首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transient CO2 burst is exhibited by irradiated leaves of the C3 plant geranium (Pelargonium X hortorum, Bailey) after the irradiance is quickly lowered. The light CO2 burst appears to be related to photorespiration because of its irradiance dependency and its sensitivity to other environmental components such as CO2 and O2 concentration. The term post-lower-irradiance CO2 burst or PLIB is used to describe the phenomenon. The PLIB appears to be a quantitative measurement of photorespiration with intact geranium leaves. The PLIB has been observed with intact leaves of other C3 plants but not with C4 leaves. Therefore, it is proposed that, after maximizing intact leaf photosynthetic rates and leaf chamber gas measuring conditions, photorespiration can be measured with intact C3 leaves such as geranium as a transient post-lower-irradiance CO2 burst.  相似文献   

2.
Carbon Dioxide Efflux from Leaves in Light and Darkness   总被引:2,自引:0,他引:2  
Efflux of carbon dioxide in light and darkness was measured at low ambient CO2 concentrations in leaves of Rumex acetosa. Light carbon dioxide production (photo-respiration) was found to depend on irradiance and to differ from dark production as to the response to temperature and ambient concentrations of O2 and CO2. These observations support previously made suggestions that photorespiration follows a different metabolic pathway to dark respiration.  相似文献   

3.
An open system associated with an infrared gas analyzer was employed to study transients in CO2 exchange generated upon darkening preilluminated leaf discs of tobacco (Nicotiana tabacum vars John Williams Broadleaf and Havana Seed). An empirical formula presented previously enabled prediction of the analyzer response under nonsteady state conditions as a function of time and of the leaf CO2 exchange rate. A computer was used to evaluate parameters of the leaf CO2 release rate to provide an estimate of the initial rate of postillumination CO2 evolution and to produce maximal agreement between predicted and observed analyzer responses. In 21% O2, the decline in rate of CO2 evolution upon darkening followed first order kinetics. Initial rates of CO2 evolution following darkening were relatively independent of the prior ambient CO2 concentrations. However, rates of photorespiration expressed as a fraction of net photosynthesis declined rapidly with increasing external CO2 concentration at 21% O2. Under normal atmospheric conditions, photorespiration was 45 to 50% of the net CO2 fixation rate at 32°C and high irradiance. The rapid initial CO2 evolution observed upon darkening at 21% O2 was absent in 3% O2. Rates of photorespiration under normal atmospheric concentrations of CO2 and O2 as measured by the postillumination burst were highly dependent upon temperature (observed activation energy = 30.1 kilocalories per mole). The results are discussed with respect to previously published estimates of photorespiration in C3 leaf tissue.  相似文献   

4.
When leaflets of bean and leaves of other species of C3 plants are illuminated in the absence of CO2 and at low O2 partial pressure, the capacity for CO2 assimilation at saturating light and its efficiency at low light intensities are inhibited. This photoinhibition is dependent on leaflet age and period of illumination. In young leaflets and following short exposure to these photoinhibitory conditions, some recovery of CO2 assimilation capacity is observed immediately after treatment. Following substantial (70 to 80%) photoinhibition of CO2 assimilation, recovery in fully expanded leaflets is observed only after 48 hours in normal air. The photoinhibition is largely prevented by providing CO2 at partial pressures equivalent to the CO2 compensation point, or by >210 millibars O2 which permits internal CO2 production by photorespiration. If leaflets are illuminated in 60 microbars CO2 and 210 millibars O2 (the CO2 compensation point in air), no photoinhibition is observed. Electron transport processes and fluorescence emission associated with photosystem II are inhibited in chloroplast thylakoids isolated from leaflets after illumination in zero CO2 and 10 millibars O2. These studies support the hypothesis that CO2 recycling through photorespiration is one means of effectively dissipating excess photochemical energy when CO2 supply to illuminated leaves is limited.  相似文献   

5.
U. Lüttge  K. Fischer 《Planta》1980,149(1):59-63
Light-dependent CO-evolution by the green leaves of C3 and C4 plants depends on the CO2/O2 ratio in the ambient atmosphere. This and other physiological responses suggest that CO-evolution is a byproduct of photorespiration. At CO2/O2 ratios up to 10-3, the ratio of CO evolved: CO2 fixed in photosynthesis is significantly higher in C3 than in C4 plants. This discrepancy disappears when a correction is made for the CO2-concentrating mechanism in C4 photosynthesis, by which CO2-concentration at the site of ribulose-bis-phosphate carboxylase/oxygenase in the bundle sheaths is raised significantly as compared to the ambient atmosphere. Since the oxygenase function of this enzyme is responsible for glycolate synthesis, i.e., the substrate of photorespiration, this result seems to support the conclusion that CO-evolution is a consequence of photorespiration. CO-evolution may turn out to be a useful and rather straightforward indicator for photorespiration in ecophysiological studies.Abbreviations CAM crassulacean acid metabolism - CO net CO-evolution - CO2 net CO2-fixation - PEP-C phosphoenolpyruvate carboxylase - RubP-C ribulose-bisphosphate carboxylase/oxygenase Dedicated to Professor André Pirson on the occasion of his 70th birthday  相似文献   

6.
Immediately following exposure to light, a postillumination burst of CO2 has been detected in Crassulacean acid metabolism plants. A detailed study with pineapple (Ananas comosus) leaves indicates that the postillumination burst changes its amplitude and kinetics during the course of a day. In air, the postillumination burst in pineapple leaves generally is exhibited as two peaks. The postillumination burst is sensitive to atmospheric CO2 and O2 concentrations as well as to the light intensity under which plants are grown. We propose that the CO2 released in the first postillumination burst peak is indicative of photorespiration since it is sensitive to either O2 or CO2 concentration while the second CO2 evolution peak is likely due to decarboxylation of organic acids involved in Crassulacean acid metabolism.  相似文献   

7.
8.
We classify mathematical models that can be used to describe photosynthetic oscillations using ideas from nonlinear dynamics, and discuss potential mechanisms for photosynthetic oscillations in the context of this classification. We then turn our attention to recent experiments with leaves transferred to a low CO2 atmosphere which revealed stochastic oscillations with a period of a few seconds. Rubisco is the enzyme that takes both CO2 and O2 as substrates correspondingly for photosynthetic assimilation and for photorespiration. Photosynthesis depletes CO2 and produces O2 while respiration and photorespiration work in the opposite direction, so the product of one process becomes the reactant of the other coupled process. We examine the possibility of oscillations of CO2 and O2 in the leaf in relation to photorespiration. We suggest that in the cell, oscillations with a period of a few seconds, corresponding to the time between photosynthetic CO2 fixation and photorespiratory CO2 release, underlie the dynamics of metabolism in C3 plants.  相似文献   

9.
Robert A. Kennedy 《Planta》1976,128(2):149-154
Summary Ribulose diphosphate (RuDP) and (PEP) phosphoenolpyruvate carboxylase enzyme activities were studied in young, mature, and senescent Portulaca oleracea leaves. While the absolute amount of both the C3 (RuDP) and C4 (PEP) carboxylase is less in senescent leaves than in mature leaves, RuDP carboxylase activity is reduced to a lesser degree. In senescent leaves, PEP carboxylase activity equals 10% of that in mature tissue, but RuDP carboxylase is 27% of that in mature leaves. The same ontogenetic series was also used to determine photorespiration rates and responses to several gas treatments. Young and mature leaves were unaffected by changes in the light regime or oxygen concentrations, and exhibited typical C4-plant light/dark 14CO2 evolution ratios. Senescent leaves, on the other hand, have photorespiration ratios similar to C3-plants. In addition, senescent leaves were affected by minus CO2, 100% O2 and N2 in a manner expected of C3-plants, but not C4-plants. These results are discussed in terms of a relative increase in activity of the C3 cycle in later developmental stages in this plant.Abbreviation RuDP ribulose diphosphate - PEP phosphoenolpyruvate - PGA phosphoglyceric acid  相似文献   

10.
Agu Laisk  Gerald E. Edwards 《Planta》1998,205(4):632-645
The photosynthetic linear electron transport rate in excess of that used for CO2 reduction was evaluated in Sorghum bicolor Moench. [NADP-malic enzyme (ME)-type C4 plant], Amaranthus cruentus L. (NAD-ME-type C4 plant) and Helianthus annuus L. (C3 plant) leaves at different CO2 and O2 concentrations. The electron transport rate (J F) was calculated from fluorescence using the light partitioning factor (relative PSII cross-section) determined under conditions where excess electron transport was assumed to be negligible: low light intensities, 500 μmol CO2 · mol−1 and 2% O2. Under high light intensities there was a large excess of J F/4 at 10–100% O2 in the C3 plant due to photorespiration, but very little in sorghum and somewhat more in amaranth, showing that photorespiration is suppressed, more in the NADP-ME- and less in the NAD-ME-type species. It is concluded that when C4 photosynthesis is limited by supply of atmospheric CO2 to the C4 cycle, the C3 cycle becomes limited by regeneration of ribulose 1,5-bisphosphate (RuBP) which in turn limits RuBP oxygenase activity and photorespiration. The rate of excess electron transport over that consumed for CO2 fixation in C4 plants was very sensitive to the presence of O2 in the gas phase, rapidly increasing between 0.01 and 0.1% O2, and at 2% O2 it was about two-thirds of that at 21% O2. This shows the importance of the Mehler O2 reduction as an electron sink, compared with photorespiration in C4 plants. However, the rate of the Mehler reaction is still too low to fully account for the extra ATP which is needed in C4 photosynthesis. Received: 8 November 1997 / Accepted: 26 December 1997  相似文献   

11.
Because photosynthetic rates in C4 plants are the same at normal levels of O2 (c, 20 kPa) and at c, 2 kPa O2 (a conventional test for evaluating photorespiration in C3 plants) it has been thought that C4 photosynthesis is O2 insensitive. However, we have found a dual effect of O2 on the net rate of CO2 assimilation among species representing all three C4 subtypes from both monocots and dicots. The optimum O2 partial pressure for C4 photosynthesis at 30 °C, atmospheric CO2 level, and half full sunlight (1000 μmol quanta m?2 s?1) was about 5–10 kPa. Photosynthesis was inhibited by O2 below or above the optimum partial pressure. Decreasing CO2 levels from ambient levels (32.6 Pa) to 9.3 Pa caused a substantial increase in the degree of inhibition of photosynthesis by supra-optimum levels of O2 and a large decrease in the ratio of quantum yield of CO2 fixation/quantum yield of photosystem II (PSII) measured by chlorophyll a fluorescence. Photosystem II activity, measured from chlorophyll a fluorescence analysis, was not inhibited at levels of O2 that were above the optimum for CO2 assimilation, which is consistent with a compensating, alternative electron How as net CO2 assimilation is inhibited. At suboptimum levels of O2, however, the inhibition of photosynthesis was paralleled by an inhibition of PSII quantum yield, increased state of reduction of quinone A, and decreased efficiency of open PSII centres. These results with different C4 types suggest that inhibition of net CO2 assimilation with increasing O2 partial pressure above the optimum is associated with photorespiration, and that inhibition below the optimum O2 may be caused by a reduced supply of ATP to the C4 cycle as a result of inhibition of its production photochemically.  相似文献   

12.
Prior illumination in CO2-free air enhances a respiration from maize (Zea mays L.) leaves different in onset and duration from the postillumination burst of photorespiration. The course of respiration after brief illumination of attached leaves was measured as CO2 efflux in darkness into CO2-free atmospheres with four O2 concentrations. The peak of CO2 efflux following illumination was suppressed by 2.23% O2, was completely eliminated by 0.04% O2, and was not stimulated by 40% O2 compared with air. Compared with air, steady dark respiration was suppressed by 0.04% O2 but was not affected by 2.23% nor 40% O2. Excision and subsequent uptake of distilled water through the vascular system nearly eliminated the enhanced respiration.  相似文献   

13.
The mechanism responsible for the inhibition of net carbon exchange (NCE) which was reported previously (DR Geiger et al. 1986 Plant Physiol 82: 468-472) was investigated by applying glyphosate [N-(phosphonomethyl)glycine] to exporting leaves of sugar beet (Beta vulgaris L.). Leaf internal CO2 concentration (Ci) remained constant despite decreases in stomatal conductance and NCE following glyphosate treatment, indicating that the cause of the inhibition was a slowing of carbon assimilation rather than decreased conductance of CO2. Throughout a range of CO2 concentrations, NCE rate at a given Ci declined gradually, with the time-series of response curves remaining parallel. Gas exchange measurements revealed that disruption of chloroplast carbon metabolism was an early and important factor in mediating these glyphosate effects, perhaps by slowing the rate of ribulose bisphosphate regeneration. An increase in the CO2 compensation point accompanied the decrease in NCE and this increase was hastened by stepwise lowering of the ambient CO2 concentration. Eventually the CO2 compensation point approached the CO2 level of air and the difference between internal and external CO2 concentrations decreased. In control and in glyphosate-treated plants, both carbon assimilation and photorespiration at atmospheric CO2 level were inhibited to a similar extent of air level of O2. Maintaining leaves in low O2 concentration did not prevent the decline in NCE rate.  相似文献   

14.
Evidence is presented contrary to the suggestion that C4 plants grow larger at elevated CO2 because the C4 pathway of young C4 leaves has C3-like characteristics, making their photosynthesis O2 sensitive and responsive to high CO2. We combined PAM fluorescence with gas exchange measurements to examine the O2 dependence of photosynthesis in young and mature leaves of Panicum antidotale (C4, NADP-ME) and P. coloratum (C4, NAD-ME), at an intercellular CO2 concentration of 5 Pa. P. laxum (C3) was used for comparison. The young C4 leaves had CO2 and light response curves typical of C4 photosynthesis. When the O2 concentration was gradually increased between 2 and 40%, CO2 assimilation rates (A) of both mature and young C4 leaves were little affected, while the ratio of the quantum yield of photosystem II to that of CO2 assimilation (ΦPSII/ΦCO2) increased more in young (up to 31%) than mature (up to 10%) C4 leaves. A of C3 leaves decreased by 1·3 and ΦPSII/ΦCO2 increased by 9-fold, over the same range of O2 concentrations. Larger increases in electron transport requirements in young, relative to mature, C4 leaves at low CO2 are indicative of greater O2 sensitivity of photorespiration. Photosynthesis modelling showed that young C4 leaves have lower bundle sheath CO2 concentration, brought about by higher bundle sheath conductance relative to the activity of the C4 and C3 cycles and/or lower ratio of activities of the C4 to C3 cycles.  相似文献   

15.
Previous studies have indicated that the rate of photorespiration in C4 plants is low or negligible. In this study, wild-type and mutant leaves of the C4 plant Amaranthus edulis were treated with the glutamine synthetase inhibitor, phosphinothricin and the glycine decarboxylase inhibitor, aminoacetonitrile, at different concentrations of CO2. The time course of ammonia accumulation in leaves of the wild type was compared with a mutant lacking phosphoenolpyruvate carboxylase activity (EC 4.1.1.31), and with three different mutants that accumulated glycine. The increase in the concentration of ammonia in the leaves, stimulated by the treatments was used as a measurement of the rate of photorespiration in C4 plants. The application of glutamine and glycine maintained the rate of photorespiratory ammonia production for a longer period in the wild type, and increased the rate in a mutant lacking phosphoenolpyruvate carboxylase suggesting that there was a lack of amino donors in these plants. The calculated rate of photorespiration in Amaranthus edulis wild-type leaves when the supply of amino donors was enough to maintain the photorespiratory nitrogen flow, accounted for approximately 6% of the total net photosynthetic CO2 assimilation rate. In a mutant lacking phosphoenolpyruvate carboxylase, however, this rate increased to 48%, when glutamine was fed to the leaf, a value higher than that found in some C3 plants. In mutants of Amaranthus edulis that accumulated glycine, the rate of photorespiration was reduced to 3% of the total net CO2 assimilation rate. The rate of ammonia produced during photorespiration was 60% of the total produced by all metabolic reactions in the leaves. The data suggests that photorespiration is an active process in C4 plants, which can play an important role in photosynthetic metabolism in these plants.  相似文献   

16.
The effect of leaf dehydration on photosynthetic O2 exchange of potato (Solanum tuberosum L., cv. Haig) leaf discs was examined using 18O2 as a tracer and mass spectrometry. In normal air (350 μl·l?1CO2) and under an irradiance of 390 μmol photons·m?2·s1, a relative water deficit (RWD) of about 30% severely decreased net O2 evolution and increased O2 uptake by about 50%, thus indicating an enhancement of photorespiration. Increasing CO2 concentrations diminished O2 uptake and stimulated net O2 evolution both in well-hydrated and in dehydrated (RWD of about 30%) leaves. Much higher CO2 concentrations (up to 4%) were required to observe a complete effect of CO2 in dehydrated leaves. The chloroplastic CO2 concentration at the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) level (Cc) was calculated from O2-exchange data in both well-hydrated and dehydrated leaves, assuming that the specificity factor of Rubisco was unaffected by desiccation. When plotting net O2 photosynthesis as a function of Cc, a similar relationship was obtained for well-hydrated and waterstressed leaf discs, thus showing that the main effect of water deficit is a decrease of the chloroplastic CO2 concentration. At saturating CO2 levels, the non-cyclic electron-transport rate, measured either as gross O2 photosynthesis or as the chlorophyll fluorescence ratio (Fm -Fs)/Fm, was insensitive to water deficit, provided RWD was below 40%. In this range of RWD, the decrease in gross O2 photosynthesis observed in normal air was attributed to the inability of oxidative processes to sustain the maximal electron-flow rate at low chloroplastic CO2 concentration. The maximal efficiency of photosystem II, estimated as the chlorophyll fluorescence ratio (Fm -F0)/Fm measured in dark-adapted leaves, was not affected by water deficits up to 60%.  相似文献   

17.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

18.
Catalase activity increased in Peridinium gatunense (formerly P. cinctum fa. westii) cells during the decline of the seasonal spring bloom period in Lake Kinneret. This was correlated with the low ambient total CO2 concentration. The relationship was confirmed in laboratory experiments where maximum catalase activity occurred under an atmosphere composed of 30% O2 and 0.003% CO2. Conversely, high CO2 concentrations inhibited catalase activity. The rise in catalase activity was not directly due to increasing environmental pH, as in vitro and in vivo measurements showed a characteristic broad pH curve with a constant activity from pH 6–10 for catalase. Photoinhibition of catalase occurred above 250 μmol photons · m?2· s?1. However, at high photoinactivating irradiances, photoinhibition was ameliorated under high pO2/pCO2. Such conditions prevail in the Kinneret at the end of the spring. We propose that the enhancement of photorespiration (under high pO2/pCO2) induces a temporary burst in catalase activity despite the progressively photoinhibitory conditions of early summer.  相似文献   

19.
The rate of dark CO2 efflux from mature wheat (Triticum aestivum cv Gabo) leaves at the end of the night is less than that found after a period of photosynthesis. After photosynthesis, the dark CO2 efflux shows complex dependence on time and temperature. For about 30 minutes after darkening, CO2 efflux includes a large component which can be abolished by transferring illuminated leaves to 3% O2 and 330 microbar CO2 before darkening. After 30 minutes of darkness, a relatively steady rate of CO2 efflux was obtained. The temperature dependence of steady-state dark CO2 efflux at the end of the night differs from that after a period of photosynthesis. The higher rate of dark CO2 efflux following photosynthesis is correlated with accumulated net CO2 assimilation and with an increase in several carbohydrate fractions in the leaf. It is also correlated with an increase in the CO2 compensation point in 21% O2, and an increase in the light compensation point. The interactions between CO2 efflux from carbohydrate oxidation and photorespiration are discussed. It is concluded that the rate of CO2 efflux by respiration is comparable in darkened and illuminated wheat leaves.  相似文献   

20.
Five decades ago, a novel mode of CO2 assimilation that was later described as C4-photosynthesis was discovered on mature leaves of maize (Zea mays L.) plants. Here we show that 3- to 5-day-old developing maize leaves recapitulate the evolutionary advance from the ancient, inefficient C3 mode of photosynthesis to the C4 pathway, a mechanism for overcoming the wasteful process of photorespiration. Chlorophyll fluorescence measurements documented that photorespiration was high in 3-day-old juvenile primary leaves with non-specialized C3-like leaf anatomy and low in 5-day-old organs with the typical “Kranz-anatomy” of C4 leaves. Photosynthetic gas (CO2)-exchange measurements on 5-day-old leaves revealed the characteristic features of C4 photosynthesis, with a CO2 compensation point close to zero and little inhibition of photosynthesis by the normal oxygen concentration in the air. This indicates a very low photorespiratory activity in contrast to control experiments conducted with mature C3 sunflower (Helianthus annuus L.) leaves, which display a high rate of photorespiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号