首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Staining plastic sections with the Romanowsky-Giemsa method is both time-consuming and difficult. This paper reports how the staining time can be reduced to 25 min using microwave irradiation of the staining solution. It is shown that staining results depend on the fixative used, staining temperature, dye concentration and pH of the staining solution as well as on several parameters of the microwave irradiation technique. The staining patterns are improved when compared with those obtained by conventional staining of plastic sections. The colors are more brilliant and greater contrasts are observed. Basophilia, polychromasia, and orthochromasia accompanying red cell maturation are more pronounced. For white cell maturation the initial appearance of specific granules (neutrophil, basophil, and eosinophil) is more evident. Thus, cell classification is easily accomplished using the described technique. It is suggested that microwave-stimulated staining be considered for routine use.  相似文献   

2.
3.
Normal blood smears were stained by the standardised azure B-eosin Y Romanowsky procedure recently introduced by the ICSH, and the classical picture resulted. The effects of varying the times and temperature of staining, the composition of the solvent (buffer concentration, methanol content, & pH), the concentration of the dyes, and the mode of fixation were studied. The results are best understood in terms of the following staining mechanism. Initial colouration involves simple acid and basic dyeing. Eosin yields red erythrocytes and eosinophil granules. Azure B very rapidly gives rise to blue stained chromatin, neutrophil specific granules, platelets and ribosome-rich cytoplasms; also to violet basophil granules. Subsequently the azure B in certain structures combines with eosin to give purple azure B-eosin complexes, leaving other structures with their initial colours. The selectivity of complex formation is controlled by rate of entry of eosin into azure B stained structures. Only faster staining structures (i.e. chromatin, neutrophil specific granules, and platelets) permit formation of the purple complex in the standard method. This staining mechanism illuminates scientific problems (e.g. the nature of 'toxic' granules) and assists technical trouble-shooting (e.g. why nuclei sometimes stain blue, not purple).  相似文献   

4.
This article presents a modified Giemsa-staining. The dye Azure B-Eosinate (Serva, Heidelberg) reformed according to Wittekind was applied to paraffin-slices of decalcified bones of rabbits. Besides a contrast staining on the whole significant details in the histological mounting of bone can be exposed.  相似文献   

5.
6.
Romanowsky staining of suspension-fixed lymphocytes and fibroblasts, deposited as monolayers on slides, involves an initial basic dyeing process followed by formation of a hydrophobic Azur B/Eosin Y complex at the more permeable and so faster staining cellular sites. This mechanism is shared with blood and marrow smears. However certain morphological features peculiar to suspension-fixed, cell culture-derived preparations also influence the staining pattern via rate control: namely the irregular and bulky profiles of fibroblasts, compared to the smoother and thinner lymphocytes; and the occasional superficial occlusion of cells by culture medium.  相似文献   

7.
A new, rapid, microwave-stimulated method of staining melanocytic lesions   总被引:1,自引:0,他引:1  
A new and sensitive method of staining melanocytic lesions is described. Tissue sections covered by a solution of colloidal silver nitrate are exposed to microwaves for 45 sec in a domestic oven to produce clean, crisp staining of melanocytes and melanoma cells, often showing long delicate dendritic cell processes. The staining technique does not stain other pigments or argyrophilic tissues and is shown to be more sensitive than the standard Masson-Fontana procedure.  相似文献   

8.
A reproducible Romanowsky-Giemsa staining (RGS) can be carried out with standardized staining solutions containing the two dyes azure B (AB) and eosin Y (EY). After staining, cell nuclei have a purple coloration generated by DNA-AB-EY complexes. The microspectra of cell nuclei have a sharp and intense absorption band at 18,100 cm-1 (552 nm), the so called Romanowsky band (RB), which is due to the EY chromophore of the dye complexes. Other absorption bands can be assigned to the DNA-bound AB cations. Artificial DNA-AB-EY complexes can be prepared outside the cell by subsequent staining of DNA with AB and EY. In the first step of our staining experiments we prepared thin films of blue DNA-AB complexes on microslides with 1:1 composition: each anionic phosphodiester residue of the nucleic acid was occupied by one AB cation. Microspectrophotometric investigations of the dye preparations demonstrated that, besides monomers and dimers, mainly higher AB aggregates are bound to DNA by electrostatic and hydrophobic interactions. These DNA-AB complexes are insoluble in water. Therefore it was possible to stain the DNA-AB films with aqueous EY solutions and also to prepare insoluble DNA-AB-EY films in the second step of the staining experiments. After the reaction with EY, thin sites within the dye preparations were purple. The microspectra of the purple spots show a strong Romanowsky band at 18,100 cm-1. Using a special technique it was possible to estimate the composition of the purple dye complexes. The ratio of the two dyes was approximately EY:AB approximately 1:3. The EY anions are mainly bound by hydrophobic interaction to the AB framework of the electrical neutral DNA-AB complexes. The EY absorption is red shifted by the interaction of EY with the AB framework of DNA-AB-EY. We suppose that this red shift is caused by a dielectric polarization of the bound EY dianions. The DNA chains in the DNA-AB complexes can mechanically be aligned in a preferred direction k. Highly oriented dye complexes prepared on microslides were birefringent and dichroic. The orientation is maintained during subsequent staining with aqueous EY solutions. In this way we also prepared highly orientated purple DNA-AB-EY complexes on microslides. The light absorption of both types of dye complexes was studied by means of a microspectrophotometer equipped with a polarizer and an analyser. The sites of best orientation within the dye preparations were selected under crossed nicols according to the quality of birefringence.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The Romanowsky-Giemsa staining (RG staining) has been studied by means of microspectrophotometry using various staining conditions. As cell material we employed in our model experiments mouse fibroblasts, LM cells. They show a distinct Romanowsky-Giemsa staining pattern. The RG staining was performed with the chemical pure dye stuffs azure B and eosin Y. In addition we stained the cells separately with azure B or eosin Y. Staining parameters were pH value, dye concentration, staining time etc. Besides normal LM cells we also studied cells after RNA or DNA digestion. The spectra of the various cell species were measured with a self constructed microspectrophotometer by photon counting technique. The optical ray pass and the diagramm of electronics are briefly discussed. The nucleus of RG stained LM cells, pH congruent to 7, is purple, the cytoplasm blue. After DNA or RNA digestion the purple respectively blue coloration in the nucleus or the cytoplasm completely disappeares. Therefore DNA and RNA are the preferentially stained biological substrates. In the spectrum of RG stained nuclei, pH congruent to 7, three absorption bands are distinguishable: They are A1 (15400 cm-1, 649 nm), A2 (16800 cm-1, 595 nm) the absorption bands of DNA-bound monomers and dimers of azure B and RB (18100 cm-1, 552 nm) the distinct intense Romanowsky band. Our extensive experimental material shows clearly that RB is produced by a complex of DNA, higher polymers of azure B (degree of association p greater than 2) and eosin Y. The complex is primarily held together by electrostatic interaction: inding of polymer azure B cations to the polyanion DNA generates positively charged binding sites in the DNA-azure B complex which are subsequently occupied by eosin Y anions. It can be spectroscopically shown that the electronic states of the azure B polymers and the attached eosin Y interact. By this interaction the absorption of eosin Y is red shifted and of the azure B polymers blue shifted. The absorption bands of both molecular species overlap and generate the Romanowsky band. Its strong maximum at 18100 cm-1 is due to the eosin Y part of the DNA-azure B-eosin Y complex. The discussed red shift of the eosin Y absorption is the main reason for the purple coloration of RG stained nuclei. Using a special technique it was possible to prepare an artificial DNA-azure B-eosin Y complex with calf thymus DNA as a model nucleic acid and the two dye stuffs azure B and eosin Y.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
Standardized specimens with reproducible staining properties were fabricated from extracts of biological objects (bovine liver, nucleoprotamine and defatted muscle). The standard specimens were stained with two formulations of the Romanowsky-Giemsa stain (RG), using the same azure B and eosin Y. One formulation used methanol and Sorensen's buffer and the other DMSO and Hepes buffer as solvents. The standard specimens were stained either in the composite stain or in the individual dyes dissolved in the same solvents and at the same concentration as the composite stain. Solution spectroscopy demonstrated different spectra for the two formulations with some wavelength regions varying by more than an order of magnitude. The RG spectra were also very different from those of the individual dyes dissolved at the RG concentration in the respective solvents. The stained standard specimens were analyzed by microspectrophotometry and were found to have spectra similar to those of cell smears. Furthermore, the standard specimens were shown to be a repeatable substrate for stain uptake. The transmitted light intensity from random fields of the same standardized specimen varied +/- 5%. When specimens were stained at the same time, the specimen-to-specimen variation depended on preparation conditions and the measurement wavelength, but was as good as +/- 5% for some conditions. The quantitative stain performance of both formulations was studied and compared. The standardized specimens provide a tool for the quantitative study of staining processes and specimen preparation procedures and for stain calibration.  相似文献   

12.
13.
Undecalcified bone fixed in a variety of fixatives and embedded in a new formulation of 2-hydroxypropyl methacrylate at 4 c has been sectioned at 1 to 5 microns. The embedding mixture contains 2-butoxyethanol as plasticizer and triethyleneglycol dimethacrylate as cross-linker. The accelerator was benzoyl peroxide and the catalyst was N,N-dimethylaniline. With proper embedding and care in sectioning it is possible to obtain sections with relatively little bone compression, excellent preservation of cellular elements, and a minimum of wrinkling. A wide variety of stains have been used for these sections and those reported here are Gill's hematoxylin-eosin, Nocht's azure-eosin, Feulgen, Hoechst 33258 (bisbenzimid H 33258), methyl green-pyronin, PAS, alizarin red, and von Kossa silver stain. There was excellent preservation of acid and alkaline phosphatase activities. A new method of prestaining immunofluorescent labeling was also applied to bone and examples of staining with anticollagen I and antifibronectin are presented.  相似文献   

14.
Summary Normal blood smears were stained by the standardised azure B-eosin Y Romanowsky procedure recently introduced by the ICSH, and the classical picture resulted. The effects of varying the times and temperature of staining, the composition of the solvent (buffer concentration, methanol content, & pH), the concentration of the dyes, and the mode of fixation were studied. The results are best understood in terms of the following staining mechanism. Initial colouration involves simple acid and basic dyeing. Eosin yields red erythrocytes and eosinophil granules. Azure B very rapidly gives rise to blue stained chromatin, neutrophil specific granules, platelets and ribosome-rich cytoplasms; also to violet basophil granules. Subsequently the azure B in certain structures combines with eosin to give purple azure B-eosin complexes, leaving other structures with their initial colours. The selectivity of complex formation is controlled by rate of entry of eosin into azure B stained structures. Only faster staining structures (i.e. chromatin, neutrophil specific granules, and platelets) permit formation of the purple complex in the standard method. This staining mechanism illuminates scientific problems (e.g. the nature of toxic granules) and assists technical trouble-shooting (e.g. why nuclei sometimes stain blue, not purple).To whom offprint should be sent  相似文献   

15.
Summary Romanowsky staining of suspension-fixed lymphocytes and fibroblasts, deposited as monolayers on slides, involves an initial basic dyeing process followed by formation of a hydrophobic Azur B/Eosin Y complex at the more permeable and so faster staining cellular sites. This mechanism is shared with blood and marrow smears. However certain morphological features peculiar to suspension-fixed, cell culture-derived preparations also influence the staining pattern via rate control: namely the irregular and bulky profiles of fibroblasts, compared to the smoother and thinner lymphocytes; and the occasional superficial occlusion of cells by culture medium.  相似文献   

16.
The study demonstrates the usefulness of water-soluble plastic resins for the cytological quantification of RNA contents after toluidine blue staining. In this way shrinkage artefacts in delicate tissues are avoided and more exact cytophotometrical results can be obtained from embryological material.  相似文献   

17.
18.
G Van Zant  C G Fry 《Cytometry》1983,4(1):40-46
We have systematically studied the effect on hemopoietic colony-forming cells of staining cellular DNA with the bisbenzimidazole dye, Hoechst 33342. Mouse bone marrow cells could be adequately stained in a 30-60 min incubation with a 5 microM concentration of stain. Flow-cytometric analysis of stained cells provided cell distributions with coefficients of variation for the G1 peaks of 6% or less under these conditions. We found considerable heterogeneity among hemopoietic colony-forming cells with respect to the toxicity of the dye. Toxicity in the proliferatively quiescent stem cell population was not changed when the population became proliferatively active. In the sequence of most sensitive to least sensitive, the five progenitors studied could be arranged as follows: CFU-M, a megakaryocyte colony-forming cell; CFU-E, a relatively differentiated erythroid precursor; BFU-E, a primitive erythroid precursor; CFU-GM, a granulocyte-macrophage precursor; and CFU-S, the spleen colony-forming cell or hemopoietic stem cell. A staining procedure involving a 30-min exposure to 5 microM Hoechst 33342 provided optimal staining and no loss in four of the five progenitor populations; the CFU-M population was diminished by about 50%. We conclude that Hoechst can be regarded as a vital DNA stain for most bone marrow precursor populations, including the hemopoietic stem cell.  相似文献   

19.
20.
Undemineralized methacrylate embedded bone biopsies and other bone specimens can be processed much more rapidly by application of acidified 2,2-dimethoxypropane (DMP) dehydration, which requires two hours, than by traditional graded ethanol dehydration, which requires at least four days. This shortened processing time is valuable when biopsy results are urgently needed to detect osteomalacia or to determine bone features prior to possible parathyroidectomy. We have processed over 200 bone specimens with DMP and have compared DMP dehydration to graded ethanol dehydration in 11 biopsies in which two plugs were available from the same patient. DMP dehydration does not compromise the following: tetracycline retention, Goldner's stain, acid phosphatase localization or histochemical identification of aluminum. Cement lines, which provide a record of past remodelling, are useful in clinical interpretation of bone biopsies. We have adapted two stains, toluidine blue and methylene blue/basic fuchsin, for improved cement line identification. Five-micrometer sections individually demineralized in acetate buffer prior to cement line staining show best results with toluidine blue at pH 5.5 and with methylene blue/basic fuchsin at pH 2.5-3.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号