首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of expression of PABA antimutagenic action in bacterial cells on the character of genetic control of the mutagenic process was studied. PABA antimutagenic activity was largely connected with the negative control of SOS repair which is controlled by bacterial cell genes, but not by pKM101 plasmid genes. These results are in agreement with the idea that the systems of repair and mutagenesis specified by cell genome and plasmids are not identical.  相似文献   

2.
Antimutagenic activity of Lactobacillus plantarum KLAB21, isolated from Korean kimchi, was investigated against MNNG (N-methyl-N-nitro-N-nitrosoguanidine), NQO (4-nitroquinoline-1-oxide), NPD (4-nitro-O-phenylenediamine) and aflatoxin B1 using Salmonella typhimurium strains TA100 and TA98. Although all the cell fractions including the culture supernatant, dry cells and cell-free extract exhibited antimutagenic activity against MNNG and NQO, the culture supernatant possessed the highest activity. The antimutagenic ratio of the culture supernatant was 98.4% against MNNG on strain TA100 and 57.3% against NQO on strain TA98. Its antimutagenic activity was reconfirmed by a Bacillus subtilis spore-rec assay. Levels of the antimutagenic ratios of other lactic acid bacteria originating from fermented milk ranged between 26.8 to 53% against MNNG and 28.5 to 43.4% against NQO. The antimutagenic activities of the strain KLAB21 against NPD were 72.6% on TA100 and 62.8% on TA98, and those against aflatoxin B1 were 82.5% on TA100 and 78.2% on TA98.  相似文献   

3.
Antimutagenic effects of cinnamaldehyde on mutagenesis by chemical agents were investigated in Escherichia coli WP2 uvrA- trpE-. Cinnamaldehyde, when added to agar medium, greatly reduced the number of Trp+ revertants induced by 4-nitroquinoline 1-oxide (4-NQO) without any decrease of cell viability. This antimutagenic effect could not be explained by inactivation of 4-NQO caused by direct interaction with cinnamaldehyde. Mutagenesis by furylfuramide (AF-2) was also suppressed significantly. Mutations induced by methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) were slightly inhibited. However, cinnamaldehyde was not at all effective on the mutagenesis of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Two derivatives of cinnamaldehyde, cinnamyl alcohol and trans-cinnamic acid, did not have as strong antimutagenic effects on 4-NQO mutagenesis as cinnamaldehyde had. Because cinnamaldehyde showed marked antimutagenic effects against mutations induced by UV-mimic mutagens but not those induced by MNNG or EMS, it seems that cinnamaldehyde might act by interfering with an inducible error-prone DNA repair pathway.  相似文献   

4.
The frequency ofhis + revertants induced by N-methyl-N-nitrosourea (MNU) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in the strain TA100 ofSalmonella typhimurium was decreased by gallic and tannic acid. In weak buffer solutions, the inhibition effects of gallic acid towards MNU and MNNG mutagenicity was caused primarily by a decrease of pH in the incubation mixtures. At adjusted pH (pH 5.0 and 6.5), the antimutagenic effects are largely the result of an interaction between MNU or MNNG with phenolic acids outside the cells.  相似文献   

5.
The antimutagenic activity of protein-constituting amino acids except histidine on the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in vitro using Salmonella typhinurium TA-100 as an indicator bacterium (Ames test), and concentrations (IC50) of amino acids that inhibit 50% of the mutagenecity were measured. Cysteine was found to be most active and glycine, tryptophan, lysine, and arginine were strong antimutagenic amino acids. Other amino acids showed moderate or weak antimutagenic activities, depending on the amino acids. The results indicate that amino acids play a substantial role in chemoprevention of N-nitroso amine-induced mutagenicity.  相似文献   

6.
The antimutagenic activity of four isoflavones isolated from soybean miso toward three kinds of mutagens, AF-2, MNNG, and Trp-P-1, was evaluated by the Ames test. 8-Hydroxyisoflavones had greater suppressive potency than that of daidzein, and 6-hydroxydaidzein had almost the same activity as daidzein. These results indicated the number of hydroxy and methoxy groups and the position of these functional groups were important for antimutagenic activity.  相似文献   

7.
The diethyl ether extracts isolated from unfermented milk and milk fermented byEnterococcus fœcium exhibited dose-dependent inhibition of mutagenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), nitrovin (NIT), 5-nitro-2-furylacrylic acid (NFA) and UV-irradiation on the Ames bacterial test (Salmonella typhimurium strains TA97 and TA100) and the unicellular flagellateEuglena gracilis. Overall, the fermented milk extract was the most active against UV-irradiation, less active against NIT and MNNG, and the least active against NFA on bacteria. The highest antibleaching effects were observed against MNNG. The differences between antimutagenic effects from fermented and unfermented milk extracts were determined to be statistically significant at the 0.95 CI level.  相似文献   

8.
The antimutagenic activity of protein-constituting amino acids except histidine on the mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was investigated in vitro using Salmonella typhinurium TA-100 as an indicator bacterium (Ames test), and concentrations (IC50) of amino acids that inhibit 50% of the mutagenecity were measured. Cysteine was found to be most active and glycine, tryptophan, lysine, and arginine were strong antimutagenic amino acids. Other amino acids showed moderate or weak antimutagenic activities, depending on the amino acids. The results indicate that amino acids play a substantial role in chemoprevention of N-nitroso amine-induced mutagenicity.  相似文献   

9.
Studies with the arabinose-resistant Salmonella forward mutation assay system were performed to determine the antimutagenic activity of chlorophyllin against the mutagenic activity of aflatoxin B1 (AFB1), 2-aminoanthracene (2AA), benzo[a]pyrene (BaP), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and solvent extracts of coal dust (CD), diesel emission particles (DE), airborne particles (AP), tobacco snuff (TS), black pepper (BP) and red wine (RW). Various concentrations of each chemical and complex mixture extract were assayed for mutagenic activity with and/or without S9 in a preincubation test. One concentration of each chemical and complex mixture extract was then tested with various concentrations of chlorophyllin. Results showed that chlorophyllin, at concentrations of 2.5 mg/plate or less, completely or almost completely inhibited the mutagenicity of 2AA, AFB1, BaP, MNNG and solvent extracts of CD, DE and RW. With concentrations from 1.25 to 5 mg/plate, chlorophyllin inhibited over 50% of the mutagenicity of AP, TS and BP extracts. These results further substantiate the antimutagenic efficacy of chlorophyllin against chemicals and complex mixtures.  相似文献   

10.
The aim of this study was to determine the antigenotoxic potential of two newly synthesized β-aminoketones against N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 9-aminoacridine (9-AA)-induced mutagenesis. The mutant bacterial tester strains were MNNG-sensitive Escherichia coli WP2 uvrA and 9-AA-sensitive Salmonella typhimurium TA1537. Both test compounds showed significant antimutagenic activity at various tested concentrations. The inhibition rates ranged from 29.5% (compound 1: 2 mM/plate) to 47.5% (compound 2: 1.5 mM/plate) for MNNG and from 25.0% (compound 2: 1 mM/plate) to 52.1% (compound 2: 2.5 mM/plate) for 9-AA genotoxicity. Moreover, the mutagenicity of the test compounds was investigated by using the same strains. Neither test compound has mutagenic properties on the bacterial strains at the tested concentrations. Thus, the findings of the present study give valuable information about chemical prevention from MNNG and 9-AA genotoxicity by using synthetic β-aminoketones.  相似文献   

11.
The antimutagenic effect of dialysed cell extracts of 4 strains of propionic acid bacteria was examined against the mutagenicity of sodium azide in the TA1535 tester strain of Salmonella typhimurium using the Ames test. It was noted that dialysates of 2 strains of Propionibacterium shermanii, P. pentosaceum and P. acnes, significantly reduced sodium azide-induced revertants. The dialysate of propionic acid cocci did not show an antimutagenic effect. The inhibitory activity was enhanced if the mutagen and extract were coincubated for 20 min prior to performing the mutagenicity assay. Antimutagenicity of dialysates from P. shermanii VKM-103 against MNNG and 9-aminoacridine was shown in S. typhimurium strains TA1535 and TA97. The antimutagenic activity was found in the protein fraction of the cell extract of P. shermanii. The proteins of the dialysate of P. shermanii were separated using a Toyopearl gel column into 3 main peaks according to their molecular weights. The antimutagenic activity towards sodium azide was found in the second and the third peaks. We suggest that dialysates of the cells of propionic acid bacteria contain several kinds of antimutagenic substances with different molecular weights.  相似文献   

12.
Reconstituted non-fat dry milk powder, fermented by a mixture of Streptococcus thermophilus CH3 and Lactobacillus bulgaricus 191R to produce yogurt, was freeze-dried and extracted in acetone. After evaporation of the acetone, the extract was dissolved in dimethyl sulfoxide (DMSO) and tested for antimutagenicity. In the Ames test, significant dose-dependent activity was observed against N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline-N-oxide (4NQO), 3,2′-dimethyl-4-aminobiphenyl (DMAB), 9,10-dimethyl-1,2-benz[a]anthracene (DMBA), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole acetate (Trp-P-2). Weak activity was observed against 1,2,7,8-diepoxyoctane (DEO), and no activity was observed against methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), or aflatoxin B1 (AFB1). In a related assay (Saccharomyces cerevisiae D7), significant antimutagenic activity was detected against MNNG and 4NQO.Activity against the experimental colon carcinogens MNNG and DMAB was examined further, as assayed in the Ames test (Salmonella typhimurium TA100). Compounds responsible for both activities were less soluble in aqueous solutions than in DMSO. Adjustment of yogurt pH to 3, 7.6, or 13 prior to freeze-drying and acetone extraction did not significantly alter the amount of anti-MNNG activity recovered. In contrast, extractability of anti-DMAB activity was significantly greater at acidic pH. Conjugated linoleic acid, a known dairy anticarcinogen, failed to inhibit mutagenesis caused by either mutagen, suggesting that other yogurt-derived compound(s) are responsible. Unfermented milk was treated with lactic acid, yogurt bacteria without subsequent growth, or both, to determine if formation of antimutagenic activity required bacterial growth. Extracts of the milk treatments exhibited the same weak antimutagenicity observed in unfermented milk, approximately 2.5-fold less than in the yogurt extracts, suggesting that antimutagenic activity is associated with bacterial growth.  相似文献   

13.
To study the carcinogenic activity of bile acids, we examined the mutagenic activity of bile acids by Rec-assay using B. subtilis H17 and M45 strains. Cholic, chenodeoxycholic, lithocholic, and glycolithocholic acids exerted much weaker mutagenicity than mitomicin C (MMC), and deoxycholic and glycodeoxycholic acids showed toxicity toward the bacteria. Most of the conjugated bile acids (glycocholic, taurocholic, and taurodexycholic acids) and their amino acid components (glycine and taurine) were neither toxic nor mutagenic. No bile acids enhanced the mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), but glycine enhanced both toxicity and mutagenicity of MNNG in a dose-dependent manner. On the other hand, taurine decreased the mutagenicity of MNNG, and most of the bile acids decreased the mutagenicity of MMC. Furthermore, taurocholic acids decreased toxicity and/or mutagenicity of other bile acids. These results suggested that the mutagenic and comutagenic activities of bile acids can be disregarded, but they are antimutagenic in some situations.  相似文献   

14.
Factors and ways in which macromolecules influence the mutation process are considered. An antimutagenic effect is demonstrated in a study of the combined influence of lectins and the alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) on mutagenesis in Chinese hamster cells. Thus, in different schemes of treatment of cells with albumin and MNNG, the experimental frequency of mutations induced by the two agents was statistically reliably lower than the theoretically expected level for their independent combined action. The possibility that there exist common targets and mechanisms through which different types of mutagenic agents act on the cell DNA is discussed.  相似文献   

15.
Further support to the hypothesis that antimutagenic activities of α,β-unsaturated carbonyl compounds against UV-induced mutagenesis of E. coli may be due to an interaction with thiol groups were obtained by an experiment with the supplement of glutathione to the assay medium. Antimutagenic activity against MNNG induced mutation was also observed.  相似文献   

16.
Antimutagenesis by factors affecting DNA repair in bacteria   总被引:3,自引:0,他引:3  
Y Kuroda  T Inoue 《Mutation research》1988,202(2):387-391
The term 'antimutagen' was originally used to describe an agent that reduces the apparent yield of spontaneous and/or induced mutations, regardless of the mechanisms involved. The 'antimutagens' include 'desmutagens' and 'bio-antimutagens'. In this article, our attention was focused on the bio-antimutagens affecting DNA repair in bacteria. Cobaltous chloride reduced the frequency of mutations in Escherichia coli induced by MNNG. The possibility that metal compound inhibits the growth of mutagen-treated cells was examined. The results clearly showed that the antimutagen surely reduces the mutation rate. The target of cobaltous chloride was found to be cellular factors including Rec A. Vanillin and cinnamaldehyde had strong antimutagenic activities against UV, 4NQO and AF-2. They stimulated Rec A-dependent recombination repair functions in the mutagen-treated cells. Among plant materials, tannins possess antimutagenic activity against UV-induced mutations in E. coli. It has been found that tannic acid stimulates the excision repair encoded by the uvrA gene thereby reducing the yield of mutants. Substances which are antimutagenic in bacterial systems also had antimutagenic activity in cultured mammalian cell systems. Vanillin reduced the frequency of mutagen-induced chromosomal aberrations.  相似文献   

17.
C S Aaron 《Mutation research》1989,223(2):105-109
2-Hydroxy-3-methoxybenzaldehyde (omicron-vanillin), the antimutagenic effect of which has been reported on mutagenesis induced by 4-nitroquinoline 1-oxide (4NQO) in Escherichia coli WP2s, enhanced N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced mutagenesis in the same strain. A remarkable enhancement of mutagenesis provoked by N-methyl-N-nitrosourea (MNU) was also observed by the addition of omicron-vanillin. No enhancing effect was observed on mutagenesis induced by other mutagens such as methyl methanesulfonate (MMS), dimethylsulfate, N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), N-ethyl-N-nitrosourea (ENU), ethyl methanesulfonate, diethylsulfate, 4NQO and furylfuramide (AF-2). On the contrary, omicron-vanillin greatly suppressed AF-2- and 4NQO-induced mutagenesis and showed a slight suppressing effect against mutagenesis induced by MMS, ENNG and ENU. One possible explanation for the enhancing effect of omicron-vanillin on the mutagenesis induced by MNNG or MNU in E. coli WP2s may be inhibition of an inducible adaptive response. Among 7 derivatives of omicron-vanillin, 2-hydroxy-3-ethoxy-benzaldehyde, omicron-hydroxybenzaldehyde and m-methoxybenzaldehyde showed an enhancing effect on MNNG-induced mutagenesis.  相似文献   

18.
The paper summarizes the results of our previously published studies testifying the hypothesis of the antimutagenic effect of stobadine (STB) in vivo and in vitro. The micronucleus test was used in in vivo experiments with ICR mice. Oral pretreatment with STB significantly decreased the mutagenic effect of cyclophosphamide (CP) in a concentration-dependent way. The protective effect of STB was confirmed in fetuses of CP-treated mice. STB pretreatment exerted also a radioprotective effect in Co60-irradiated mice. The ineffectiveness of STB posttreatment is indicative of its effect operative in the initiation of mutagenesis and of its radical-scavenging mechanism. The ability of STB to reduce N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)induced gene mutations and MNNG-induced calcinosis/Raynaud's phenomenon/esophageal dysmotility/sclerodactyly/telangiectasia variant of scleroderma (CREST)-positive and CREST-negative micronuclei in V79 cells was tested in in vitro experiments. We found that this drug reduced the level of both gene mutations and CREST-negative micronuclei mainly if given as pretreatment before exposure of cells to MNNG. We conclude that STB may have inhibited mutagenesis not only by scavenging reactive oxygen species, but also as a result of induction of metabolic enzymes, which reduced the level of DNA lesions.  相似文献   

19.
《Mutation Research Letters》1994,323(4):167-171
The genotoxic effect of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and furadantine (Fu) was significantly decreased by standard antimutagens (ascorbic acid, α-tocopherol, chlorophyllin and sodium selenite) in the unicellular flagellate Euglena gracilis. The effects of these compounds were verified also by a bacterial test in which three strains of Salmonella typhimurium, TA97, TA100 and TA102, were used. The above compounds were antimutagenic in strains of bacteria used, except for chlorophyllin which had no effect on strain TA102.  相似文献   

20.
Inonotus obliquus is a mushroom commonly known as Chaga that is widely used in folk medicine in Siberia, North America, and North Europe. Here, we evaluated the antimutagenic and antioxidant capacities of subfractions of Inonotus obliquus extract. The ethyl acetate extract was separated by vacuum chromatography into three fractions, and the fraction bearing the highest antimutagenic activity was subsequently separated into four fractions by reversed phase (ODS-C18) column chromatography. The most antimutagenic fraction was then separated into two subfractions (subfractions 1 and 2) by normal phase silica gel column chromatography. Ames test analysis revealed that the subfractions were not mutagenic. At 50 μg/plate, subfractions 1 and 2 strongly inhibited the mutagenesis induced in Salmonella typhimurium strain TA100 by the directly acting mutagen MNNG (0.4 μg/plate) by 80.0% and 77.3%, respectively. They also inhibited 0.15 μg/plate 4NQO-induced mutagenesis in TA98 and TA100 by 52.6-62.0%. The mutagenesis in TA98 induced by the indirectly acting mutagens Trp-P-1 (0.15 μg/plate) and B(α)P (10 μg/plate) was reduced by 47.0-68.2% by the subfractions, while the mutagenesis in TA100 by Trp-P-1 and B(α)P was reduced by 70.5-87.2%. Subfraction 1 was more inhibitory than subfraction 2 with regard to the mutagenic effects of 4NQO, Trp-P-1, and B(α)P. Subfractions 1 and 2 also had a strong antioxidant activity against DPPH radicals and were identified by MS, 1H NMR and 13C NMR analyses as 3β-hydroxy-lanosta-8, 24-dien-21-al and inotodiol, respectively. Thus, we show that the 3beta-hydroxy-lanosta-8, 24-dien-21-al and inotodiol components of Inonotus obliquus bear antimutagenic and antioxidative activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号