首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
An enzymic activity which competes with 3-hydroxy-3-methylglutaryl coenzyme A reductase for D-hydroxymethylglutaryl CoA has been found in isolated rat liver microsomes and in microsomal extracts. The presence of this activity in enzyme preparations causes a decrease in the rate of mevalonate formation leading to an underestimation of reductase activity and an overestimation of the apparent Km of the reductase. The product formed by this competing enzymic activity behaves similarly to, but not identically with, mevalonolactone when chromatographed on Bio-Rad AG 1-x8 formate, which is used in many reductase assay procedures to separate mevalonolactone from hydroxymethylglutaryl CoA. Removal of this competing enzymic activity from reductase preparations can be accomplished by gel filtration using Bio-Gel A 1.5m, by washing the microsomes or by incubating the microsomal extract at 37 degrees C. Using enzyme preparations free of this competing enzymic activity, the apparent Km values of the reductase for D-hydroxymethylglutaryl CoA and NADPH were found to be 1.3 and 26 micronM respectively.  相似文献   

2.
The properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase from the microsomal fraction of Pisum sativum seedlings have been described. The enzyme requires NADPH for activity and NADH does not support the reaction. The presence of a thiol compound such as dithiothreitol, is required for activity and a concentration of 10 mmm is optimal. The pH optimum is 6.8 and the Km (apparent) for dl-3-hydroxy-3-methylglutaryl coenzyme A is about 100 μm.Activity of the enzyme is not affected by mevalonic acid at the concentrations tested (up to 1.0 mm). 3-Hydroxy-3-methylglutaric acid and free CoA cause substantial inhibition, whereas gibberellic acid has no effect.The activity of the 3-hydroxy-3-methylglutaryl coenzyme A reductase is twice as high in etiolated seedlings as in green seedlings. In green seedlings activity is highest in the apical bud, declines sharply in semimature leaves, and there is almost no activity in mature leaves.  相似文献   

3.
Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase has been purified to apparent homogeneity by a process involving the following steps: solubilization from microsomes and chromatography on Affi-Gel Blue, phosphocellulose, Bio-Gel A 1.5m, and agarose-hexane-ATP. The apparent Mr of the purified enzyme as judged by gel-filtration chromatography is 205,000 and by sodium dodecyl sulfate-gel electrophoresis is 105,000. Immunoprecipitation of homogeneous reductase phosphorylated by reductase kinase and [γ-32P]ATP produces a unique band containing 32P bound to protein which migrates at the same Rf as the reductase subunit. Incubation of 32P-labeled HMG-CoA reductase with reductase phosphatase results in a time-dependent loss of protein-bound 32P radioactivity, as well as an increase in enzymic activity. Reductase kinase, when incubated with ATP, undergoes autophosphorylation, and a simultaneous increase in its enzymatic activity is observed. Tryptic treatment of immunoprecipitated, 32P-labeled HMG-CoA reductase phosphorylated with reductase kinase produces only one 32P-labeled phosphopeptide with the same Rf as one of the two tryptic phosphopeptides that have been reported in a previous paper. The possible existence of a second microsomal reductase kinase is discussed.  相似文献   

4.
5.
A simple, efficient, freeze-thaw procedure for the solubilization of liver 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase has been developed. Microsomes of chicken or rat liver were prepared by homogenization in buffer containing 100 mm sucrose, 50 mm KCl, 40 mm KH2PO4, 30 mm EDTA, and 2 mm DTT, pH 7.2 (buffer A). The homogenate was centrifuged at 12,000g (15 min), and the microsomes were separated from the supernatant by centrifugation at 100,000g (60 min). The isolated microsomes were frozen, either by dry ice-acetone or by storage in a freezer at ?20°C. The frozen microsomes were permitted to thaw at room temperature, homogenized in buffer A, and centrifuged at 100,000g (60 min). The extraction was repeated and the combined supernatants contained 70 to 90% of the microsomal HMG-CoA reductase activity. The yield of enzyme activity by the freeze-thaw technique is equal to or greater than previously reported methodologies and is significantly easier to perform. This procedure is particularly suited to the preparation of large quantities of solubilized enzyme for isolation and characterization of HMG-CoA reductase. In addition, this method does not require the use of detergents, sonification, or other procedures which might partially inactivate or alter the molecular properties of the enzyme.  相似文献   

6.
7.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) has been isolated from human liver utilizing HMG-CoA affinity chromatography. The apparent monomer molecular weight of purified human HMG-CoA reductase by SDS-gel electrophoresis was 53,000, and the oligomeric molecular weight determined by sucrose density centrifugation was 104,000. A monospecific antibody prepared against rat liver HMG-CoA reductase inhibited the enzymic activity of microsomal and purified human liver enzyme and formed a single immunoprecipitin line by radial immunodiffusion. These results represent the initial isolation and characterization of human liver HMG-CoA reductase.  相似文献   

8.
3-Hydroxy-3-methylglutaryl coenzyme A reductase from seedlings of Pisum sativum L. is localized in the plastids, mitochondria, and microsomes. Separation of the microsomal fraction into heavy and light subfractions shows that 95% of the microsomal activity is associated with the light subfraction. Definitive localization was achieved by showing that reductase activity comigrated with organelle markers on sucrose density gradients. Differential centrifugation studies showed that the microsomal fraction contained 80% of the total cellular activity, and the mitochondrial and plastid fractions each contained about 10%.The results suggest the existence of three parallel biosynthetic pathways which may be important in regulating the synthesis of isoprenoids characteristic of the individual organelles.  相似文献   

9.
Cultured C-6 glial and neuroblastoma cells were utilized to study the effect of the unnatural amino alcohol, N-isopropylethanolamine, on the microsomal enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase. Growth of both cell types in the presence of the compound was accompanied in 24 hr by a decrease in reductase activity to 25–35% of activity in control cells. The effect was accompanied by a comparable decrease in the rate of cholesterol synthesis. However, no comparable change occurred in cell growth, fatty acid synthetase activity, or in total protein synthesis from [3H]leucine. The data suggest that the polar head groups of microsomal membrane phospholipids play an important role in the regulation of reductase activity.  相似文献   

10.
The effect of polychlorinated biphenyls, gamma-hexachlorocyclohexane and the effect of a combination of these substances on the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase were investigated. As known from previous investigations polychlorinated biphenyls interfere with the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in rat liver via enzyme-lipid interaction and at the pretranslational level. In contrast to polychlorinated biphenyls, gamma-hexachlorocyclohexane did not alter the lipid status of the microsomal membrane. Thus the location of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, and consequently the catalytic activity of the enzyme was not changed. As with polychlorinated biphenyls, gamma-hexachlorocyclohexane interacted with enzyme regulation at the pretranslational level. Northern dot hybridization experiments showed a decrease in the level of m-RNA coding for 3-hydroxy-3-methylglutaryl coenzyme A reductase. The effect of combination of gamma-hexachlorocyclohexane and polychlorinated biphenyls was not additive. The gamma-hexachlorocyclohexane effect appeared to play a more important role than that of the polychlorinated biphenyls. The results indicate that the combination effects are as important as the effects of the single compounds when making risk assessments for xenobiotics.  相似文献   

11.
A new assay for 3-hydroxy-3-methylglutaryl CoA reductase (mevalonate:NADP oxidoreductase [acylating CoA], EC 1.1.1.34) is based upon the measurement of released coenzyme A (SH) during the reduction of 3-hydroxy-3-methylglutaryl CoA to mevalonate. Coenzyme A was measured in the presence of dithiothreitol, required for activity, by reaction with 5,5'-dithiobis(2-nitrobenzoic acid). Sodium arsenite forms a complex with the dithiol, but not with monothiols. Thus, reduced coenzyme A reacts instantaneously with the reagent and dithiothreitol reacts slowly. The absorbance due to the coenzyme A-5,5'-dithiobis(2-nitrobenzoic acid) reaction is determined by extrapolating the linear (dithiol) absorbance-time curve to the time of addition of the reagent. After subtraction of control absorbance (deletion of NADPH), the concentration of CoA-SH is calculated from epsilon(max) = 1.36 x 10(4) at 412 nm. The method of protein removal and reduction of sulfhydryl groups on the enzyme are critical. This method provides an immediate assay. Recovery of reduced coenzyme A was 98.7%. The assay is applicable for microsomes or purified enzyme and has an effective range of 0.5-50 nmoles of coenzyme A. It was applied to kinetic measurement of the pigeon liver microsomal enzyme reaction. The apparent K(m) value for 3-hydroxy-3-methylglutaryl CoA was 1.75 x 10(-5) M, and for NADPH the value was 6.81 x 10(-4) M. This method was compared with the dual-label method at high and low levels of activity. The data were not statistically different.  相似文献   

12.
The activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in brain microsomes was modified in vitro. The inactivation of the enzyme required Mg2+ and ATP or ADP, and an inactivator present both in S105 and microsomes. Inactivation was dependent on inactivator concentration and time of preincubation. The inactive reductase in brain microsomes could be completely reactivated by a factor present in brain S105. Reactivation of the enzyme also depended on incubation time and the activator concentration. Activator activity was inhibited by NaF, a phosphatase inhibitor. Both the inactivator and the activator appear to be proteins. Our data thus suggest that the inactivation and the reactivation of the reductase in brain microsomes occurs via protein-mediated interconversion to phosphorylated and dephosphorylated forms of the enzyme with differing catalytic activity. The HMG-CoA reductase activity increases almost two-fold during isolation of the brain microsomes. This increase in activity is blocked when brain tissue is homogenized in the medium containing NaF. In rat brain about 50% of the reductase exists in an inactive form in both young and adult rats. The low reductase activity in brain of adult animals does not appear to be related to an increase in the proportion of an inactive phosphorylated form of the enzyme. This suggests that developmental change in the reductase activity is not associated with the change in the proportion of phosphorylated and dephosphorylated forms of the enzyme.  相似文献   

13.
A calcium-activated and phospholipid-dependent protein kinase (protein kinase C) catalyzes the phosphorylation of both insoluble microsomal (Mr approximately 100,000) and purified soluble (Mr = 53,000) 3-hydroxy-3-methylglutaryl coenzyme A reductase. The phosphorylation and concomitant inactivation of enzymic activity of HMG-CoA reductase was absolutely dependent on Ca2+, phosphatidylserine, and diolein. Dephosphorylation of phosphorylated HMG-CoA reductase was associated with the loss of protein bound radioactivity and reactivation of enzymic activity. Maximal phosphorylation of purified HMG-CoA reductase was associated with the incorporation of 1.05 +/- 0.016 mol of phosphate/mol of native form of HMG-CoA reductase (Mr approximately 100,000). The apparent Km for purified HMG-CoA reductase and histone H1 was 0.08 mg/ml, and 0.12 mg/ml, respectively. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate stimulated the protein kinase C-catalyzed phosphorylation of HMG-CoA reductase. Increased phosphorylation of HMG-CoA reductase by phorbol 12-myristate 13-acetate suggests a possible in vivo protein kinase C-mediated mechanism for the short-term regulation of HMG-CoA reductase activity. The identification of the protein kinase C system in addition to the reductase kinase-reductase kinase kinase bicyclic cascade systems for the modulation of the enzymic activity of HMG-CoA reductase may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

14.
A procedure for the purification of 3-hydroxy-3-methylglutaryl coenzyme A reductase [mevalonate:NADP+ oxidoreductase (CoA-acylating); EC 1.1.1.34] from rat liver microsomes has been developed. The enzyme preparations obtained by this procedure have specific activities of 16 to 23 μmol of mevalonate formed per minute per milligram of protein. These enzyme preparations were judged to be homogeneous on the basis of comigration of enzyme activity and protein on polyacrylamide gels.  相似文献   

15.
In the adrenal gland of the rat, the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-controlling enzyme of cholesterol synthesis, is shown to be regulated by cholesteerol carried in plasma lipoproteins. When plasma cholesterol levels were lowered 90% by administration of the drug 4-aminopyrazolopyrimidine, the cholesteryl ester content of the adrenal gland declined by more than 90% and this was associated with a 150- to 200-fold increase in the activity of adrenal 3-hydroxy-3-methylglutaryl coenzyme A reductase and a 30-fold increase in cholesterol synthesis from [14C]acetate. The subsequent intravenous infusion of cholesterol contained in either rat or human high density or low density lipoproteins restored the adrenal content of cholesteryl esters and reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase to basal levels. The depletion of adrenal cholesteryl esters and the enhancement in the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase that occurred in the 4-aminopyrazolopyrimidine-treated rat required the action of adrenocorticotropic hormone (ACTH) since neither was observed when ACTH secretion was blocked by administration of dexamethasone. The current data indicate that the low rate of cholesterol synthesis normally observed in the rat adrenal gland is due to a suppression of the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase that is mediated by plasma lipoproteins.  相似文献   

16.
The activity of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34), obtained from cultured human IM-9 lymphoid cells or freshly isolated human peripheral blood leukocytes, is modulated by a phosphorylation/dephosphorylation mechanism. Addition of MgATP + ADP to IM-9 cell microsomal reductase leads to a time-dependent loss of enzyme activity. Inactivated reductase is reactivated by rat liver reductase phosphatase. Kinase-dependent IM-9 cell microsomal reductase, prepared by heating IM-9 microsomes for 15 min at 50°C, is inactivated in the presence of MgATP and ADP only after addition of cytosolic reductase kinase from either IM-9 cells, freshly isolated leukocytes or rat liver. Inactivation is time-dependent and dependent on the cytosolic protein concentration. Inactivated reductase is reactivated by rat liver reductase phosphatase. For cultured IM-9 cells and freshly isolated leukocytes incubated with culture medium for 2 h, the ratios of active (unphosphorylated) to total (phosphorylated + unphosphorylated) reductase activity are 0.22 and 0.43, respectively. Thus, in addition to its regulation by changes in the amount of total enzyme protein, human leukocyte reductase activity is also modulated by a phosphorylation/dephosphorylation mechanism.  相似文献   

17.
The subcellular localization of 3-hydroxy-3-methylglutaryl coenzymeA reductase and other membrane-bound enzymes in fresh, cut anddiseased sweet potato root tissues was resolved by differentialcentrifugation and sucrose density gradient centrifugation.In fresh, cut and diseased tissues, cytochrome c oxidase wasalmost localized in mitochondria, and NADH cytochrome c reductasewas in mitochondria in fresh and cut tissues, but in both mitochondriaand microsomes in diseased tissue. NADPH cytochrome c reductaseand antimycin A insensitive NADH cytochrome c reductase weremainly associated with microsomes. Catalase was dominantly foundin the mitochondrial fraction. 3-Hydroxy-3-methylglutaryl coenzymeA reductase was localized only in mitochondria and not in microsomaland supernatant fractions in both fresh and cut tissues. Indiseased tissue (infected with Ceratocystis fimbriata), in additionto being present in mitochondria, the enzyme was also localizedin microsomes. These results indicate that microsomal 3-hydroxy-3-methylglutarylcoenzyme A reductase whose activity rapidly increased in responseto the infection, predominandy participates in the formationof terpenes such as ipomeamarone. 1 This paper constitutes Part 122 in the Series "The PhytopadiologicalChemistry of Sweet Potato with Black Rot and Injury." (Received March 1, 1976; )  相似文献   

18.
In female frogs (Rana Esculenta) during gametogenesis the cholesterol synthesized in the liver by 3-hydroxy-3-methylglutaryl coenzyme A reductase is mostly exported into the blood and taken up by the oocytes.In order to understand the fate of the neosynthesized cholesterol, female and male frogs and estrogenized male controls were injected with the labelled precursor14C mevalonate.In females and in estrogenized controls, mevalonate-derived radioactivity is found in a plasmatic lipoprotein that has been identified as vitellogenin by immunological detection.The increased 3-hydroxy-3-methylglutaryl coenzyme A reductase activity present in females in Fall is likely to be committed to provide cholesterol for the lipidation of this cholesterol-rich protein.  相似文献   

19.
The effect of copper deficiency on hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme regulating cholesterol biosynthesis, was investigated in the rat. Male weanling rats were fed semipurified diets containing adequate, marginal, or deficient levels of copper for 6 weeks. Two separate studies were conducted; in the first study, animals were fasted 12 hours prior to analysis and in the second study, animals were fed diets ad libitum. Plasma lipid levels, hepatic cholesterol concentrations, and 3-hydroxy-3-methylglutaryl coenzyme A reductase specific activity, total and active, were determined. Consistent with previous findings, plasma total cholesterol and triglyceride levels were significantly elevated in copper-deficient rats. Copper deficiency resulted in a significant decrease in hepatic total cholesterol levels. Total and active levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase in fed animals were elevated twofold with copper deficiency, with the active form of the enzyme constituting approximately 30% of total activity. 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity in copper-deficient fasted rats was twofold higher than for the fasted adequate animal; however, fasting did result in a 10-fold reduction in hepatic reductase specific activity. These data support the hypothesis that copper deficiency results in a hypercholesterolemic state in the rat associated with increased hepatic cholesterol synthesis.  相似文献   

20.
A procedure for the preparation of highly radioactive homogeneous 32P-labeled 3-hydroxy-3-methylglutaryl coenzyme A reductase from rat liver microsomes has been developed. The enzymatic preparation obtained by this procedure has a specific radioactivity 50-fold higher than that reported in previous literature. The purified enzyme was judged to be homogeneous on the basis of comigration of enzyme activity with a single band of protein and 32P radioactivity on polyacrylamide gels. The 32P covalently bound to the reductase was removed upon incubation with purified hydroxymethylglutaryl coenzyme A reductase phosphatase from rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号