首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An EST database has been generated for coffee based on sequences from approximately 47,000 cDNA clones derived from five different stages/tissues, with a special focus on developing seeds. When computationally assembled, these sequences correspond to 13,175 unigenes, which were analyzed with respect to functional annotation, expression profile and evolution. Compared with Arabidopsis, the coffee unigenes encode a higher proportion of proteins related to protein modification/turnover and metabolism-an observation that may explain the high diversity of metabolites found in coffee and related species. Several gene families were found to be either expanded or unique to coffee when compared with Arabidopsis. A high proportion of these families encode proteins assigned to functions related to disease resistance. Such families may have expanded and evolved rapidly under the intense pathogen pressure experienced by a tropical, perennial species like coffee. Finally, the coffee gene repertoire was compared with that of Arabidopsis and Solanaceous species (e.g. tomato). Unlike Arabidopsis, tomato has a nearly perfect gene-for-gene match with coffee. These results are consistent with the facts that coffee and tomato have a similar genome size, chromosome karyotype (tomato, n=12; coffee n=11) and chromosome architecture. Moreover, both belong to the Asterid I clade of dicot plant families. Thus, the biology of coffee (family Rubiacaeae) and tomato (family Solanaceae) may be united into one common network of shared discoveries, resources and information.  相似文献   

3.
We are developing a system for isolating tomato genes by transposon mutagenesis. In maize and tobacco, the transposon Activator (Ac) transposes preferentially to genetically linked sites. To identify transposons linked to various target genes, we have determined the RFLP map locations of Ac- and Dissociation (Ds)-carrying T-DNAs in a number of transformants. T-DNA flanking sequences were isolated using the inverse polymerase chain reaction (IPCR) and located on the RFLP map of tomato. The authenticity of IPCR reaction products was tested by several criteria including nested primer amplification, DNA sequence analysis and PCR amplification of the corresponding insertion target sequences. We report the RFLP map locations of 37 transposon-carrying T-DNAs. We also report the map locations of nine transposed Ds elements. T-DNAs were identified on all chromosomes except chromosome 6. Our data revealed no apparent chromosomal preference for T-DNA integration events. Lines carrying transposons at known map locations have been established which should prove a useful resource for isolating tomato genes by transposon mutagenesis.  相似文献   

4.
In the past 15 years, many class I and class II transposons were identified in filamentous fungi. However, little is known about the influence of transposons during industrial strain development. The availability of the complete genome sequences of the industrially relevant fungi Aspergillus niger and Penicillium chrysogenum has enabled an analysis of transposons present in these two fungi. Here, a compilation of the transposon-like sequences identified is provided. We investigated a yet undescribed A. niger retrotransposon, ANiTa1, as well as two P. chrysogenum transposons (PeTra1 and PeTra2), which are the first P. chrysogenum transposons ever described, in more detail. Analysis of the genomic distribution of selected transposable elements in five strains of A. niger and seven strains of P. chrysogenum revealed the transposon distribution to be virtually identical. However, one element, Vader-previously published-from A. niger, showed strain-specific differences in transposon distribution, suggesting transposition activity during classical strain improvement programs.  相似文献   

5.
Site-selected insertion (SSI) is a PCR-based technique which uses primers located within the transposon and a target gene for detection of transposon insertions into cloned genes. We screened tomato plants bearing single or multiple copies of maizeAc orDs transposable elements for somatic insertions at one close-range target and two long-range targets. Eight close-rangeDs insertions near the right border of the T-DNA were recovered. Sequence analysis showed a precise junction between the transposon and the target for all insertions. Two insertions in separate plants occurred at the same site, but others appeared dispersed in the region of the right T-DNA border with no target specificity. However, insertions showed a preference for one orientation of the transposon. Use of plants with multipleAc (HiAc) orDs (HiDs) elements allowed detection of somatic insertions at two single-copy genes,PG (polygalacturonase) andDFR (dihydroflavonol 4-reductase). Certain HiDs plants showed much higher rates of insertion intoPG than others. Insertions inPG andDFR were found throughout the gene regions monitored and, with the exception of one insertion inPG, the junctions between transposon and target were exact. SSI analysis of progeny from the HiDs parents revealed that in some cases the tendency to incur high levels of somatic insertions inPG was inherited. Inheritance of this character is an indication that SSI could be used to direct a search for germinalPG insertions in tomato.  相似文献   

6.
7.
Self-incompatibility (SI) in the Solanaceae, Rosaceae and Scrophulariaceae is controlled by the polymorphic S locus, which contains two separate genes encoding pollen and pistil determinants in SI interactions. The S-RNase gene encodes the pistil determinant, whereas the pollen determinant gene, named the pollen S gene, has not yet been identified. Here, we set out to construct an integrated genetic and physical map of the S locus of Petunia inflata and identify any additional genes located at this locus. We first conducted chromosome walking at the S2 locus using BAC clones that contained either S2-RNase or one of the nine markers tightly linked to the S locus. Ten separate contigs were constructed, which collectively spanned 4.4 Mb. To identify additional genes located at the S2 locus, a 328-kb region (part of an 881-kb BAC contig) containing S2-RNase was completely sequenced. Approximately 76% of the region contained repetitive sequences, including transposon-like sequences. Other than S2-RNase, an F-box gene, named PiSLF2 (S2-allele of P. inflata S-locus F-box gene), was the only predicted gene whose deduced amino acid sequence was similar to the sequences of known proteins in the database. Two different cDNA selection methods were used to identify additional genes in the 881-kb contig; 11 groups of cDNA clones were identified in addition to those for S2-RNase and PiSLF2. RT-PCR analysis of expression profiles and PCR analysis of BAC clones and genomic DNA confirmed that seven of these 11 newly identified genes were located in the 881-kb contig.  相似文献   

8.
The Arabidopsis genome was mined for whole copies of CACTA and CACTA-like elements and a new active element, AtCAC24024, was isolated. Like the previously identified CAC1 element, the genes encoding transposase (TPase) in AtCAC24024 were expressed in a methylation-defective mutant background, inducing its transposition. The AtCAC24024 element is structurally different from CAC1 in that it has a TPase_24 domain instead of the TPase_23 domain that exists in the TNP-A open reading frame of CAC1. The transposition activity of AtCAC24024 was low compared to CAC1. Phylogenetic analysis revealed that elements with both domains were present in both monocotyledonous and dicotyledonous plants, and originated independently and proliferated separately during plant differentiation. In a joint analysis of transposon display and amplified fragment length polymorphism polymerase chain reaction in various Arabidopsis ecotypes, the CAC1 element showed three transpositions that were followed by random loss during ecotype differentiation, leading to incremental increases in copy number in recent ecotypes. Copy numbers of AtCAC24024 increased explosively in the first differentiation period, followed by random loss during ecotype differentiation. Although transposition might not directly cause ecotype differentiation, the possibility of any direct or indirect involvement still exists in ecotype differentiation by insertion into or excision out of critically functioning genes.  相似文献   

9.
10.
The Ac/Ds transposon system of maize shows low activity in Arabidopsis. However, fusion of the CaMV 35S promoter to the transposase gene (35S::TPase) increases the abundance of the single Ac mRNA encoded by Ac and increases the frequency of Ds excision. In the experiments reported here it is examined whether this high excision frequency is associated with efficient re-insertion of the transposon. This was measured by using a Ds that carried a hygromycin resistance gene (HPT) and was inserted within a streptomycin resistance gene (SPT). Excision of Ds therefore gives rise to streptomycin resistance, while hygromycin resistance is associated with the presence of a transposed Ds or with retention of the element at its original location. Self-fertilisation of most individuals heterozygous for Ds and 35S::TPase produced many streptomycin-resistant (strepr) progeny, but in many of these families a small proportion of strepr seedlings were also resistant to hygromycin (hygr). Nevertheless, 70% of families tested did give rise to at least one strepr, hygr seedling, and over 90% of these individuals carried a transposed Ds. In contrast, the Ac promoter fusion to the transposase gene (Ac::TPase) produced fewer streprhygr progeny, and only 53% of these carried a transposed Ds. However, a higher proportion of the strepr seedlings were also hygr than after activation by 35S::TPase. We also examined the genotype of strepr, hygr seedlings and demonstrated that after activation by 35S::TPase many of these were homozygous for the transposed Ds, while this did not occur after activation by Ac::TPase. From these and other data we conclude that excisions driven by 35S::TPase usually occur prior to floral development, and that although a low proportion of strepr progeny plants inherit a transposed Ds, those that do can be efficiently selected with an antibiotic resistance gene contained within the element. Our data have important implications for transposon tagging strategies in transgenic plants and these are discussed.  相似文献   

11.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation(Ds) transposon lines with insertions on all 5 Arabidopsischromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsisgenome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsislines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

12.
Summary Fifty random clones (350–2300 bp), derived from sheared, nuclear DNA, were studied via Southern analysis in order to make deductions about the organization and evolution of the tomato genome. Thirty-four of the clones were mapped genetically and determined to represent points on 11 of the 12 tomato chromosomes. Under moderate stringency conditions (80% homology required) 44% of the clones were classified as single copy. Under higher stringency, the majority of the clones (78%) behaved as single copy. Most of the remaining clones belonged to multicopy families containing 2–20 copies, while a few contained moderately or highly repeated sequences (10% at moderate stringency, 4% at high stringency). Divergence rates of sequences homologous to the 50 random genomic clones were compared with those corresponding to 20 previously described cDNA (coding sequence) clones. Rates were measured by probing each clone (random genomics and cDNAs) onto filters containing DNA from various species from the family Solanaceae (including potato, Datura, petunia and tobacco) as well as one species (watermelon) from another plant family, Cucurbitaceae. Under moderate stringency conditions, the majority of the random clones (single copy and repetitive) failed to detect homologous sequences in the more distantly related species, whereas approximately 90% of the 20 coding sequences analyzed could still be detected in all solanaceous species. The most highly repeated sequences appear to be the fastest evolving and homologous copies could be detected only in species most closely related to tomato. Dispersion of repetitive sequences, as opposed to tandem clustering, appears to be the rule for the tomato genome. None of the repetitive sequences discovered by this random sampling of the genome were tandemly arranged — a finding consistent with the notion that the tomato genome contains only a small fraction of satellite DNA. This study, along with a companion paper (Ganal et al. 1988), provides the first general sketch of the tomato genome at the molecular level and indicates that it is comprised largely of single copy sequences and these sequences, together with repetitive sequences are evolving at a rate faster than the coding portion of the genome. The small genome and paucity of highly repetitive DNA are favourable attributes with respect to the possibilities of conducting chromosome walking experiments in tomato and the fact that coding regions are well conserved among solanaceous species may be useful for distinguishing clones that contain coding regions from those that do not.  相似文献   

13.
We have investigated the somatic activity of the maize Activator (Ac) element in aspen with the objective of developing an efficient transposon-based system for gene isolation in a model tree species. The analysis of the new insertion sites revealed the exact reconstitution of the Ac, however, aberrant transposition events were also found. Characterization of the genomic sequences flanking the Ac insertions showed that about one third (22/75) of the sequences were significantly similar to sequences represented in public databases and might correspond to genes. The frequency of Ac landing into coding regions was about two-fold higher when compared to the frequency of T-DNA hitting the predicted genes (5/32) in the aspen genome. Thus, Ac is demonstrated to be a potentially useful heterologous transposon tag in a tree species. This is the first report on transposon-based gene tagging in a tree species describing the excision and reinsertion of transposable element into new genomic positions. We also suggest a heterologous transposon tagging strategy that can be used in aspen somatic cells to obtain dominant gain-of-function mutants and recessive loss-of-function mutants overcoming the regeneration time barrier of a long-lived tree species.  相似文献   

14.
15.
The ABA biosynthetic pathway has been studied in detail and the steps impaired in some ABA-deficient mutants are known. However, little is known of the molecular control mechanisms regulating ABA production in planta. A direct route for improving our understanding of these mechanisms is to transposon tag and clone the wild-type counterparts of the ABA mutant alleles. On the basis of the observation that maize transposons move preferentially to linked sites in both homologous and heterologous systems and in doing so disrupt gene function, a targeted transposon mutagenesis strategy is being developed towards cloning ABA biosynthetic genes from tomato. The possibility of using marker genes to identify T-DNA insertion sites in selected parts of the genome has been examined and compared with an inverse PCR/RFLP approach to mapping T-DNAs.  相似文献   

16.
IS1207 is the insertion most frequently found among the spontaneous mutations that abolish the activity of an Escherichia coli phage lambda cI gene integrated in the Corynebacterium Brevibacterium lactofermentum ATCC21086 genome. We examined the transposition of transposon-like structures composed of a selective kanamycin resistance gene (aph3), and one or two IS1207 sequences. One of these, the Tn5531 transposon, transposed efficiently in Corynebacterium glutamicum. A replicative and a non-replicative Tn5531 delivery vector were used in Tn5531 mutagenesis. As IS1207, transposon Tn5531 shows a high frequency of transposition and mutagenesis, and a low target specificity. These features make of Tn5531 an adequate choice for gene identification and gene tagging experiments.  相似文献   

17.
Three O-methyltransferases (BX10a, b, c) catalyze the conversion of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc) to 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) in maize (Zea mays). Variation in benzoxazinoid accumulation and resistance to Rhopalosiphum maidis (corn leaf aphid) was attributed to a natural CACTA family transposon insertion that inactivates Bx10c. Whereas maize inbred line B73 has this transposon insertion, line CML277 does not. To characterize the phenotypic effects of DIMBOA-Glc methyltransferase activity, we created near-isogenic lines derived from B73 and CML277 that do or do not contain the transposon insertion. Bx10c inactivation causes high DIMBOA-Glc, low HDMBOA-Glc, and decreased aphid reproduction relative to near-isogenic lines that have a functional Bx10c gene. These results confirm the importance of this locus in maize aphid resistance. The availability of Bx10c near-isogenic lines will facilitate further research on the function of different benzoxazinoids and DIMBOA-Glc methyltransferase activity in maize defense against herbivores and pathogens.  相似文献   

18.
A repeated DNA fragment (pKRD) was isolated from the genomic library of weedy rice in Korea. The pKRD showed significant homology to Em/Spm CACTA-like transposon in whole genome sequences of rice released in the Blast rice sequence database of NCBI and was closely related to the TNP2 transposase group, including a TNP-like transposable element of rice. A Southern hybridization experiment demonstrated that the pKRD sequence is unique to the Oryza genome. The 126 sequences homologous to pKRD were evenly distributed in all 12 different chromosomes in rice genomes with multiple copy numbers. Different copy numbers ranging from 1,500 to 4,500 corresponding to rice species were detected by slot blot hybridization. In a DNA fingerprinting experiment, a pKRD probe was assessed to be the potential molecular marker for studying evolution and divergence, biodiversity and phylogenic analysis of rice species.  相似文献   

19.
20.
Short interspersed nuclear elements (SINEs) are highly abundant non‐autonomous retrotransposons that are widespread in plants. They are short in size, non‐coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem‐like duplications and transduction of adjacent sequence regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号