首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Yeast mating signal transduction pathways require a heterotrimeric G protein composed of Gα, Gβ, and Gγ subunits connected to a mitogen-activated protein kinase (MAPK) module. While in Saccharomyces cerevisiae elimination of Gα induces constitutive activation of the mating pathway, in Kluyveromyces lactis it produces partial sterility, which indicates that K. lactis Gα (KlGα) is required to positively activate mating. We use physical interaction experiments to determine that KlGα interacts with the adaptor protein KlSte50p. The Ras association (RA) domain of KlSte50p favored interaction with the GDP-bound KlGα subunit, and when the KlGα protein is constitutively activated, the interaction drops significantly. Additionally, KlSte50p strongly associates with the MAPK kinase kinase (MAPKKK) KlSte11p through its sterile alpha motif (SAM) domain. Genetic experiments placed KlSte50p downstream of the G protein α subunit, indicating that KlGα may stimulate the mating pathway via KlSte50p. Fusion of KlSte50p to the KlGβ subunit partially eliminated the requirement of KlGα for mating, indicating that one contribution of KlGα to the mating pathway is to facilitate plasma membrane anchoring of KlSte50p.  相似文献   

2.
The sites and modes of interaction between G protein-coupled receptors and their cognate heterotrimeric G proteins remain poorly defined. The C-terminus of the G subunit is the best established site of contact of G proteins with receptors, but structural analyses and crosslinking studies suggest the possibility of interactions at the N-terminus of G as well. We screened for mutations in the N-terminal region of the G subunit encoded by the yeast GPA1 gene that specifically affect the ability of the G protein to be activated by the yeast -mating factor receptor. The screen led to identification of substitutions of glutamine or proline for Leu18 of Gpa1p that reduce the response to the pheromones -factor and a-factor without affecting cellular levels of the subunit or its ability to interact with and subunits. The mutations do not appear to affect the intrinsic ability of the G protein to be converted to the activated state. The low yield of different mutations with this phenotype indicates either that the N-terminal segment of the yeast G subunit does not undergo extensive interactions with the -factor receptor, or that this region can not be altered without detrimental effects upon the formation of G protein trimers.Communicated by D. Y. Thomas  相似文献   

3.
The death of cholinergic neurons in the cerebral cortex and certain subcortical regions is linked to irreversible dementia relevant to AD (Alzheimer's disease). Although multiple studies have shown that expression of a FAD (familial AD)-linked APP (amyloid β precursor protein) or a PS (presenilin) mutant, but not that of wild-type APP or PS, induced neuronal death by activating intracellular death signals, it remains to be addressed how these signals are interrelated and what the key molecule involved in this process is. In the present study, we show that the PS1-mediated (or possibly the PS2-mediated) signal is essential for the APP-mediated death in a γ-secretase-independent manner and vice versa. MOCA (modifier of cell adhesion), which was originally identified as being a PS- and Rac1-binding protein, is a common downstream constituent of these neuronal death signals. Detailed molecular analysis indicates that MOCA is a key molecule of the AD-relevant neuronal death signals that links the PS-mediated death signal with the APP-mediated death signal at a point between Rac1 [or Cdc42 (cell division cycle 42)] and ASK1 (apoptosis signal-regulating kinase 1).  相似文献   

4.
Antigen-mediated mast cell (MC) degranulation is the critical early event in the induction of allergic reactions. Transient receptor potential channels (TRPC), particularly TRPC1, are thought to contribute to such MC activation. To explore the contribution of TRPC1 in MC-driven allergic reactions, we examined antigen-mediated anaphylaxis in Trpc1?/? and WT mice, and TRPC1 involvement in the activation of MCs derived from the bone marrow (BMMCs) of these mice. In vivo, we observed a similar induction of passive systemic anaphylaxis in the Trpc1?/? mice compared to WT controls. Nevertheless, there was delayed recovery from this response in Trpc1?/? mice. Furthermore, contrary to expectations, Trpc1?/? BMMCs responded to antigen with enhanced calcium signaling but with little defect in degranulation or associated signaling. In contrast, antigen-mediated production of TNF-α, and other cytokines, was enhanced in the Trpc1?/? BMMCs, as were calcium-dependent events required for these responses. Additionally, circulating levels of TNF-α in response to antigen were preferentially elevated in the Trpc1?/? mice, and administration of an anti-TNF-α antibody blocked the delay in recovery from anaphylaxis in these mice. These data thus provide evidence that, in this model, TRPC1 promotes recovery from the anaphylactic response by repressing antigen-mediated TNF-α release from MCs.  相似文献   

5.
We have used attenuated total internal reflection infrared spectroscopy (ATR-IR) spectroscopy to study the association of the C2 domain from protein kinase Cα (PKCα) with different phospholipid membranes, so as to characterise the mode of membrane docking and its modulation by the second-messenger lipid PIP?. In parallel, we have also examined the membrane interaction of the C2 domain from cytosolic phospholipase A?. PIP? did not induce significant changes in secondary structure of the membrane-bound PKCα-C2 domain, nor did binding of the PKCα-C2 domain change the dichroic ratios of the lipid chains, whereas the C2 domain from phospholipase A? did perturb the lipid chain orientation. Measurements of the dichroic ratios for the amide I and amide II protein bands were combined so as to distinguish the tilt of the β-sheets from that of the β-strands within the sheet. When associated with POPC/POPS membranes, the β-sandwich of the PKCα-C2 domain is inclined at an angle α=35° to the membrane normal, i.e., is oriented more nearly perpendicular than parallel to the membrane. In the process of membrane docking, the tilt angle increases to α=44° in the presence of PIP?, indicating that the β-sandwich comes closer to the membrane surface, so confirming the importance of this lipid in determining docking of the C2 domain and consequent activation of PKCα.  相似文献   

6.
Global stimulation of Dictyostelium with different chemoattractants elicits multiple transient signaling responses, including synthesis of cAMP and cGMP, actin polymerization, activation of kinases ERK2, TORC2, and phosphatidylinositide 3-kinase, and Ras-GTP accumulation. Mechanisms that down-regulate these responses are poorly understood. Here we examine transient activation of TORC2 in response to chemically distinct chemoattractants, cAMP and folate, and suggest that TORC2 is regulated by adaptive, desensitizing responses to stimulatory ligands that are independent of downstream, feedback, or feedforward circuits. Cells with acquired insensitivity to either folate or cAMP remain fully responsive to TORC2 activation if stimulated with the other ligand. Thus TORC2 responses to cAMP or folate are not cross-inhibitory. Using a series of signaling mutants, we show that folate and cAMP activate TORC2 through an identical GEF/Ras pathway but separate receptors and G protein couplings. Because the common GEF/Ras pathway also remains fully responsive to one chemoattractant after desensitization to the other, GEF/Ras must act downstream and independent of adaptation to persistent ligand stimulation. When initial chemoattractant concentrations are immediately diluted, cells rapidly regain full responsiveness. We suggest that ligand adaptation functions in upstream inhibitory pathways that involve chemoattractant-specific receptor/G protein complexes and regulate multiple response pathways.  相似文献   

7.
8.
The conclusion that the steady-state kinetics of isotope exchange at equilibrium do not show first-order behaviour for some one substrate-one product enzymic mechanisms in which two molecules of substrate or product can be combined with an enzyme molecule at the one time was shown to be erroneous.  相似文献   

9.
Paracoccidioidomycosis is a deep mycosis, endemic in Latin America, caused by Paracoccidioides brasiliensis. Macrophage activation by cytokines is the major effector mechanism against this fungus. This work aimed at a better understanding of the interaction between yeast cells-murine peritoneal macrophages and the cytokine signals required for the effective killing of high virulence yeast-form of P. brasiliensis. In addition, the killing effector mechanisms dependent on the generation of reactive oxygen or nitrogen intermediates were investigated. Cell preincubation with IFN-gamma or TNF-alpha, at adequate doses, resulted in effective yeast killing as demonstrated in short-term (4-h) assays. Both, IFN-gamma and TNF-alpha activation were associated with higher levels of H(2)O(2) and NO when compared to nonactivation. Treatment with catalase (CAT), a H(2)O(2 )scavenger, and N(G)-monomethyl-L: -arginine (L: -NMMA), a nitric oxide synthase inhibitor, reverted the killing effect of activated cells. Taken together, these results suggest that both oxygen and L: -arginine-nitric oxide pathways play a role in the killing of highly virulent P. brasiliensis.  相似文献   

10.
《Plant science》2001,160(5):1025-1033
The lectin from the mushroom Pleurotus ostreatus described earlier [F. Conrad, H. Rüdiger, The lectin from Pleurotus ostreatus: purification, characterization and interaction with a phosphatase, Phytochemistry 36 (1994) 277–283] was further characterized. Determination of the isoelectric point by capillary electrophoresis gave a value of 7.6. The dissociation constant of the lectin-α-lactose-1-phosphate complex determined by capillary electrophoresis is 3 mM. The activation of an endogenous phosphatase by the lectin as found earlier for the pseudosubstrate p-nitrophenylphosphate was confirmed also for naturally occurring substrates as ADP and ATP. We observed that at all purification steps the lectin is accompanied by an α-galactosidase activity. Both activities could neither be resolved by electrophoresis under non-denaturing conditions nor by affinity chromatography. However, carbohydrate binding by the lectin and carbohydrate processing by the enzyme are not due to the same site since: (i) the lectin accepts both α- and β-glycosides whereas the enzyme activity is restricted to the α-anomer; (ii) the interaction with erythrocytes leads to a stable agglutinate, i.e. no ‘clot-dissolving activity’ [C.N. Hankins, J.I. Kindinger, L.M. Shannon, Legume α-galactosidases which have hemagglutinin properties, Plant Physiol. 65 (1980) 618–622] is observed; (iii) the α-galactosidase activity is inhibited by galactose but not by a β-galactoside. Therefore, lectin and enzymatic activities are either properties of two tightly associated proteins, or of just one molecule. The kinetic parameters of the lectin-associated α-galactosidase activity for p-nitrophenyl-α-galactopyranoside are: KM=2.5 mM, kcat=66 s−1, and KI=20 mM for the inhibitor d-galactose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号