首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan-35SO4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin-35SO4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs were taken up by kidneys more avidly than was free [35S]sulfate. These 35S-GAGs were degraded and reutilized in the synthesis of chondroitin-35SO4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis.  相似文献   

2.
Previous studies have provided evidence for adrenocorticotropic hormone (ACTH) effects on a wide variety of behaviors. However, the precise sites of action and the mechanisms by which these effects may be mediated have yet to be clearly elucidated. Although ACTH was shown to augment cyclic AMP levels in glial cells isolated from whole brain, other studies found little or no effect of ACTH peptides on cyclic nucleotide metabolism in slices of cerebral cortex or homogenates of whole brain. In the present study, our objective was to determine whether ACTH peptides regulate intracellular cyclic AMP levels in neurons of the cerebral cortex in primary culture. ACTH peptides stimulated cyclic AMP synthesis up to threefold in a dose-dependent manner; stimulation was complete within 5-10 min of exposure to agonists. Neurohormone efficacy was augmented by 0.1 microM forskolin (which was virtually ineffective alone); potency was unaffected. The order of potency (EC50) for increasing intracellular cyclic AMP levels was as follows: ACTH (1-24), ACTH (1-17) (10 nM) greater than alpha-melanocyte stimulating hormone, beta-melanocyte stimulating hormone (alpha-MSH, beta-MSH) (100 nM) greater than ACTH (1-10) (1 microM) greater than ACTH (4-10) (5 microM). The hexapeptide ACTH (4-9) as well as ACTH (11-24) were inactive at concentrations as high as 10 microM. Other neuropeptides derived from proopiocortin, such as beta-endorphin and Met- and Leu-enkephalin were without effect on basal or hormonally stimulated cyclic AMP synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Forskolin, a plant cardiotonic diterpene, stimulated proteoglycan biosynthesis by chondrocytes in monolayer culture. The quantitative increase in proteoglycans was dependent on the concentration of forskolin, but was relatively independent of the presence of serum. At forskolin concentrations that stimulated proteoglycan synthesis, a significant stimulation of adenylate cyclase and cAMP was also measured. The quantitative increase in proteoglycans was characterized, qualitatively, by an increased deposition of newly synthesized proteoglycan in the cell-associated fraction. An analysis of the most dense proteoglycans (fraction dA1) in the cell-associated fraction showed that more of the proteoglycans eluted in the void volume of a Sepharose CL-2B column, indicating that an increased amount of proteoglycan aggregate was synthesized in forskolin-treated cultures. The proteoglycan monomer dA1D1 secreted into the culture medium of forskolin-stimulated cultures overlapped in hydrodynamic size with that of control cultures, although cultures stimulated with forskolin and phosphodiesterase inhibitors produced even larger proteoglycans. The hydrodynamic size of 35SO4 and 3H-glucosamine-labelled glycosaminoglycans isolated from the dA1D1 fraction of the culture medium was greater in forskolin-treated chondrocytes, especially from those in which phosphodiesterase inhibitors had been added. These results indicated that forskolin, a direct activator of chondrocyte adenylate cyclase mimicked the effects of cAMP analogues on chondrocyte proteoglycan synthesis previously reported. These results implicate activation of adenylate cyclase as a regulatory event in the biosynthesis of cartilage proteoglycans, and more specifically in the production of hydrodynamically larger glycosaminoglycans.  相似文献   

4.
There is growing evidence that cell shape regulates both proliferation and differentiated gene expression in a variety of cell types. We have explored the relationship between the morphology of articular chondrocytes in culture and the amount and type of proteoglycan they synthesize, using cytochalasin D to induce reversible cell rounding. When chondrocytes were prevented from spreading or when spread cells were induced to round up, 35SO4 incorporation into proteoglycan was stimulated. Incorporation into the cell layer was stimulated more than into the medium. When the cells were allowed to respread by removing cytochalasin D, proteoglycan synthesis returned to control levels. Cytochalasin D-induced stimulation of 35SO4 incorporation reflected an increase in core protein synthesis rather than lengthening of glycosaminoglycan chains, because [3H]serine incorporation into core protein was also stimulated. The observed stimulation of proteoglycan synthesis was not due to an overall stimulation of protein synthesis, to inhibition of DNA synthesis, or to accumulation of cells in one phase of the cell cycle. Cytochalasin D-treatment of cells in suspension caused no further stimulation of 35SO4 incorporation, suggesting that the observed effects were due to cell rounding rather than exposure to cytochalasin D per se; nevertheless, we cannot completely rule out other, nonspecific, effects of the drug. Fibroblasts and chondrocytes that had been passaged to stimulate dedifferentiation did not incorporate more 35SO4 when treated with cytochalasin D, suggesting that increased proteoglycan synthesis in response to rounding may itself be a differentiated property of chondrocytes.  相似文献   

5.
Morphology and de novo incorporation of [35S]sulfate into proteoglycans were studied in fetal mouse kidneys at the onset of organogenesis. Branching morphogenesis and nephron development in organ culture and in vivo were associated with de novo synthesis of chondroitin-SO4 and heparan-SO4 proteoglycans. The role of proteoglycan metabolism in metanephrogenesis was then studied by analysis of the effects of p-nitrophenyl-beta-D-xylopyranoside (beta-D-xyloside) on renal development and proteoglycan metabolism. Incubation of fetal kidneys in beta-D-xyloside at concentrations of 1.0 and 0.5 mM, but not at 0.1 mM, caused inhibition of ureteric branching and markedly diminished synthesis of a large Mr 2.0 X 10(6) Da chondroitin-SO4 proteoglycan. Incorporation of [35S]sulfate was stimulated at all beta-D-xyloside concentrations, reflecting synthesis of xyloside initiated dermatan-35SO4 chains. In contrast to dramatic effects on chondroitin-SO4 synthesis and ureteric branching, beta-D-xyloside had no effect on heparan-SO4 synthesis or on development of the glomerulus and glomerular basement membrane. We thus characterize the proteoglycans synthesized early in the course of renal organogenesis and describe observations which suggest an association between metabolism of chondroitin-SO4 proteoglycan and development of the ureter.  相似文献   

6.
Incorporation of sulfate into alcian blue-precipitable glycosaminoglycan of 12-day-old chick embryo sterna is stimulated by addition, separately or together, of normal human serum and physiological concentrations of thyroid hormones (Audhya, T.K., and Gibson, K.D. (1975) Proc. Natl. Acad, Sci. U. S. A. 72, 604--608). We present evidence that this stimulation is due to increased synthesis of at least one proteoglycan, with minor alterations in the size and chemical composition of the glycosaminoglycans. Pulse-chase experiments showed no detectable loss of label during the chase, in control sterna or sterna incubated with serum and L-3,5,3'-triiodothyronine; thus, all incorporation was the result of synthesis of glycosaminoglycans. In double-label experiments, with 35SO4(2-) and [3H]acetate, the molar ratio of 3H and 35S incorporated into glycosaminoglycans was changed little, if at all, by addition of serum or triiodothyronine or both, at concentrations which increased incorporation up to 2-fold. Glycosaminoglycans isolated from these and other incubations gave similar elution patterns from agarose columns, and identical electrophoretic patterns on cellulose acetate. Digestion with chondroitinase ABC (chondroitin ABC lyase; EC 4.2.2.4.) showed that incorporation was into chondroitin sulfate and possibly hyaluronic acid, and that the proportions of non-sulfated, 4-sulfated, and 6-sulfated disaccharide units differed little between stimulated and unstimulated sterna. Incorporation of [3H]serine into glycosaminoglycans from papain digest of sterna paralleled incorporation of 35SO4(2-), and indicated a number average molecular weight between 21,000 and 25,000 for the newly synthesized chondroitin sulfate. This value was confirmed by gel filtration chromatography, which also showed that the average molecular weight of the newly synthesized chondroitin sulfate decreased up to 15% under conditions of 2-fold stimulation. Proteoglycans were extracted from sterna incubated with [3H]serine and 35SO4(2-) and analyzed by isopycinic centrifugation in CsCl and by zone sedimentation in a sucrose gradient. A major proteoglycan fraction could be separated by either method. Incorporation of both isotopes into this proteoglycan fraction, and into glycosaminoglycans isolated after papain digestion, was stimulated in a coordinate manner. Almost identical results were obtained with both separation techniques. The results indicate that the synthesis of the major proteoglycan, and probably also of a minor one, is stimulated by serum and triiodothyronine.  相似文献   

7.
The effect of cell culture age and concomitant changes in cell density on the biosynthesis of sulfated-proteoglycan by rabbit articular chondrocytes in secondary monolayer culture was studied. Low density (LD, 2 d), middle density (MD, 5-7 d), and high density (HD, 12-15 d) cultures demonstrated changes in cellular morphology and rates of DNA synthesis. DNA synthesis was highest at LD to MD densities, but HD cultures continued to incorporate [3H]-thymidine. LD cultures incorporated 35SO4 into sulfated-proteoglycans at a higher rate than MD or LD cultures. The qualitative nature of the sulfated-proteoglycans synthesized at the different culture ages were analyzed by assessing the distribution of incorporated 35SO4 in associative and dissociative CsCl density gradients and by elution profiles on Sepharose CL-2B. Chondrocytes deposited into the extracellular matrix (cell-associated fraction) 35SO4-labeled proteoglycan aggregate. More aggregated proteoglycan was found in the MD and HD cultures than at LD. A 35SO4-labeled aggregated proteoglycan of smaller hydrodynamic size than that found in the cell-associated fraction was secreted into the culture medium at each culture age. The proteoglycan monomer (A1D1) of young and older cultures had similar hydrodynamic sizes at all cell culture ages and cell densities. The glycosaminoglycan chains of A1D1 were hydrodynamically larger in the younger LD cultures than in the older HD cultures and consisted of only chondroitin 6 and 4 sulfate chains. A small amount of chondroitin 4,6 sulfate was detected, but no keratan sulfate was measured. The A1D2 fractions of young LD cultures contained measurable amounts of dermatan sulfate; no dermatan sulfate was found in older MD or HD cultures. These studies indicated that chondrocytes at LD synthesized a proteoglycan monomer with many of the characteristics of young immature articular cartilage of rabbits. These results also indicated that rapidly dividing chondrocytes were capable of synthesizing proteoglycans which form aggregates with hyaluronic acid. Culture age and cell density appears primarily to modulate the synthesis of glycosaminoglycan types and chain length. Whether or not these glycosaminoglycans are found on the same or different core proteins remains to be determined.  相似文献   

8.
Balb/c 3T3 cells synthesize 5--10 times more 35SO2/4- -labeled extracellular proteoglycan per cell than do Balb/c 3T3 cells transformed by SV40 (SV3T3). The extracellular 35SO2/4- -labeled proteoglycans of the Balb/c 3T3 and SV3T3 cells differ markedly in their acid mucopolysaccharide composition. Extracellular Balb/c 3T3 proteoglycans contain about 70--80% chondroitin sulfate, most of which is chondroitin 4-sulfate, and small amounts of heparan sulfate and/or heparin. On the other hand, extracellular SV3T3 proteoglycans contain 65-75% heparan sulfate and/or heparin and less than 15% chondroitin sulfate. Analysis of extracellular 35SO2/4- -labeled proteoglycan by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals that Balb/c 3T3 alone synthesizes a class of proteoglycans capable of migrating in a 10% separating gel. This class of proteoglycans, designated as fraction C, accounts for up to 45% of the total extracellular Balb/c 3T3 35 SO2/4- -labeled proteoglycans and contains chondroitin sulfate extracellular SV3T3 proteoglycans. The absence of this and other classes of chondroitin sulfate-containing proteoglycans can account for the 5-10-fold decreased synthesis of 35SO2/4- -labeled proteoglycans by SV3T3 cells when compared to Balb/c 3T3 cells.  相似文献   

9.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

10.
The rates of 35S-sulfate incorporation into proteoglycan were compared in multi-scratch wounded and confluent cultures of bovine aortic endothelial cells to determine whether proteoglycan synthesis is altered as cells are stimulated to migrate and proliferate. Incorporation was found to be stimulated in a time-dependent manner, reaching maximal levels 44-50 h after wounding, as cells migrated into wounded areas of the culture dish. Quantitative autoradiography of 35S-sulfate-labeled single-scratch wounded cultures demonstrated a 2-4-fold increase in the number of silver grains over migrating cells near the wound edge when compared to cells remote from the wound edge. Furthermore, when cell proliferation was blocked by inhibition of DNA synthesis, the increase in 35S-sulfate incorporation into proteoglycan after wounding was unaffected. These data indicate that cell division is not required for the modulation of proteoglycan synthesis to occur after wounding. Characterization of the newly synthesized proteoglycan by ion-exchange and molecular sieve chromatography demonstrated that heparan sulfate proteoglycan constitutes approximately 80% of the labeled proteoglycan in postconfluent cultures, while after wounding, chondroitin sulfate proteoglycan and/or dermatan sulfate proteoglycan (CS/DSPG) increases to as much as 60% of the total labeled proteoglycan. These results suggest that CS/DSPG synthesis is stimulated concomitant with the stimulation of endothelial cell migration after wounding.  相似文献   

11.
Monolayer cultures of chick embryo tibial chondrocytes incorporate 35SO42- into chondroitin SO4 which is rapidly secreted from the cells into two extracellular pools. Part of the extracellular chondroitin SO4 is recovered in a soluble form in the culture medium, and the remainder is associated with the cell matrix from which it is released by isotonic trypsinization. At 38 degrees C labeled chondroitin SO4 appears in the cell matrix fraction within 5 min after addition of 35SO42- and in the culture medium fraction 15 min after 35SO42- is added. The intracellular pool of labeled chondroitin SO4 reaches a steady state level of 150 to 200 pmol of bound SO4 per 10(6) cells in 60 min, while the cell matrix and medium fractions increase at rates of 3 and 1 nmol of bound SO4 per h per 10(6) cells, respectively. After 4 h of labeling, less than 20% of the newly synthesized cell-associated chondroitin SO4 is in the intracellular fraction. By labeling cells for 15 min at 25 degrees C 80% of the cell-associated chondroitin 35SO4 is obtained in the intracellular fraction. This material is chased without lag into both the cell matrix fraction and the medium fraction. A mixture of NaF and NaCN, both at 30 mM, lowers the cellular ATP level to 15% of normal and blocks secretion of the intracellular chondroitin SO4 into both extracellular fractions. Colchicine at 10(-6) M gives a partial inhibition of both synthesis and secretion of chondroitinSO4. Sucrose density gradient sedimentation analysis of the intracellular chondroitin SO4 and the two extracellular fractions shows that all three fractions contain both a heavy and light proteoglycan fraction. The intracellular light proteoglycan fraction is secreted preferentially into the culture medium where it represents 30% of the total culture medium pool. The ratio of 6-sulfated GalNAc to 4-sulfated GalNAc in the heavy proteochondroitin SO4 fraction is approximately twice that found for the light fraction.  相似文献   

12.
We report here that forskolin acts in a synergistic manner with dopaminergic agonists, guanine nucleotides, or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase mediated by these reagents. In the presence of 100 microM GTP, 100 microM guanyl-5'-yl imidodiphosphate [Gpp(NH)p], or 10 mM NaF, there is a greater than additive increase in forskolin-stimulated enzyme activity as well as a concomitant decrease (two- to fourfold) in the EC50 value for forskolin stimulation of striatal enzyme activity. In the presence of various concentrations of forskolin (10 nM-100 microM), the stimulation of adenylate cyclase elicited by GTP, Gpp(NH)p, and NaF is potentiated 194-1,825%, 122-1,141%, and 208-938%, respectively, compared with the stimulation by these agents above basal activity in the absence of forskolin. With respect to 3,4-dihydroxyphenylethylamine (dopamine) receptor-mediated stimulation of striatal enzyme activity, the stimulation of enzyme activity by dopaminergic agonists, in the absence or presence of forskolin, was GTP-dependent and could be antagonized by the selective D-1 antagonist SCH23390 (100 nM), indicating that these effects are mediated by D-1 dopamine receptors. In the presence of 100 microM GTP, forskolin at various concentrations markedly potentiates the stimulation elicited by submaximal as well as a maximally effective concentrations of dopamine (100 microM) and SKF38393 (1 microM). At higher concentrations of forskolin (10-100 microM) the stimulation elicited by the partial agonist SKF38393 is comparable to that of the full agonist dopamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
The effect of various anti-inflammatory drugs on the production of prostaglandins E2 and F2 alpha, 6 keto PGF1 alpha and thromboxane B2 by bovine articular chondrocytes was measured by radioimmunoassay. While indomethacin and meclofenamic acid caused a dose-dependent inhibition of all prostanoids measured, the effects of hydrocortisone and colchicine varied with respect to different prostanoids. Hydrocortisone (10(-7)M - 10(-13)M) both in the presence and absence of added arachidonic acid, resulted in an inhibition of prostaglandins E2 and F2 alpha, and to a lesser extent, 6 keto PGF 1 alpha, but TxB2 production was only slightly inhibited by the drug in the absence of arachidonic acid and markedly increased in its presence. Colchicine (10(-7)M-10(-3)M) had the opposite effect, causing an inhibition of TxB2 and stimulating PGE2 and 6 keto PGF1 alpha production. These findings suggest that certain anti-inflammatory drugs may, in addition to their action on phospholipase A2 and cyclo-oxygenases, exert potent effects at the level of the different synthetases. In order to see whether these alterations in relative prostanoid levels affected proteoglycan metabolism, the effect of anti-inflammatory drugs on proteoglycan synthesis by cultured chondrocytes was tested using 35SO4 labeling methodology. The results showed that at the concentrations tested (10(-5)M to 10(-7)M), indomethacin, dexamethasone, hydrocortisone and colchicine inhibited 35SO4 incorporation into newly synthesized proteoglycan molecules both in the presence (10(-6)M) and absence of exogenous arachidonic acid. In the same concentration range chloroquine had no effect. These results do not support the hypothesis of direct prostanoid involvement in the modulation of proteoglycan synthesis in articular cartilage.  相似文献   

15.
The role of cyclic AMP on endothelial cell proliferation was investigated, since these cells can be exposed to high concentrations of physiological and pharmacological agents that alter cyclic AMP metabolism. Cloned bovine aortic endothelial cells were plated at 25,000 cells/35mm dish and grown for 5 days in the presence of phosphodiesterase (PDE) inhibitors, forskolin, or cyclic AMP analogs. The PDE inhibitors dipyridamole, ZK 62 711, isobutylmethylxanthine (IBMX) and theophylline inhibited cell growth in a concentration-dependent manner. Dipyridamole produced a 30% and a 50% inhibition at 5 microM and 12.5 microM, while higher concentrations were cytotoxic. At its therapeutic plasma concentration range (50-100 microM) theophylline inhibited cell proliferation by 15-25%, while IBMX and the highly specific cyclic AMP phosphodiesterase inhibitor, ZK 62 711 inhibited growth by 60-80% and 40-50%, respectively. Forskolin (5 microM) increased cyclic AMP levels and cyclic AMP-kinase activity ratios by 2.5-fold and 2-fold. In the absence of PDE inhibitors forskolin produced a 20% growth inhibition at 0.5 microM and a 60% inhibition at 10 microM. The forskolin dose-response curve was not altered by theophylline, but was shifted to the left by approximately 10-fold with dipyridamole and ZK 62 711 and 5-fold with IBMX. Forskolin (5 microM), by itself produced a 1.8-fold increase in cyclic AMP. In the presence of 5 microM theophylline, dipyridamole, IBMX, and ZK 62 711, cyclic AMP was increased by forskolin 2.0, 2.6, 3.5, and 6.6-fold, respectively. 8-Bromo cyclic AMP and dibutyryl cyclic AMP produced a 55% and 60% growth inhibition at 100 microM. The cyclic GMP analogs were less effective inhibitors of growth (15-30%). Our results demonstrate that cyclic AMP analogs and pharmacological agents that elevate intracellular cyclic AMP levels inhibit cell growth and suggest that cyclic AMP may be an important endogenous regulator of endothelial cell proliferation.  相似文献   

16.
Canine cartilage explants were maintained in a basal medium supplemented with a commercially available supplement (ITSCR+) which includes insulin for up to 12 days in culture. During this time it was found that proteoglycan synthesis, as measured by 35SO4 incorporation into high molecular weight proteoglycans, was maintained at levels comparable to those at Day O. This is in substantial agreement with the results of McQuillan et al. (1) for bovine cartilage explants. Since the basal medium which we used, Ham's F12, is low in calcium, we found that supplementation with additional calcium also was needed for maintenance of proteoglycan synthesis. This defined medium was not adequate to prevent a decrease in fibronectin, total protein, and collagen synthesis relative to Day O levels. The addition of transforming growth factor-beta (TGF-beta) at 2 and 10 ng/ml to the defined medium not only prevented the decline in fibronectin synthesis but progressively increased the rate of fibronectin synthesis until the Day O levels were exceeded by an average of fourfold. This TGF-beta-induced increase in fibronectin synthesis was contrasted with the increase in fibronectin synthesis previously reported for degenerated cartilage of osteoarthritic joints (2,3), and possible implications for understanding the disease were discussed.  相似文献   

17.
Transforming growth factor-beta (TGF-beta) enhances the production of extracellular matrix components, such as type I and type III collagen, fibronectin, proteoglycans, in various cell types. The effect on hyaluronan synthesis in relation to proteoglycan synthesis has not been investigated. Human lung or skin fibroblast cultures were treated with TGF-beta in serum-free medium for various periods of time. 35SO4 or [3H]glucosamine was then added to the cultures in the absence of TGF-beta for up to 48 h. Hyaluronan and proteoglycans were isolated by ion-exchange chromatography and quantitated. TGF-beta induced a three- to fourfold increase in hyaluronan production by lung cells but had no effect on skin fibroblasts. In contrast, proteoglycan synthesis was enhanced in both cell types, although skin fibroblasts responded at lower concentrations of TGF-beta. Increased accumulation of hyaluronan was noted only in the cell medium, whereas proteoglycan accumulation was observed both in the medium and in the cell layer. The ED50 for TGF-beta on hyaluronan accumulation in lung cells was the same as that for proteoglycan accumulation, i.e., 40 pM. In skin fibroblasts the ED50 was considerably lower (4 pM). The induction time needed to attain full effect of TGF-beta was 6 h for both hyaluronan and proteoglycan synthesis. These results indicate that TGF-beta has tissue-specific effects on matrix production which may be of importance for control of cell proliferation in various disease states.  相似文献   

18.
Alterations in adipocyte cyclic AMP concentrations in response to 100 microM forskolin and 10 microM isoproterenol over a 4 hour period were found to be similar; with each agent, a peak response was noted within 30 minutes. In general, the greater the magnitude of peak response, the more rapid the decline of cyclic AMP concentration during the ensuing 3 1/2 hours. Alpha-2 adrenergic activation, achieved with 10 microM clonidine or 10 microM epinephrine, substantially reduced the cyclic AMP concentrations in cells stimulated by 100 microM forskolin or 10 microM isoproterenol. Isoproterenol-stimulated cells appeared to be more sensitive to alpha adrenergic inhibition than did forskolin-stimulated cells. Cells preincubated for 3 hours with 100 microM forskolin were markedly less responsive to a second exposure to the diterpine. Cells exposed to forskolin for 3 hours also had a reduced response when incubated with isoproterenol; thus, desensitization to forskolin appears to be heterologous. Forskolin desensitization did not appear to be dependent on cellular ATP depletion since cells mildly stimulated during preincubation were as severely desensitized as those adipocytes strongly stimulated. Maximum desensitization required a preincubation time of 1-2 hours with either isoproterenol or forskolin.  相似文献   

19.
20.
The effect of glucocorticoids on sulfated proteoglycan synthesis by rabbit costal chondrocyte cultures exposed to serum-free conditions has been examined. Low density cultures of rabbit costal chondrocytes were maintained on dishes coated with extracellular matrix produced by bovine corneal endothelial cells and exposed to a 9:1 mixture (v/v) of Dulbecco's modified Eagle's medium and Ham's F-12 medium supplemented with transferrin, high density lipoproteins, fibroblast growth factor, and insulin (Medium A). Chondrocytes maintained in the presence of Medium A supplemented with 10(-7) M hydrocortisone reorganized, at confluence, into a homogeneous cartilage-like tissue composed of round cells surrounded by a refractile matrix in which abundant thin collagen fibrils characteristic of type II collagen were observed. The cell ultrastructure and fibrils of the pericellular matrix were similar to those seen in vivo. In contrast, cells maintained in the presence of Medium A alone, once they reached confluence, formed a fibroblastic multilayer and produced thick collagen bundles. The level of 35SO4(2-) incorporated into large cartilage-specific proteoglycans in glucocorticoid-supplemented cultures was 33-fold higher than that of glucocorticoid-free cultures. The level of 35SO4(2-) incorporated into small ubiquitous proteoglycans was only 4-fold higher than that of glucocorticoid-free cultures. On the other hand, the level of [3H]glucosamine incorporated into hyaluronate in glucocorticoid-supplemented cultures was 4.5-fold lower than that of glucocorticoid-free cultures. Within 24 h of their addition to confluent cultures, hydrocortisone or dexamethasone markedly stimulated proteoglycan synthesis. This effect was not mimicked by androgens, estrogens, progesterone, or an inactive form of glucocorticoids such as deoxycorticosterone. This suggests that glucocorticoids have a direct and specific stimulatory effect on cartilage-specific proteoglycan synthesis and are essential for the maintenance of this synthesis in low density chondrocyte cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号