首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flagellar calcium-binding protein (FCaBP) of the protozoan Trypanosoma cruzi is targeted to the flagellar membrane where it regulates flagellar function and assembly. As a first step toward understanding the Ca(2+)-induced conformational changes important for membrane-targeting, we report here the x-ray crystal structure of FCaBP in the Ca(2+)-free state determined at 2.2A resolution. The first 17 residues from the N terminus appear unstructured and solvent-exposed. Residues implicated in membrane targeting (Lys-19, Lys-22, and Lys-25) are flanked by an exposed N-terminal helix (residues 26-37), forming a patch of positive charge on the protein surface that may interact electrostatically with flagellar membrane targets. The four EF-hands in FCaBP each adopt a "closed conformation" similar to that seen in Ca(2+)-free calmodulin. The overall fold of FCaBP is closest to that of grancalcin and other members of the penta EF-hand superfamily. Unlike the dimeric penta EF-hand proteins, FCaBP lacks a fifth EF-hand and is monomeric. The unstructured N-terminal region of FCaBP suggests that its covalently attached myristoyl group at the N terminus may be solvent-exposed, in contrast to the highly sequestered myristoyl group seen in recoverin and GCAP1. NMR analysis demonstrates that the myristoyl group attached to FCaBP is indeed solvent-exposed in both the Ca(2+)-free and Ca(2+)-bound states, and myristoylation has no effect on protein structure and folding stability. We propose that exposed acyl groups at the N terminus may anchor FCaBP to the flagellar membrane and that Ca(2+)-induced conformational changes may control its binding to membrane-bound protein targets.  相似文献   

2.
A novel flagellar Ca2+-binding protein in trypanosomes   总被引:6,自引:0,他引:6  
A 24-kDa protein of Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, is recognized by antisera from both humans and experimental animals infected with this organism. Near its C terminus are two regions that have sequence similarity with several Ca2+-binding proteins and that conform to the "E-F hand" Ca2+-binding structure. We expressed a cDNA encoding this protein in Escherichia coli and showed that both the recombinant protein and the 24-kDa native trypanosome protein do indeed bind Ca2+. The protein's low Ca2+-binding capacity (less than 2 mol of Ca2+/mol of protein) and high Ca2+-binding affinity (apparent Kd less than 50 microM Ca2+) are consistent with binding of Ca2+ via the E-F hand structures. Immunofluorescence assays using a mouse antiserum directed against the fusion protein localized the native protein to the trypanosome's flagellum. The protein's abundance, Ca2+-binding property, and flagellar localization suggest that it participates in molecular processes associated with the high motility of the parasite.  相似文献   

3.
Calcium binding to chicken recombinant skeletal muscle TnC (TnC) and its mutants containing tryptophan (F29W), 5-hydroxytryptophan (F29HW), or 7-azatryptophan (F29ZW) at position 29 was measured by flow dialysis and by fluorescence. Comparative analysis of the results allowed us to determine the influence of each amino acid on the calcium binding properties of the N-terminal regulatory domain of the protein. Compared with TnC, the Ca(2+) affinity of N-terminal sites was: 1) increased 6-fold in F29W, 2) increased 3-fold in F29ZW, and 3) decreased slightly in F29HW. The Ca(2+) titration of F29ZW monitored by fluorescence displayed a bimodal curve related to sequential Ca(2+) binding to the two N-terminal Ca(2+) binding sites. Single and double mutants of TnC, F29W, F29HW, and F29ZW were constructed by replacing aspartate by alanine at position 30 (site I) or 66 (site II) or both. Ca(2+) binding data showed that the Asp --> Ala mutation at position 30 impairs calcium binding to site I only, whereas the Asp --> Ala mutation at position 66 impairs calcium binding to both sites I and II. Furthermore, the Asp --> Ala mutation at position 30 eliminates the differences in Ca(2+) affinity observed for replacement of Phe at position 29 by Trp, 5-hydroxytryptophan, or 7-azatryptophan. We conclude that position 29 influences the affinity of site I and that Ca(2+) binding to site I is dependent on the previous binding of metal to site II.  相似文献   

4.
A new low molecular weight calcium binding protein, designated 12-kDa CaBP, has been isolated from chicken gizzard using a phenyl-Sepharose affinity column followed by ion-exchange and gel filtration chromatographies. The isolated protein was homogeneous and has a molecular weight of 12,000 based on sodium dodecyl sulfate-gel electrophoresis. The amino acid composition of this protein is similar to but distinct from other known low molecular weight Ca2+ binding proteins. Ca2+ binding assays using Arsenazo III (Sigma) indicated that the protein binds 1 mol of Ca2+/mol of protein. The 12-kDa CaBP underwent a conformational change upon binding Ca2+, as revealed by uv difference spectroscopy and circular dichroism studies in the aromatic and far-ultraviolet range. Addition of Ca2+ to the 12-kDa CaBP labeled with 2-p-toluidinylnaphthalene-6-sulfonate (TNS) resulted in a sevenfold increase in fluorescence intensity, accompanied by a blue shift of the emission maximum from 463 to 445 nm. Hence, the probe in the presence of Ca2+ moves to a more nonpolar microenvironment. Like calmodulin and other related Ca2+ binding proteins, this protein also exposes a hydrophobic site upon binding calcium. Fluorescence titration with Ca2+ using TNS-labeled protein revealed the presence of a single high affinity calcium binding site (kd approximately 1 x 10(-6) M).  相似文献   

5.
Tikunova SB  Rall JA  Davis JP 《Biochemistry》2002,41(21):6697-6705
Troponin C (TnC) is an EF-hand Ca(2+) binding protein that regulates skeletal muscle contraction. The mechanisms that control the Ca(2+) binding properties of TnC and other EF-hand proteins are not completely understood. We individually substituted 27 Phe, Ile, Leu, Val, and Met residues with polar Gln to examine the role of hydrophobic residues in Ca(2+) binding and exchange with the N-domain of a fluorescent TnC(F29W). The global N-terminal Ca(2+) affinities of the TnC(F29W) mutants varied approximately 2340-fold, while Ca(2+) association and dissociation rates varied less than 70-fold and more than 45-fold, respectively. Greater than 2-fold increases in Ca(2+) affinities were obtained primarily by slowing of Ca(2+) dissociation rates, while greater than 2-fold decreases in Ca(2+) affinities were obtained by slowing of Ca(2+) association rates and speeding of Ca(2+) dissociation rates. No correlation was found between the Ca(2+) binding properties of the TnC(F29W) mutants and the solvent accessibility of the hydrophobic amino acids in the apo state, Ca(2+) bound state, or the difference between the two states. However, the effects of these hydrophobic mutations on Ca(2+) binding were contextual possibly because of side chain interactions within the apo and Ca(2+) bound states of the N-domain. These results demonstrate that a single hydrophobic residue, which does not directly ligate Ca(2+), can play a crucial role in controlling Ca(2+) binding and exchange within a coupled and functional EF-hand system.  相似文献   

6.
Berggård T  Silow M  Thulin E  Linse S 《Biochemistry》2000,39(23):6864-6873
Calbindin D(28k) is a member of a large family of intracellular Ca(2+) binding proteins characterized by EF-hand structural motifs. Some of these proteins are classified as Ca(2+)-sensor proteins, since they are involved in transducing intracellular Ca(2+) signals by exposing a hydrophobic patch on the protein surface in response to Ca(2+) binding. The hydrophobic patch serves as an interaction site for target enzymes. Other members of this group are classified as Ca(2+)-buffering proteins, because they remain closed after Ca(2+) binding and participate in Ca(2+) buffering and transport functions. ANS (8-anilinonaphthalene-1-sulfonic acid) binding and affinity chromatography on a hydrophobic column suggested that both the Ca(2+)-free and Ca(2+)-loaded form of calbindin D(28k) have exposed hydrophobic surfaces. Since exposure of hydrophobic surface is unfavorable in the aqueous intracellular milieu, calbindin D(28k) most likely interacts with other cellular components in vivo. A Ca(2+)-induced conformational change was readily detected by several optical spectroscopic methods. Thus, calbindin D(28k) shares some of the properties of Ca(2+)-sensor proteins. However, the Ca(2+)-induced change in exposed hydrophobic surface was considerably less pronounced than that in calmodulin. The data also shows that calbindin D(28k) undergoes a rapid and reversible conformational change in response to a H(+) concentration increase within the physiological pH range. The pH-dependent conformational change was shown to reside mainly in EF-hands 1-3. Urea-induced unfolding of the protein at pH 6, 7, and 8 showed that the stability of calbindin D(28k) was increased in response to H(+) in the range examined. The results suggest that calbindin D(28k) may interact with targets in a Ca(2+)- and H(+)-dependent manner.  相似文献   

7.
The spectral properties of three tryptophan-substituted mutants of recombinant chicken troponin C are compared. Site-specific mutagenesis was used to introduce a tryptophan residue into the high-affinity (Ca2+/Mg2+) domain of troponin C at residue position 105, thereby creating the mutant phenylalanine-105 to tryptophan (F105W). The spectral properties of F105W and a double mutant, F29W/F105W, were compared with the mutant phenylalanine-29 to tryptophan (F29W). Since wild-type chicken troponin C does not naturally contain either tyrosine or tryptophan residues, the tryptophan substitutions behaved as site-specific reporters of metal ion binding and conformational change. The residues that occupy positions 29 and 105 are at homologous locations in low-affinity and high-affinity domains, preceding the first liganding residues of binding loops I and III, respectively. Mutant proteins were examined by a combination of absorbance and fluorescence methods. Calcium induced significant changes in the near-UV absorbance spectra, fluorescence emission spectra, and far-UV circular dichroism of all three mutant proteins. Magnesium induced significant changes in the spectral properties of only F105W and F29W/F105W proteins. Tryptophan substitutions allowed Ca(2+)-specific and Ca(2+)/Mg(2+) sites to be titrated independently of one another. Results indicate that there is no interaction between the two binding domains under conditions where troponin C is isolated from the troponin complex. Magnesium-induced changes in the environment of the tryptophan reporter at position 105 were significantly different from those induced by calcium. This suggests that calcium and magnesium differ in their influence on the conformation of the high-affinity, Ca(2+)/Mg(2+) sites.  相似文献   

8.
Pathogenic Leptospira spp. express immunoglobulin-like proteins, LigA and LigB, which serve as adhesins to bind to extracellular matrices and mediate their attachment on host cells. However, nothing is known about the mechanism by which these proteins are involved in pathogenesis. We demonstrate that LigBCen2 binds Ca(2+), as evidenced by inductively coupled plasma optical emission spectrometry, energy dispersive spectrometry, (45)Ca overlay, and mass spectrometry, although there is no known motif for Ca(2+) binding. LigBCen2 binds four Ca(2+) as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The dissociation constant, K(D), for Ca(2+) binding is 7 mum, as measured by isothermal titration calorimetry and calcium competition experiments. The nature of the Ca(2+)-binding site in LigB is possibly similar to that seen in the betagamma-crystallin superfamily, since structurally, both families of proteins possess the Greek key type fold. The conformation of LigBCen2 was significantly influenced by Ca(2+) binding as shown by far- and near-UV CD and by fluorescence spectroscopy. In the apo form, the protein appears to be partially unfolded, as seen in the far-UV CD spectrum, and upon Ca(2+) binding, the protein acquires significant beta-sheet conformation. Ca(2+) binding stabilizes the protein as monitored by thermal unfolding by CD (50.7-54.8 degrees C) and by differential scanning calorimetry (50.0-55.7 degrees C). Ca(2+) significantly assists the binding of LigBCen2 to the N-terminal domain of fibronectin and perturbs the secondary structure, suggesting the involvement of Ca(2+) in adhesion. We demonstrate that LigB is a novel bacterial Ca(2+)-binding protein and suggest that Ca(2+) binding plays a pivotal role in the pathogenesis of leptospirosis.  相似文献   

9.
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca(2+). Recent crystal structures have been obtained for the protein in the apo- and Ca(2+)-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca(2+) and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca(2+) binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca(2+) affinity as the wild-type protein. We then evaluated if Ca(2+) binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca(2+) ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.  相似文献   

10.
Troponin C (TnC) is the Ca(2+)-binding subunit of the troponin complex of vertebrate skeletal muscle. It consists of two structurally homologous domains, N and C, connected by an exposed alpha-helix. The C-domain has two high-affinity sites for Ca(2+) that also bind Mg(2+), whereas the N-domain has two low-affinity sites for Ca(2+). Previous studies using isolated N- and C-domains showed that the C-domain apo form was less stable than the N-domain. Here we analyzed the stability of isolated N-domain (F29W/N-domain) against urea and pressure denaturation in the absence and in the presence of glycerol using fluorescence spectroscopy. Increasing the glycerol concentration promoted an increase in the stability of the protein to urea (0-8 M) in the absence of Ca(2+). Furthermore, the ability to expose hydrophobic surfaces normally promoted by Ca(2+) binding or low temperature under pressure was partially lost in the presence of 20% (v/v) glycerol. Glycerol also led to a decrease in the Ca(2+) affinity of the N-domain in solution. From the ln K(obs) versus ln a(H)2(O), we obtained the number of water molecules (63.5 +/- 8.7) involved in the transition N <=>N:Ca(2) that corresponds to an increase in the exposed surface area of 571.5 +/- 78.3 A(2). In skinned fibers, the affinity for Ca(2+) was also reduced by glycerol, although the effect was much less pronounced than in solution. Our results demonstrate quantitatively that the stability of this protein and its affinity for Ca(2+) are critically dependent on protein hydration.  相似文献   

11.
S100A1 is a typical representative of a group of EF-hand calcium-binding proteins known as the S100 family. The protein is composed of two alpha subunits, each containing two calcium-binding loops (N and C). At physiological pH (7.2) and NaCl concentration (100 mm), we determined the microscopic binding constants of calcium to S100A1 by analysing the Ca(2+)-titration curves of Trp90 fluorescence for both the native protein and its Glu32 --> Gln mutant with an inactive N-loop. Using a chelator method, we also determined the calcium-binding constant for the S100A1 Glu73 --> Gln mutant with an inactive C-loop. The protein binds four calcium ions in a noncooperative way with binding constants of K(1) =4 +/- 2 x 10(3) m(-1) (C-loops) and K(2) approximately 10(2) m(-1) (N-loops). Only when both loops are saturated with calcium does the protein change its global conformation, exposing to the solvent hydrophobic patches, which can be detected by 2-p-toluidinylnaphthalene-6-sulfonic acid - a fluorescent probe of protein-surface hydrophobicity. S-Glutathionylation of the single cysteine residue (85) of the alpha subunits leads to a 10-fold increase in the affinity of the protein C-loops for calcium and an enormous - four orders of magnitude - increase in the calcium-binding constants of its N-loops, owing to a cooperativity effect corresponding to DeltaDeltaG = -6 +/- 1 kcal.mol(-1). A similar effect is observed upon formation of the mixed disulfide with cysteine and 2-mercaptoethanol. The glutathionylated protein binds TRTK-12 peptide in a calcium-dependent manner. S100A1 protein can act, therefore, as a linker between the calcium and redox signalling pathways.  相似文献   

12.
Structural information on the effect of Pb(2+) on proteins under physiologically relevant conditions is largely unknown. We have previously shown that low levels of lead increased the amount of osteocalcin bound to hydroxyapatite (BBA 1535:153). This suggested that lead induced a more compact structure in the protein. We have determined the 3D structure of Pb(2+)-osteocalcin (49 amino acids), a bone protein from a target tissue, using (1)H 2D NMR techniques. Lead, at a stoichiometry of only 1:1, induced a similar fold in the protein as that induced by Ca(2+) at a stoichiometry of 3:1. The structure consisted of an unstructured N-terminus and an ordered C-terminal consisting of a hydrophobic core (residues 16-49). The genetic algorithm-molecular dynamics simulation predicted the lead ion was coordinated by the Gla 24 and Gla 21 residues. It is proposed that mineral binding occurs via uncoordinated Gla oxygen ions binding to calcium in hydroxyapatite. A comparison of Pb(2+)- and Ca(2+)-osteocalcin suggests Pb(2+), at a lower stoichiometry, may induce similar conformational changes in proteins and subsequent molecular processes normally controlled by calcium alone. This may contribute to a molecular mechanism of lead toxicity for calcium binding proteins. Lead exposure may alter the amount of mineral bound osteocalcin and contribute to abnormal bone remodeling.  相似文献   

13.
Calmodulin (CaM) activates the skeletal muscle ryanodine receptor (RyR1) at nanomolar Ca(2+) concentrations but inhibits it at micromolar Ca(2+) concentrations, indicating that binding of Ca(2+) to CaM may provide a molecular switch for modulating RyR1 channel activity. To directly examine the Ca(2+) sensitivity of RyR1-complexed CaM, we used an environment-sensitive acrylodan adduct of CaM. The resulting (ACR)CaM probe displayed high-affinity binding to, and Ca(2+)-dependent regulation of, RyR1 similar to that of unlabeled wild-type (WT) CaM. Upon addition of Ca(2+), (ACR)CaM exhibited a substantial (>50%) decrease in fluorescence (K(Ca) = 2.7 +/- 0.8 microM). A peptide derived from the RyR1 CaM binding domain (RyR1(3614)(-)(43)) caused an even more pronounced Ca(2+)-dependent fluorescence decrease, and a >or=10-fold leftward shift in its K(Ca) (0.2 +/- 0.1 microM). In the presence of intact RyR1 channels in SR vesicles, (ACR)CaM fluorescence spectra were distinct from those in the presence of RyR1(3614)(-)(43), although a Ca(2+)-dependent decrease in fluorescence was still observed. The K(Ca) for (ACR)CaM fluorescence in the presence of SR (0.8 +/- 0.4 microM) was greater than in the presence of RyR1(3614)(-)(43) but was consistent with functional determinations showing the conversion of (ACR)CaM from channel activator (apoCaM) to inhibitor (Ca(2+)CaM) at Ca(2+) concentrations between 0.3 and 1 microM. These results indicate that binding to RyR1 targets evokes significant changes in the CaM structure and Ca(2+) sensitivity (i.e., CaM tuning). However, changes resulting from binding of CaM to the full-length, tetrameric channels are clearly distinct from changes caused by the RyR1-derived peptide. We suggest that the Ca(2+) sensitivity of CaM when in complex with full-length channels may be tuned to respond to physiologically relevant changes in Ca(2+).  相似文献   

14.
S100B is a dimeric Ca(2+)-binding protein that undergoes a 90 +/- 3 degrees rotation of helix 3 in the typical EF-hand domain (EF2) upon the addition of calcium. The large reorientation of this helix is a prerequisite for the interaction between each subunit of S100B and target proteins such as the tumor suppressor protein, p53. In this study, Tb(3+) was used as a probe to examine how binding of a 22-residue peptide derived from the C-terminal regulatory domain of p53 affects the rate of Ca(2+) ion dissociation. In competition studies with Tb(3+), the dissociation rates of Ca(2+) (k(off)) from the EF2 domains of S100B in the absence and presence of the p53 peptide was determined to be 60 and 7 s(-)(1), respectively. These data are consistent with a previously reported result, which showed that that target peptide binding to S100B enhances its calcium-binding affinity [Rustandi et al. (1998) Biochemistry 37, 1951-1960]. The corresponding Ca(2+) association rate constants for S100B, k(on), for the EF2 domains in the absence and presence of the p53 peptide are 1.1 x 10(6) and 3.5 x 10(5) M(-)(1) s(-)(1), respectively. These two association rate constants are significantly below the diffusion control ( approximately 10(9) M(-)(1) s(-)(1)) and likely involve both Ca(2+) ion association and a Ca(2+)-dependent structural rearrangement, which is slightly different when the target peptide is present. EF-hand calcium-binding mutants of S100B were engineered at the -Z position (EF-hand 1, E31A; EF-hand 2, E72A; both EF-hands, E31A + E72A) and examined to further understand how specific residues contribute to calcium binding in S100B in the absence and presence of the p53 peptide.  相似文献   

15.
Koch M  Fritz G 《The FEBS journal》2012,279(10):1799-1810
S100A2 is an EF-hand calcium ion (Ca(2+))-binding protein that activates the tumour suppressor p53. In order to understand the molecular mechanisms underlying the Ca(2+) -induced activation of S100A2, the structure of Ca(2+)-bound S100A2 was determined at 1.3 ? resolution by X-ray crystallography. The structure was compared with Ca(2+) -free S100A2 and with other S100 proteins. Binding of Ca(2+) to S100A2 induces small structural changes in the N-terminal EF-hand, but a large conformational change in the C-terminal EF-hand, reorienting helix III by approximately 90°. This movement is accompanied by the exposure of a hydrophobic cavity between helix III and helix IV that represents the target protein interaction site. This molecular reorganization is associated with the breaking and new formation of intramolecular hydrophobic contacts. The target binding site exhibits unique features; in particular, the hydrophobic cavity is larger than in other Ca(2+)-loaded S100 proteins. The structural data underline that the shape and size of the hydrophobic cavity are major determinants for target specificity of S100 proteins and suggest that the binding mode for S100A2 is different from that of other p53-interacting S100 proteins. Database Structural data are available in the Protein Data Bank database under the accession number 4DUQ  相似文献   

16.
Neuronal calcium sensors (NCSs) belong to a family of Ca(2+)-binding proteins, which serve important functions in neurotransmission, and are highly conserved from yeast to humans. Overexpression of the neuronal calcium sensor-1, called frequenin in the fruit fly and in frog, increases the release of neurotransmitters. Studying the functional role of frequenin in mammals and understanding its structural dynamics is critically dependent on the availability of active purified protein. Neuronal calcium sensors like other members of the family share common structural features: they contain four EF-hands as potential binding sites for Ca(2+) and an N-terminal consensus sequence for myristoylation. Previously, recoverin, distantly related to NCSs, has been expressed and purified from Escherichia coli, involving a combination of different chromatographic steps. NCS-1 has earlier been purified adopting a two-step procedure used for recoverin purification. We have overexpressed NCS-1 from rat in its myristoylated and nonmyristoylated form in E. coli and purified it from crude lysates using a single-step hydrophobic interaction chromatography. The purified protein was identified by Western blotting and mass spectrometry and assayed for its ability to bind Ca(2+) using a Ca(2+) shift assay, terbium fluorescence, and Stains-all binding. The present protocol provides a rapid, more efficient and simplified, single-step method for purifying NCS-1 for structural and functional studies. This method can also be applied to purify related proteins of the superfamily.  相似文献   

17.
Recoverin, a member of the neuronal calcium sensor branch of the EF-hand superfamily, serves as a calcium sensor that regulates rhodopsin kinase (RK) activity in retinal rod cells. We report here the NMR structure of Ca(2+)-bound recoverin bound to a functional N-terminal fragment of rhodopsin kinase (residues 1-25, called RK25). The overall main-chain structure of recoverin in the complex is similar to structures of Ca(2+)-bound recoverin in the absence of target (<1.8A root-mean-square deviation). The first eight residues of recoverin at the N terminus are solvent-exposed, enabling the N-terminal myristoyl group to interact with target membranes, and Ca(2+) is bound at the second and third EF-hands of the protein. RK25 in the complex forms an amphipathic helix (residues 4-16). The hydrophobic face of the RK25 helix (Val-9, Val-10, Ala-11, Ala-14, and Phe-15) interacts with an exposed hydrophobic groove on the surface of recoverin lined by side-chain atoms of Trp-31, Phe-35, Phe-49, Ile-52, Tyr-53, Phe-56, Phe-57, Tyr-86, and Leu-90. Residues of recoverin that contact RK25 are highly conserved, suggesting a similar target binding site structure in all neuronal calcium sensor proteins. Site-specific mutagenesis and deletion analysis confirm that the hydrophobic residues at the interface are necessary and sufficient for binding. The recoverin-RK25 complex exhibits Ca(2+)-induced binding to rhodopsin immobilized on concanavalin-A resin. We propose that Ca(2+)-bound recoverin is bound between rhodopsin and RK in a ternary complex on rod outer segment disk membranes, thereby blocking RK interaction with rhodopsin at high Ca(2+).  相似文献   

18.
CIB1 (CIB) is an EF-hand-containing protein that binds multiple effector proteins, including the platelet alphaIIbbeta3 integrin and several serine/threonine kinases and potentially modulates their function. The crystal structure for Ca(2+)-bound CIB1 has been determined at 2.0 A resolution and reveals a compact alpha-helical protein containing four EF-hands, the last two of which bind calcium ions in the standard fashion seen in many other EF-hand proteins. CIB1 shares high structural similarity with calcineurin B and the neuronal calcium sensor (NCS) family of EF-hand-containing proteins. Most importantly, like calcineurin B and NCS proteins, which possess a large hydrophobic pocket necessary for ligand binding, CIB1 contains a hydrophobic pocket that has been implicated in ligand binding by previous mutational analysis. However, unlike several NCS proteins, Ca(2+)-bound CIB1 is largely monomeric whether bound to a relevant peptide ligand or ligand-free. Differences in structure, oligomeric state, and phylogeny define a new family of CIB1-related proteins that extends from arthropods to humans.  相似文献   

19.
The C-domain of troponin C, the Ca(2+)-binding subunit of the troponin complex, has two high-affinity sites for Ca(2+) that also bind Mg(2+) (Ca(2+)/Mg(2+) sites), whereas the N-domain has two low-affinity sites for Ca(2+). Two more sites that bind Mg(2+) with very low affinity (K(a)<10(3)M(-1)) have been detected by several laboratories but have not been localized or studied in any detail. Here we investigated the effects of Ca(2+) and Mg(2+) binding to isolated C-domain, focusing primarily on low-affinity sites. Since TnC has no Trp residues, we utilized a mutant with Phe 154 replaced by Trp (F154W/C-domain). As expected from previous reports, the changes in Trp fluorescence revealed different conformations induced by the addition of Ca(2+) or Mg(2+) (Ca(2+)/Mg(2+) sites). Exposure of hydrophobic surfaces of F154W/C-domain was monitored using the fluorescence intensity of bis-anilino naphthalene sulfonic acid. Unlike the changes reported by Trp, the increments in bis-ANS fluorescence were much greater (4.2-fold) when Ca(2+)+Mg(2+) were both present or when Ca(2+) was present at high concentration. Bis-ANS fluorescence increased as a function of [Ca(2+)] in two well-defined steps: one at low [Ca(2+)], consistent with the Ca(2+)/Mg(2+) sites (K(a) approximately 1.5 x 10(6)M(-1)), and one of much lower affinity (K(a) approximately 52.3M(-1)). Controls were performed to rule out artifacts due to aggregation, high ionic strength and formation of the bis-ANS-TnC complex itself. With a low concentration of Ca(2+) (0.6mM) to occupy the Ca(2+)/Mg(2+) sites, a large increase in bis-ANS binding also occurred as Mg(2+) occupied a class of low-affinity sites (K(a) approximately 59 M(-1)). In skinned fibers, a high concentration of Mg(2+) (10-44 mM) caused TnC to dissociate from the thin filament. These data provide new evidence for a class of weak binding sites for divalent cations. They are located in the C-domain, lead to exposure of a large hydrophobic surface, and destabilize the binding of TnC to the regulatory complex even when sites III and IV are occupied.  相似文献   

20.
This study examined the effects of progressive exercise to fatigue in normoxia (N) on muscle sarcoplasmic reticulum (SR) Ca(2+) cycling and whether alterations in SR Ca(2+) cycling are related to the blunted peak mechanical power output (PO(peak)) and peak oxygen consumption (Vo(2 peak)) observed during progressive exercise in hypoxia (H). Nine untrained men (20.7 +/- 0.42 yr) performed progressive cycle exercise to fatigue on two occasions, namely during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14). Tissue extracted from the vastus lateralis before exercise and at power output corresponding to 50 and 70% of Vo(2 peak) (as determined during N) and at fatigue was used to investigate changes in homogenate SR Ca(2+)-cycling properties. Exercise in H compared with N resulted in a 19 and 21% lower (P < 0.05) PO(peak) and Vo(2 peak), respectively. During progressive exercise in N, Ca(2+)-ATPase kinetics, as determined by maximal activity, the Hill coefficient, and the Ca(2+) concentration at one-half maximal activity were not altered. However, reductions with exercise in N were noted in Ca(2+) uptake (before exercise = 357 +/- 29 micromol x min(-1) x g protein(-1); at fatigue = 306 +/- 26 micromol x min(-1) x g protein(-1); P < 0.05) when measured at free Ca(2+) concentration of 2 microM and in phase 2 Ca(2+) release (before exercise = 716 +/- 33 micromol x min(-1) x g protein(-1); at fatigue = 500 +/- 53 micromol x min(-1) x g protein(-1); P < 0.05) when measured in vitro in whole muscle homogenates. No differences were noted between N and H conditions at comparable power output or at fatigue. It is concluded that, although structural changes in SR Ca(2+)-cycling proteins may explain fatigue during progressive exercise in N, they cannot explain the lower PO(peak) and Vo(2 peak) observed during H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号