is specifically induced by gastrointestinal mucus.  相似文献   

6.
The ability of bacterial cells to sequester cations is well recognized, despite the fact that the specific binding sites and mechanistic details of the process are not well understood. To address these questions, the cation-exchange behavior of Pseudomonas aeruginosa PAO1 cells with a truncated lipopolysaccharide (LPS) (PAO1 wbpL) and cells further modified by growth in a magnesium-deficient medium (PAO1 wbpL − Mg2+) were compared with that of wild-type P. aeruginosa PAO1 cells. P. aeruginosa PAO1 cells had a negative surface charge (zeta potential) between pH 11 and 2.2, due to carboxylate groups present in the B-band LPS. The net charge on PAO1 wbpL cells was increasingly positive below pH 3.5, due to the influence of NH3+ groups in the core LPS. The zeta potentials of these cells were also measured in Na+, Ca2+, and La3+ electrolytes. Cells in the La3+ electrolyte had a positive zeta potential at all pH values tested. Growing P. aeruginosa PAO1 wbpL in magnesium-deficient medium (PAO1 wbpL − Mg2+) resulted in an increase in its zeta potential in the pH range from 3.0 to 6.5. In cation-exchange experiments carried out at neutral pH with either P. aeruginosa PAO1 or PAO1 wbpL, the concentration of bound Ca2+ was found to decrease as the pH was reduced from 7.0 to 3.5. At pH 3.5, the bound Mg2+ concentration decreased sharply, revealing the activity of surface sites for cation exchange and their pH dependence. Infrared spectroscopy of attached biofilms suggested that carboxylate and phosphomonoester functional groups within the core LPS are involved in cation exchange.  相似文献   

7.
We investigated the cellular mechanisms that led to growth inhibition, morphological changes, and lysis of Bacillus cereus WSBC 10030 when it was challenged with a long-chain polyphosphate (polyP). At a concentration of 0.1% or higher, polyP had a bacteriocidal effect on log-phase cells, in which it induced rapid lysis and reductions in viable cell counts of up to 3 log units. The cellular debris consisted of empty cell wall cylinders and polar caps, suggesting that polyP-induced lysis was spatially specific. This activity was strictly dependent on active growth and cell division, since polyP failed to induce lysis in cells treated with chloramphenicol and in stationary-phase cells, which were, however, bacteriostatically inhibited by polyP. Similar observations were made with B. cereus spores; 0.1% polyP inhibited spore germination and outgrowth, and a higher concentration (1.0%) was even sporocidal. Supplemental divalent metal ions (Mg2+ and Ca2+) could almost completely block and reverse the antimicrobial activity of polyP; i.e., they could immediately stop lysis and reinitiate rapid cell division and multiplication. Interestingly, a sublethal polyP concentration (0.05%) led to the formation of elongated cells (average length, 70 μm) after 4 h of incubation. While DNA replication and chromosome segregation were undisturbed, electron microscopy revealed a complete lack of septum formation within the filaments. Exposure to divalent cations resulted in instantaneous formation and growth of ring-shaped edges of invaginating septal walls. After approximately 30 min, septation was complete, and cell division resumed. We frequently observed a minicell-like phenotype and other septation defects, which were probably due to hyperdivision activity after cation supplementation. We propose that polyP may have an effect on the ubiquitous bacterial cell division protein FtsZ, whose GTPase activity is known to be strictly dependent on divalent metal ions. It is tempting to speculate that polyP, because of its metal ion-chelating nature, indirectly blocks the dynamic formation (polymerization) of the Z ring, which would explain the aseptate phenotype.  相似文献   

8.
The Hsp70 Ssb and J protein Zuo1 of Saccharomyces cerevisiae are ribosome-associated molecular chaperones, proposed to be involved in the folding of newly synthesized polypeptide chains. Cells lacking Ssb and/or Zuo1 have been reported to be hypersensitive to cationic aminoglycoside protein synthesis inhibitors that affect translational fidelity and to NaCl. Since we found that Δssb1 Δssb2ssb1,2), Δzuo1, and wild-type cells have very similar levels of translational misreading in the absence of aminoglycosides, we asked whether the sensitivities to aminoglycosides and NaCl represent a general increase in sensitivity to cations. We found that Δssb1,2 and Δzuo1 cells are hypersensitive to a wide range of cations. This broad sensitivity is similar to that of cells having lowered activity of major plasma membrane transporters, such as the major K+ transporters Trk1 and Trk2 or their regulators Hal4 and Hal5. Like Δhal4,5 cells, Δssb1,2 and Δzuo1 cells have increased intracellular levels of Na+ and Li+ upon challenge with higher-than-normal levels of these cations, due to an increased rate of influx. In the presence of aminoglycosides, Δssb1,2, Δzuo1, and Δhal 4,5 cells have similarly increased levels of translational misreading. We conclude that, in vivo, the major cause of the aminoglycoside sensitivity of cells lacking ribosome-associated molecular chaperones is a general increase in cation influx, perhaps due to altered maturation of membrane proteins.  相似文献   

9.
Mg2+ is one of the essential elements for bacterial cell growth. The presence of the magnesium cation (Mg2+) in various concentrations often affects cell growth restoration in plant-associating bacteria. This study attempted to determine whether Mg2+ levels in Sphingomonas yanoikuyae EC-S001 affected cell growth restoration in the host plant and what the threshold level is. S. yanoikuyae EC-S001, isolated from the rhizoplane of spinach seedlings grown from surface-sterilized seeds under aseptic conditions, displayed uniform dispersion and attachment throughout the rhizoplane and phylloplane of the host seedlings. S. yanoikuyae EC-S001 did not grow in potato-dextrose broth medium but grew well in an aqueous extract of spinach leaves. Chemical investigation of the growth factor in the spinach leaf extract led to identification of the active principle as the magnesium cation. A concentration of ca. 0.10 mM Mg2+ or more allowed S. yanoikuyae EC-S001 to grow in potato-dextrose broth medium. Some saprophytic and/or diazotrophic bacteria used in our experiment were found to have diverse threshold levels for their Mg2+ requirements. For example, Burkholderia cepacia EC-K014, originally isolated from the rhizoplane of a Melastoma sp., could grow even in Mg2+-free Hoagland's no. 2 medium with saccharose and glutamine (HSG medium) and requires a trace level of Mg2+ for its growth. In contrast, S. yanoikuyae EC-S001, together with Bacillus subtilis IFO12113, showed the most drastic restoring responses to subsequent addition of 0.98 mM Mg2+ to Mg2+-free HSG medium. Our studies concluded that Mg2+ is more than just the essential trace element needed for cell growth restoration in S. yanoikuyae EC-S001 and that certain nonculturable bacteria may require a higher concentration of Mg2+ or another specific essential element for their growth.  相似文献   

10.
Cells maintain an osmotic pressure essential for growth and division, using organic compatible solutes and inorganic ions. Mg2+, which is the most abundant divalent cation in living cells, has not been considered an osmotically important solute. Here we show that under carbon limitation or dormancy native marine bacterial communities have a high cellular concentration of Mg2+ (370–940 m) and a low cellular concentration of Na+ (50–170 m). With input of organic carbon, the average cellular concentration of Mg2+ decreased 6–12-fold, whereas that of Na+ increased ca 3–4-fold. The concentration of chlorine, which was in the range of 330–1200 m and was the only inorganic counterion of quantitative significance, balanced and followed changes in the concentration of Mg2++Na+. In an osmotically stable environment, like seawater, any major shift in bacterial osmolyte composition should be related to shifts in growth conditions, and replacing organic compatible solutes with inorganic solutes is presumably a favorable strategy when growing in carbon-limited condition. A high concentration of Mg2+ in cells may also serve to protect and stabilize macromolecules during periods of non-growth and dormancy. Our results suggest that Mg2+ has a major role as osmolyte in marine bacteria, and that the [Mg2+]/[Na+] ratio is related to its physiological condition and nutritional status. Bacterial degradation is a main sink for dissolved organic carbon in the ocean, and understanding the mechanisms limiting bacterial activity is therefore essential for understanding the oceanic C-cycle. The [Mg2+]/[Na+]-ratio in cells may provide a physiological proxy for the transitions between C-limited and mineral nutrient-limited bacterial growth in the ocean''s surface layer.  相似文献   

11.
CSP41 is a ubiquitous chloroplast endoribonuclease belonging to the short chain dehydrogenase/reductase (SDR) superfamily. To help elucidate the role of CSP41 in chloroplast gene regulation, the mechanisms that determine its substrate recognition and catalytic activity were investigated. A divalent metal is required for catalysis, most probably to provide a nucleophile for cleavage 5′ to the phosphodiester bond, and may also participate in cleavage site selection. This requirement distinguishes CSP41 from other Rossman fold-containing proteins from the SDR superfamily, including several RNA-binding proteins and endonucleases. CSP41 is active only in the presence of MgCl2 and CaCl2. Although Mg2+- and Ca2+-activated CSP41 cleave at identical sites in the single-stranded regions of a stem–loop-containing substrate, Mg2+-activated CSP41 was also able to cleave within the double-stranded region of the stem–loop. Mixed metal experiments with Mg2+ and Ca2+ suggest that CSP41 contains a single divalent metal-binding site which is non-selective, since Mn2+, Co2+ and Zn2+ compete with Mg2+ for binding, although there is no activity in their presence. Using site-directed mutagenesis, we identified three residues, Asn71, Asp89 and Asp103, which may form the divalent metal-binding pocket. The activation constant for Mg2+ (KA,Mg = 2.1 ± 0.4 mM) is of the same order of magnitude as the stromal Mg2+ concentrations, which fluctuate between 0.5 and 10 mM as a function of light and of leaf development. These changes in stromal Mg2+ concentration may regulate CSP41 activity, and thus cpRNA stability, during plant development.  相似文献   

12.

Background

In Escherichia coli, MinD-GFP fusion proteins show rapid pole to pole oscillations. The objective was to investigate the effects of extracellular cations on the subcellular oscillation of cytoplasmic MinD within Escherichia coli.

Methodology/Principal Findings

We exposed bacteria to the extracellular cations Ca++, Mg++, the cationic antimicrobial peptide (CAP) protamine, and the cationic aminoglycoside gentamicin. We found rapid and substantial increases in the average MinD oscillation periods in the presence of any of these polyvalent cations. For Ca++ and Mg++ the increases in period were transient, even with a constant extracellular concentration, while increases in period for protamine or gentamicin were apparently irreversible. We also found striking interdependence in the action of the small cations with protamine or gentamicin, distorted oscillations under the action of intermediate levels of gentamicin and Ca++, and reversible freezing of the Min oscillation at high cationic concentrations.

Conclusions/Significance

Intracellular Min oscillations provide a fast single-cell reporter of bacterial response to extracellular polycations, which can be explained by the penetration of polycations into cells.  相似文献   

13.
We have used the patch clamp technique to characterize whole-cell currents in spheroplasts isolated from a trk1Δ trk2Δ strain of Saccharomyces cerevisiae which lacks high- and moderate-affinity K+ uptake capacity. In solutions in which extracellular divalent cation concentrations were 0.1 mM, cells exhibited a large inward current. This current was not the result of increasing leak between the glass pipette and membrane, as there was no effect on the outward current. The inward current comprised both instantaneous and time-dependent components. The magnitude of the inward current increased with increasing extracellular K+ and negative membrane potential but was insensitive to extracellular anions. Replacing extracellular K+ with Rb+, Cs+, or Na+ only slightly modulated the magnitude of the inward current, whereas replacement with Li+ reduced the inward current by approximately 50%, and tetraethylammonium (TEA+) and choline were relatively impermeant. The inward current was blocked by extracellular Ca2+ and Mg2+ with apparent Kis (at −140 mV) of 363 ± 78 and 96 ± 14 μM, respectively. Furthermore, decreasing cytosolic K+ increased the magnitude of the inward current independently of the electrochemical driving force for K+ influx, consistent with regulation of the inward current by cytosolic K+. Uptake of 86Rb+ by intact trk1Δ trk2Δ cells was inhibited by extracellular Ca2+ with a Ki within the range observed for the inward current. Furthermore, increasing extracellular Ca2+ from 0.1 to 20 mM significantly inhibited the growth of these cells. These results are consistent with those of the patch clamp experiments in suggesting that low-affinity uptake of alkali cations in yeast is mediated by a transport system sensitive to divalent cations.  相似文献   

14.
We used fluorescein-tagged β-lactam antibiotics to visualize penicillin-binding proteins (PBPs) in sporulating cultures of Streptomyces griseus. Six PBPs were identified in membranes prepared from growing and sporulating cultures. The binding activity of an 85-kDa PBP increased fourfold by 10 to 12 h of sporulation, at which time the sporulation septa were formed. Cefoxitin inhibited the interaction of the fluorescein-tagged antibiotics with the 85-kDa PBP and also prevented septum formation during sporulation but not during vegetative growth. The 85-kDa PBP, which was the predominant PBP in membranes of cells that were undergoing septation, preferentially bound fluorescein-6-aminopenicillanic acid (Flu-APA). Fluorescence microscopy showed that the sporulation septa were specifically labeled by Flu-APA; this interaction was blocked by prior exposure of the cells to cefoxitin at a concentration that interfered with septation. We hypothesize that the 85-kDa PBP is involved in septum formation during sporulation of S. griseus.  相似文献   

15.
Hortaea werneckii and Aureobasidium pullulans, black yeast-like fungi isolated from hypersaline waters of salterns as their natural ecological niche, have been previously defined as halophilic and halotolerant microorganisms, respectively. In the present study we assessed their growth and determined the intracellular cation concentrations of salt-adapted and non-salt-adapted cells of both species at a wide range of salinities (0 to 25% NaCl and 0 to 20% NaCl, respectively). Although 5% NaCl improved the growth of H. werneckii, even the minimal addition of NaCl to the growth medium slowed down the growth rate of A. pullulans, confirming their halophilic and halotolerant nature. Salt-adapted cells of H. werneckii and A. pullulans kept very low amounts of internal Na+ even when grown at high NaCl concentrations and can be thus considered Na+ excluders, suggesting the existence of efficient mechanisms for the regulation of ion fluxes. Based on our results, we can conclude that these organisms do not use K+ or Na+ for osmoregulation. Comparison of cation fluctuations after a hyperosmotic shock, to which nonadapted cells of both species were exposed, demonstrated better ionic homeostasis regulation of H. werneckii compared to A. pullulans. We observed small fluctuations of cation concentrations after a hyperosmotic shock in nonadapted A. pullulans similar to those in salt-adapted H.werneckii, which additionally confirmed better regulation of ionic homeostasis in the latter. These features can be expected from organisms adapted to survival within a wide range of salinities and to occasional exposure to extremely high NaCl concentrations, both characteristic for their natural environment.  相似文献   

16.
Previous studies have described both surface morphology and adhesive properties of fungal spores, but little information is currently available on their mechanical properties. In this study, atomic force microscopy (AFM) was used to investigate both surface topography and micromechanical properties of Aspergillus nidulans spores. To assess the influence of proteins covering the spore surface, wild-type spores were compared with spores from isogenic rodA+ and rodA strains. Tapping-mode AFM images of wild-type and rodA+ spores in air showed characteristic “rodlet” protein structures covering a granular spore surface. In comparison, rodA spores were rodlet free but showed a granular surface structure similar to that of the wild-type and rodA+ spores. Rodlets were removed from rodA+ spores by sonication, uncovering the underlying granular layer. Both rodlet-covered and rodlet-free spores were subjected to nanoindentation measurements, conducted in air, which showed the stiffnesses to be 110 ± 10, 120 ± 10, and 300 ± 20 N/m and the elastic moduli to be 6.6 ± 0.4, 7.0 ± 0.7, and 22 ± 2 GPa for wild-type, rodA+ and rodA spores, respectively. These results imply the rodlet layer is significantly softer than the underlying portion of the cell wall.  相似文献   

17.
Connexin hemichannels are robustly regulated by voltage and divalent cations. The basis of voltage-dependent gating, however, has been questioned with reports that it is not intrinsic to hemichannels, but rather is derived from divalent cations acting as gating particles that block the pore in a voltage-dependent manner. Previously, we showed that connexin hemichannels possess two types of voltage-dependent gating, termed Vj and loop gating, that in Cx46 operate at opposite voltage polarities, positive and negative, respectively. Using recordings of single Cx46 hemichannels, we found both forms of gating persist in solutions containing no added Mg2+ and EGTA to chelate Ca2+. Although loop gating persists, it is significantly modulated by changing levels of extracellular divalent cations. When extracellular divalent cation concentrations are low, large hyperpolarizing voltages, exceeding −100 mV, could still drive Cx46 hemichannels toward closure. However, gating is characterized by continuous flickering of the unitary current interrupted by occasional, brief sojourns to a quiet closed state. Addition of extracellular divalent cations, in this case Mg2+, results in long-lived residence in a quiet closed state, suggesting that hyperpolarization drives the hemichannel to close, perhaps by initiating movements in the extracellular loops, and that divalent cations stabilize the fully closed conformation. Using excised patches, we found that divalent cations are only effective from the extracellular side, indicative that the binding site is not cytoplasmic or in the pore, but rather extracellular. Vj gating remains essentially unaffected by changing levels of extracellular divalent cations. Thus, we demonstrate that both forms of voltage dependence are intrinsic gating mechanisms in Cx46 hemichannels and that the action of external divalent cations is to selectively modulate loop gating.  相似文献   

18.
Oxidative stress-induced damage, including 8-oxo-guanine and apurinic/apyrimidinic (AP) DNA lesions, were detected in dormant and outgrowing Bacillus subtilis spores lacking the AP endonucleases Nfo and ExoA. Spores of the Δnfo exoA strain exhibited slightly slowed germination and greatly slowed outgrowth that drastically slowed the spores'' return to vegetative growth. A null mutation in the disA gene, encoding a DNA integrity scanning protein (DisA), suppressed this phenotype, as spores lacking Nfo, ExoA, and DisA exhibited germination and outgrowth kinetics very similar to those of wild-type spores. Overexpression of DisA also restored the slow germination and outgrowth phenotype to nfo exoA disA spores. A disA-lacZ fusion was expressed during sporulation but not in the forespore compartment. However, disA-lacZ was expressed during spore germination/outgrowth, as was a DisA-green fluorescent protein (GFP) fusion protein. Fluorescence microscopy revealed that, as previously shown in sporulating cells, DisA-GFP formed discrete globular foci that colocalized with the nucleoid of germinating and outgrowing spores and remained located primarily in a single cell during early vegetative growth. Finally, the slow-outgrowth phenotype of nfo exoA spores was accompanied by a delay in DNA synthesis to repair AP and 8-oxo-guanine lesions, and these effects were suppressed following disA disruption. We postulate that a DisA-dependent checkpoint arrests DNA replication during B. subtilis spore outgrowth until the germinating spore''s genome is free of damage.  相似文献   

19.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Østerås, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na+/H+ antiporters in B. japonicum could explain its very high Na+ sensitivity.  相似文献   

20.
Penicillin-resistant isolates of Streptococcus pneumoniae generally contain mosaic genes encoding the low-affinity penicillin-binding proteins (PBPs) PBP2x, PBP2b, and PBP1a. We now present evidence that PBP2a and PBP1b also appear to be low-affinity variants and are encoded by distinct alleles in β-lactam-resistant transformants of S. pneumoniae obtained with chromosomal donor DNA from a Streptococcus mitis isolate. Different lineages of β-lactam-resistant pneumococcal transformants were analyzed, and transformants with low-affinity variants of all high-molecular-mass PBPs, PBP2x, -2a, -2b, -1a, and -1b, were isolated. The MICs of benzylpenicillin, oxacillin, and cefotaxime for these transformants were up to 40, 100, and 50 μg/ml, respectively, close to the MICs for the S. mitis donor strain. Recruitment of low-affinity PBPs was accompanied by a decrease in cross-linked muropeptides as revealed by high-performance liquid chromatography of muramidase-digested cell walls, but no qualitative changes in muropeptide chemistry were detected. The growth rates of all transformants were identical to that of the parental S. pneumoniae strain. The results stress the potential for the acquisition by S. pneumoniae of high-level β-lactam resistance by interspecies gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号