首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Questions: What is the climatic envelope of European Atlantic heathlands and the relationship between their floristic geographical variability and climatic parameters? Are the biogeographic patterns extracted from genuine heath plants comparable to those extracted from the accompanying flora? To what extent does the species composition extracted from phytosociological data support the current theory of refuge areas of heath vegetation in southern Atlantic Europe during the Pleistocene ice ages? Location: Atlantic Europe and NW Morocco. Methods: The geographical territory in which Atlantic heathlands occur was divided into 23 sectors following geographic and chorological criteria. A presence–absence table with 333 taxa was then constructed with the available phytosociological data. The taxa were classified into different groups according to their phytosociological affinity. Several types of numerical analysis were performed with this matrix and the climatic data obtained from meteorological sources. Results: Heathlands require a humid and oceanic climate and are limited by cold temperatures in the north and by summer droughts in the south. The highest floristic richness of this vegetation type is found in NW Iberia. Ordinations indicate a strong correlation between floristic composition of biogeographic sector and summer drought (Ios) and thermicity (It). Conclusions: The main climatic factors determining lowland heathland floristic distribution are thermicity and summer drought. The current optimal conditions for heath flora in NW Iberia suggest that there were southern refuges during the Pleistocene ice ages from which northward expansion has taken place.  相似文献   

2.
Aim This study investigates the determinants of European‐scale patterns in tree species composition and richness, addressing the following questions: (1) What is the relative importance of environment and history? History refers to lasting effects of past large‐scale events and time‐dependent cumulative effects of ongoing processes, notably dispersal limited range dynamics. (2) Among the environmental determinants, what is the relative importance of climate, soils, and forest cover? (3) Do the answers to questions 1 and 2 differ between conifers and Fagales, the two major monophyletic groups of European trees? Location The study area comprises most of Europe (34° N–72° N and 11° W–32° E). Methods Atlas data on native distributions of 54 large tree species at 50 × 50 km resolution were linked with climatic, edaphic, and forest cover maps in a geographical information system. Unconstrained (principal components analysis using Hellinger distance transformation and detrended correspondence analysis) and constrained ordinations (redundancy analysis using Hellinger distance transformation and canonical correspondence analysis) and multiple linear regressions were used to investigate the determinants of species composition and species richness, respectively. History is expected to leave its mark as broad spatial patterns and was represented by the nine spatial terms of a cubic trend surface polynomial. Results The main floristic pattern identified by all ordinations was a latitude‐temperature gradient, while the lower axes corresponded mostly to spatial variables. Partitioning the floristic variation using constrained ordinations showed the mixed spatial‐environmental and pure spatial fractions to be much greater than the pure environmental fraction. Biplots, forward variable selection, and partial analyses all suggested climatic variables as more important floristic determinants than forest cover or soil variables. Tree species richness peaked in the mountainous regions of East‐Central and Southern Europe, except the Far West. Variation partitioning of species richness found the mixed spatial‐environmental and pure spatial fractions to be much greater than the pure environmental fraction for all species combined and Fagales, but not for conifers. The scaled regression coefficients indicated climate as a stronger determinant of richness than soils or forest cover. While the dominant patterns were similar for conifers and Fagales, conifers exhibited less predictable patterns overall, a smaller pure spatial variation fraction relative to pure environmental fraction, and a greater relative importance of climate; all differences being more pronounced for species richness than for species composition. Main conclusions The analyses suggest that history is at least as important as current environment in controlling species composition and richness of European trees, with the exception of conifer species richness. Strong support for interpreting the spatial patterns as outcomes of historical processes, notably dispersal limitation, came from the observation that many European tree species naturalize extensively outside their native ranges. Furthermore, it was confirmed that climate predominates among environmental determinants of distribution and diversity patterns at large spatial scales. Finally, the particular patterns exhibited by conifers probably reflect greater environmental specialization and greater human impact. These findings warn against expecting the European tree flora to be able track fast future climate changes on its own.  相似文献   

3.
Mediterranean mountains harbour some of Europe’s highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.  相似文献   

4.
5.
Aims To identify the relative contributions of environmental determinism, dispersal limitation and historical factors in the spatial structure of the floristic data of inselbergs at the local and regional scales, and to test if the extent of species spatial aggregation is related to dispersal abilities. Location Rain forest inselbergs of Equatorial Guinea, northern Gabon and southern Cameroon (western central Africa). Methods We use phytosociological relevés and herbarium collections obtained from 27 inselbergs using a stratified sampling scheme considering six plant formations. Data analysis focused on Rubiaceae, Orchidaceae, Melastomataceae, Poaceae, Commelinaceae, Acanthaceae, Begoniaceae and Pteridophytes. Data were investigated using ordination methods (detrended correspondence analysis, DCA; canonical correspondence analysis, CCA), Sørensen's coefficient of similarity and spatial autocorrelation statistics. Comparisons were made at the local and regional scales using ordinations of life‐form spectra and ordinations of species data. Results At the local scale, the forest‐inselberg ecotone is the main gradient structuring the floristic data. At the regional scale, this is still the main gradient in the ordination of life‐form spectra, but other factors become predominant in analyses of species assemblages. CCA identified three environmental variables explaining a significant part of the variation in floristic data. Spatial autocorrelation analyses showed that both the flora and the environmental factors are spatially autocorrelated: the similarity of species compositions within plant formations decreasing approximately linearly with the logarithm of the spatial distance. The extent of species distribution was correlated with their a priori dispersal abilities as assessed by their diaspore types. Main conclusions At a local scale, species composition is best explained by a continuous cline of edaphic conditions along the forest‐inselberg ecotone, generating a wide array of ecological niches. At a regional scale, these ecological niches are occupied by different species depending on the available local species pool. These subregional species pools probably result from varying environmental conditions, dispersal limitation and the history of past vegetation changes due to climatic fluctuations.  相似文献   

6.
The Iberian flora has a high degree of originality (1328 endemic species, 24% of endemism), comparable to other regions in the Mediterranean Basin. The richness of Iberian endemic species is unevenly distributed; the greatest diversity is found in the main mountain ranges although the southwestern Atlantic coast and specially the Balearic Islands are rich in range-restricted endemic species. The largest number of endemic genera is found in the northwestern mountains, which might have acted as a refugium area. The Baetic System, which includes nearly half (46%) of the total Iberian endemic species, is by far the richest region of the territory. Its endemic flora is characterized by the great richness of narrow endemics and the high species turnover rate. The k-means partitioning analysis enables us to identify 11 units, generally well defined by the natural geographic features. The clusters including the northwestern mountains, the Cantabrian Mountains, the southwestern coast and especially the Balearic Islands, the Pyrenees and the Baetic System are compact and consist of a high proportion of diagnostic species, and can therefore be considered areas of endemism on a large scale. The regionalization reflects a primary longitudinal division of Iberia between a basic eastern and an acidic western region, but also partly reveals a climatic division between Eurosiberian and Mediterranean regions. Southeastern Iberia seems to be an important center of differentiation for several typically Mediterranean genera (e.g. Centaurea, Linaria, Armeria, Teucrium and Thymus), but other large genera are also highly diversified.  相似文献   

7.
It is a common assumption that species' ranges are limited by their physiological tolerances to climatic factors, Biotic factors, such as competition, are rarely considered. We investigated the distributions of Ulex minor and U. gallii at three spatial scales from geographic ranges to individual heaths - to examine whether the species are negatively associated, as predicted by the hypothesis that the ranges of the species are limited by competition with each other. Distribution maps for the British Isles and France (100 400 km2 survey units) show the two species have largely separated, but slightly overlapping ranges. A region of range overlap on the heaths of Dorset, southern England was mapped using 4 ha survey squares. There was strong negative association between the species, and the heaths could be divided into zones where one species was dominant. There was some indication of edaphic differences between the U. minor -dominated zones and the U. gallii zones. The few heaths where the species co-occurred were surveyed using 4 m2 quadrats placed along transects. Usually one species was widespread over the heath, while the other occurred in patches. The species were strongly negatively associated in all transects. Therefore, the two species showed strong negative associations at three mapping scales. Apparent co-occurrences detected at one spatial scale largely disappeared when species were mapped at finer scales, emphasising the fractal nature of distributions. This provides evidence that the distributions of the two species are not independent and that they cannot coexist, and therefore that their ranges are limited by competition. Over their ranges, competitive superiority is probably determined by the climate. At the range boundaries in the region of overlap, climate is not important, but other physical factors such as edaphic conditions may determine the outcome of competition.  相似文献   

8.
We determined the environmental correlates of vascular plant biodiversity in the Baetic‐Rifan region, a plant biodiversity hotspot in the western Mediterranean. A catalog of the whole flora of Andalusia and northern Morocco, the region that includes most of the Baetic‐Rifan complex, was compiled using recent comprehensive floristic catalogs. Hierarchical cluster analysis (HCA) and detrended correspondence analysis (DCA) of the different ecoregions of Andalusia and northern Morocco were conducted to determine their floristic affinities. Diversity patterns were studied further by focusing on regional endemic taxa. Endemic and nonendemic alpha diversities were regressed to several environmental variables. Finally, semi‐partial regressions on distance matrices were conducted to extract the respective contributions of climatic, altitudinal, lithological, and geographical distance matrices to beta diversity in endemic and nonendemic taxa. We found that West Rifan plant assemblages had more similarities with Andalusian ecoregions than with other nearby northern Morocco ecoregions. The endemic alpha diversity was explained relatively well by the environmental variables related to summer drought and extreme temperature values. Of all the variables, geographical distance contributed by far the most to spatial turnover in species diversity in the Baetic‐Rifan hotspot. In the Baetic range, climate was the most significant driver of nonendemic species beta diversity, while lithology and climate were the main drivers of endemic beta diversity. Despite the fact that Andalusia and northern Morocco are presently separated by the Atlantic Ocean and the Mediterranean Sea, the Baetic and Rifan mountain ranges have many floristic similarities – especially in their western ranges – due to past migration of species across the Strait of Gibraltar. Climatic variables could be shaping the spatial distribution of endemic species richness throughout the Baetic‐Rifan hotspot. Determinants of spatial turnover in biodiversity in the Baetic‐Rifan hotspot vary in importance between endemic and nonendemic species.  相似文献   

9.
Question: Are differences in landscape use of semi‐domesticated reindeer reflected in the vegetation of summer grazing grounds? Location: Alpine heaths, central east Sweden. Methods: Dry heath and grass heath vegetation plots with inferred grazing intensities (high, intermediate and low) were selected a priori from an interpolated pellet count map compiled in 2002. In each plot, faecal pellets were counted, environmental variables measured and vegetation sampled by listing presence and absence. Species composition was compared with a detrended correspondence analysis, and a canonical correspondence analysis was used to infer relations between species composition and environmental variables. Plots were also clustered to provide groupings for an indicator species analysis. Results: Significant differences in faecal pellet count were present between the highest and lowest grazing intensities for both vegetation types, showing that the pattern in the interpolated pellet maps was robust. Differences in species composition between grazing intensities were found for the dry heath only. Here, there was an apparent grazing gradient, with lichens and mosses in the low‐use plots and grasses and herbs in the high‐use plots. No such gradient was found for the grass heath. Conclusions: Within the dry heath vegetation type, grazing levels had a subtle effect on the vegetation, while no effects were seen in the grass heath, probably as a result of the dominance of more grazing‐tolerant graminoids. Even in the dry heath, species richness did not differ between grazing levels, but the relative abundances of species differed.  相似文献   

10.
11.
The taxonomic status of the freshwater mollusc fauna of the Iberian Peninsula it is reasonably well known, but, unlike other benthic macroinvertebrate, its distribution and ecology has been poorly studied. In this article, I study the relationships between environmental characteristics and distribution and community structure of freshwater molluscs along climatic, hydrological, physicochemical, and heterogeneity gradients in the southwestern Iberian Peninsula. Ninety-four sampling points were analysed, in which, in addition to habitat features, the presence/absence and abundance of species were evaluated. The environmental gradients were measured by use of principal-components analysis (PAC), which orders the variables along two gradients: headwaters-mouth gradient (PC1) and water availability (PC2). According to canonical correspondence analysis (CCA), the main environmental factors related to species distribution and community structure were conductivity, permanency, channel width, turbidity, slope, and distance to the main river axis. The relationship between biodiversity (measured as species richness and the Shannon–Weiner diversity index), the ratio of the number of introduced species to the total number of species (zoogeographic integrity coefficient), and environmental variables was best explained by a regression model incorporating, basically, the permanence of water in streams as the variable that accounted for most of the variance. This study demonstrates that the distribution of freshwater molluscs along a Mediterranean gradient highly stressed by drought depends, mainly, on the hydrological stability and environmental conditions of the headwaters and estuarine sites.  相似文献   

12.
Abstract Previous studies of heaths on Pleistocene coastal sands showed consistent variation in patterns of floristic composition between areas on ridges and slopes but not within them. A large wild-fire that swept this system provided an opportunity to observe temporal processes in habitat segregation of species. Ridges and slopes were found to differ in species richness of seedlings in 0.0625 m2 quadrats and there was no evidence that the species richness in the two habitats was converging over 3 years. This suggests that initially these processes differ in space between the two habitats with more species in the wet heath being packed into a smaller area than in the dry heath. Seed-banks of species did not saturate available space for recruitment in either habitat, but seedling densities differed asymmetrically between habitats across two pairs of species studied. Experimental manipulation of seeds among habitats also showed distinct differences in establishment and survival among representative species from different habitats. The presence of seed-banks of wet-heath species in dry heath suggested that recruitment of their seedlings may occur there, but experiments showed that seedlings that arise from them do not survive there. Conversely, although no seed-bank of either dry-heath species studied was found in wet heath, our manipulations showed that their seedlings could grow there. Thus, superficially, physiological tolerance appeared to limit regeneration of wet-heath species in dry heath. However, there appeared to be no physiological limit for dry-heath plants to survive in wet heath. This paper shows that segregation of species may operate at either of two stages of the life cycle: at dispersal when safe sites for establishment are required, and at recruitment after seedlings have established. These findings highlight the importance of the regeneration niche in structuring community composition in coastal heaths, and contrast with traditional explanations of species segregation invoking physiological tolerance and competition at later life-history stages.  相似文献   

13.
QIAN  HONG 《Annals of botany》1999,83(3):271-283
This paper reports: (1) patterns of taxonomic richness of vascularplants in North America (north of Mexico), an area accountingfor 16.6% of the total world land, in relation to latitudinaland longitudinal gradients; (2) floristic relationships betweendifferent latitudinal zones, longitudinal zones, and geographicregions of North America; and (3) floristic relationships betweenNorth America and Eurasia at various geographic scales. NorthAmerica was geographically divided into twelve regions, whichwere latitudinally grouped into four zones, each with threeregions, and longitudinally grouped into three zones, each withfour regions. The native vascular flora of North America consistsof 162 orders, 280 families, 1904 genera and 15352 species.Along the latitudinal gradient, species richness shows a strikingincrease with decreasing latitude (e.g. the northernmost latitudinalzone has only 11.7% of the number of species in the southernmostlatitudinal zone). However, about 63% of the species of thenorthernmost latitudinal zone are also present in the southernmostlatitudinal zone of North America. Among the three longitudinalzones, the zone on the Pacific coast has 1.48 and 1.64-timesas many species as the zones in the interior and on the Atlanticcoast, respectively. About 36% of the species in the zone ofthe Atlantic coast also occur in the Pacific coast zone. However,each of over 40% of the species in North America occupies lessthan 10% of the total land area of North America. Some 48% ofthe genera and 6.5% of the species of North America are alsonative to Eurasia. In general, the number of genera common toNorth America and Eurasia increased from the north to the southand from the west to the east of North America, whereas thenumber of species common to the two continents decreased alongthe same two geographic gradients.Copyright 1999 Annals of BotanyCompany Asia, biodiversity, Europe, floristic similarity, latitudinal and longitudinal gradients, North America, taxonomic richness.  相似文献   

14.
Vandvik  V.  Birks  H.J.B. 《Plant Ecology》2004,170(2):203-222
This paper discusses vegetation types and diversity patterns in relation to environment and land-use at summer farms, a characteristic cultural landscape in the Norwegian mountains. Floristic data (189 taxa) were collected in 130 4-m2 sample plots within 12 summer farms in Røldal, western Norway. The study was designed to sample as fully as possible the range of floristic, environmental, and land-use conditions. Vegetation types delimited by two-way indicator species analysis were consistent with results from earlier phytosociological studies. Detrended correspondence analysis and canonical correspondence analysis show that rather than being distinct vegetation types, the major floristic variation is structured along a spatial gradient from summer farm to the surrounding heathland vegetation. Species richness (alpha diversity) was modelled against environmental variables by generalized linear modelling and compositional turnover (beta diversity) by canonical correspondence analysis. Most environmental factors made significant contributions, but the spatial distance-to-farm gradient was the best predictor of both species richness and turnover. While summer farms reduce mean species richness at the plot scale, the compositional heterogeneity of the upland landscapes is increased, thereby creating ‘ecological room’ for additional vegetation types and species. Within an overall similarity across scales, soil variables (pH, base saturation, LOI, phosphate and nitrogen) differed considerably in their explanatory power for richness and turnover. A difference between ‘productivity limiting’ factors and ‘environmental sieves’ is proposed as an explanation. Species turnover with altitude is relatively low in grasslands as compared to heaths.  相似文献   

15.
In this paper, the results of a study on the ecology, floristic composition and spatial assemblages of temporary limestone rock pool plant communities of a central Mediterranean area (S Sicily, the Maltese Islands and Lampedusa) are presented. A total of 76 temporary pools were studied, distributed between the infra-mediterranean and thermo-mediterranean bioclimatic belt. For each temporary rock pools, the floristic composition and cover of the species were determined using standard relevé methods. Moreover, for 50 of these pools, pH, conductivity, soil depth, water-level, altitude and floristic richness and diversity index were assessed. The plant communities were analysed using unweighted pair group method using arithmetic averages and Euclidean distance classification and ordination methods such as canonical correspondence analysis (CCA). A total of four plant communities with specific floristic composition were established, each one with a different dominant species: Callitriche truncata; Elatine gussonei; Tillaea vaillantii and Lythrum hyssopifolia. According to the CCA, the spatial patterns of plant communities follow an ecological gradient related to water level and depth/size of the rock pools: these are the main ecological features affecting the distribution of the plant communities of rock pools. In addition, floristic richness and diversity index showed a slight increase in trend from temporary pools submerged for long periods towards pools submerged for short periods.  相似文献   

16.
Most large‐scale multispecies studies of tree growth have been conducted in tropical and cool temperate forests, whereas Mediterranean water‐limited ecosystems have received much less attention. This limits our understanding of how growth of coexisting tree species varies along environmental gradients in these forests, and the implications for species interactions and community assembly under current and future climatic conditions. Here, we quantify the absolute effect and relative importance of climate, tree size and competition as determinants of tree growth patterns in Iberian forests, and explore interspecific differences in the two components of competitive ability (competitive response and effect) along climatic and size gradients. Spatially explicit neighborhood models were developed to predict tree growth for the 15 most abundant Iberian tree species using permanent‐plot data from the Spanish Second and Third National Forest Inventory (IFN). Our neighborhood analyses showed a climatic and size effect on tree growth, but also revealed that competition from neighbors has a comparatively much larger impact on growth in Iberian forests. Moreover, the sensitivity to competition (i.e. competitive response) of target trees varied markedly along climatic gradients causing significant rank reversals in species performance, particularly under xeric conditions. We also found compelling evidence for strong species‐specific competitive effects in these forests. Altogether, these results constitute critical new information which not only furthers our understanding of important theoretical questions about the assembly of Mediterranean forests, but will also be of help in developing new guidelines for adapting forests in this climatic boundary to global change. If we consider the climatic gradients of this study as a surrogate for future climatic conditions, then we should expect absolute growth rates to decrease and sensitivity to competition to increase in most forests of the Iberian Peninsula (in all but the northern Atlantic forests), making these management considerations even more important in the future.  相似文献   

17.
The riparian vegetation of a basin in the NW Spain was studied to establish its spatial variation pattern and to relate floristic and structural differences in the community to environmental factors. Eighty-seven sampling units in 43 sampling stations were used. Samples were classified in 5 groups using Two Way Indicator Species Analysis (TWINSPAN). Three groups represented reaches with riparian wood along their banks: Mediterranean alderwoods and shrubby willow woods. The remaining two corresponded to floodplains with vegetation colonizing moderately eutrophicated deposits of gravel. Structural characteristics of richness and diversity differentiated the alder woods. In these, the shaded environment created by the woody species limited herbaceous vegetation development. This was dominated by Carex acuta subsp. broteriana. Classification and CCA ordination results were compared. The TWINSPAN groups could be recognized in the CCA graph. The ordination was related to a pollution gradient associated with altitude. This pollution gradient involved bank ruderalization, incorporation of nitrophilous species and a decrease in the vegetation quality. The influence of the lithological features on vegetation was also evident.  相似文献   

18.
Aims We analyse here the variations in species composition and richness and the geographic ranges of the tree species occurring in South American subtropical Atlantic and Pampean forests. Our goals were to assess (i) the floristic consistency of usual classifications based on vegetation physiognomy, climate and elevation; (ii) the leading role of temperature-related variables on the variations in species composition and richness; (iii) the predominance of species with tropical–subtropical ranges, possibly as a result of forest expansion over grasslands after the Last Glacial Maximum (LGM); (iv) the restriction of most subtropical endemics to stressful habitats as a possible result of past forest refuges during the LGM.Methods The region was defined by the Tropic of Capricorn to the north, the Rio de la Plata to the south, the Atlantic shoreline to the east and the catchment areas of the upper Paraná and Uruguay Rivers to the west. Multivariate analyses, multiple regression modelling and variance partition analyses were performed on a database containing 63 994 occurrence records of 1555 tree species in 491 forest sites and 48 environmental variables. All species were also classified according to their known geographic range.Important findings A main differentiation in species composition and richness was observed between the eastern windward coastlands (rain and cloud forests) and western leeward hinterlands (Araucaria and semi-deciduous forests). Pre-defined forest types on both sides were consistent with variations in tree species composition, which were significantly related to both environmental variables and spatial proximity, with extremes of low temperature playing a chief role. Tree species richness declined substantially towards the south and also from rain to seasonal forests and towards the highland summits and sandy shores. Species richness was significantly correlated with both minimum temperature and actual evapotranspiration. About 91% of the subtropical flora is shared with the much richer tropical flora, probably extracting species that can cope with frost outbreaks. The 145 subtropical endemics were not concentrated in harsher habitats.  相似文献   

19.

Questions

Changed land use, nitrogen deposition, climate change, and the spread of non-native species have repeatedly been reported as the main drivers of recent floristic changes in northern Europe. However, the relevance of the geographical scale at which floristic changes are observed is less well understood and it has only rarely been possible to quantify biodiversity loss. Therefore, we assessed changes in species richness, species composition and mean ecological indicator values (EIVs) at three nested geographic scales during two different time periods, each ca 30 years, since the mid-1900s.

Location

Two parishes in central Scania, southernmost Sweden.

Methods

We analyzed species presence/absence data from three inventories at ca 30-year intervals over 1957–2021 and three geographic scales (157 m2, ca 7 km2 and ca 45 km2) to document temporal trends and differences between geographic scales in terms of species richness, species composition and mean EIVs.

Results

We found shifts in species composition across all geographical scales. However, the magnitude of biodiversity loss and the main drivers of these changes were scale-dependent. At the smallest spatial scale, we saw a dramatic loss of plant biodiversity with local species richness in 2021 being only 48% of that of 1960. In contrast, at the larger geographic scales no significant changes in species richness were observed because species losses were compensated for by gains of predominantly non-native species, which made up at least 78% of the new species richness. At the smallest spatial scale, changed land use (ceased grazing/mowing and intensified forestry) appeared as the main driver, while an increasing proportion of non-native species, as well as climatic changes and increasing nitrogen loads appeared relatively more important at larger geographic scales.

Conclusion

Our results highlight the precarious situation for biodiversity in the region and at the same time the fundamental importance of geographic scale in studies of biodiversity change. Both the magnitude and drivers of changes may differ depending on the geographic scale and must be considered also when previously published studies are interpreted.  相似文献   

20.
Knowledge of the scale of dispersal and the mechanisms governing gene flow in marine environments remains fragmentary despite being essential for understanding evolution of marine biota and to design management plans. We use the limpets Patella ulyssiponensis and Patella rustica as models for identifying factors affecting gene flow in marine organisms across the North-East Atlantic and the Mediterranean Sea. A set of allozyme loci and a fragment of the mitochondrial gene cytochrome C oxidase subunit I were screened for genetic variation through starch gel electrophoresis and DNA sequencing, respectively. An approach combining clustering algorithms with clinal analyses was used to test for the existence of barriers to gene flow and estimate their geographic location and abruptness. Sharp breaks in the genetic composition of individuals were observed in the transitions between the Atlantic and the Mediterranean and across southern Italian shores. An additional break within the Atlantic cluster separates samples from the Alboran Sea and Atlantic African shores from those of the Iberian Atlantic shores. The geographic congruence of the genetic breaks detected in these two limpet species strongly supports the existence of transpecific barriers to gene flow in the Mediterranean Sea and Northeastern Atlantic. This leads to testable hypotheses regarding factors restricting gene flow across the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号