首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Krapf  Götz  Jacobi  Günter 《Planta》1975,123(2):145-154
Summary Photooxidation of hydroxylamine to nitrite by spinach (Spinacia oleracea L. and sugarbeet (Beta vulgaris L.) chloroplast lamellae in the presence of autoxidable electron acceptors is inhibited by either solubilized or membrane-bound superoxide dismutase (SOD). This inhibition is reversed by KCN. The rates of hydroxylamine photooxidation by chloroplast lamellae, a reaction which is apparently driven by the superoxide free-radical ion, was used for quantitating the amount of SOD bound to chloroplast lamellae, as compared to a soluble enzyme of defined concentration. After digitonin fragmentation of chloroplast lamellae, ca. 80% of the SOD activity is associated with subchloroplast particles sedimenting after 2 h centrifugation at 200 000 x g. Less than 10% of the SOD activity is associated with particles sedimenting after centrifugation for 30 min at 20 000 x g. 5–10% of the cyanide-sensitive SOD is recovered in the soluble fraction of the subchloroplast-free supernatant after centrifugation at 200 000 x g for 2 h.Abbreviation SOD superoxide dismutase  相似文献   

2.
Chloroplast membranes of wild-type Chlamydomonas reinhardi, treated with digitonin, yield photosystem II-rich and photosystem I-rich fractions; this fractionation is accompanied by a separation of stacked (grana) lamella from unstacked (stroma) lamellae. Poor fractionation of the photosystems occurs when the treated chloroplast membranes derive from the ac-5 strain grown mixotrophically, whereas good fractionation occurs with ac-5 cells grown phototrophically; the mixotrophic cells possess only unstacked membranes, whereas the phototrophic cells possess stacked membranes. We concluded that digitonin fractionation is dependent on the stacked membrane configuration.  相似文献   

3.
THE ISOLATION OF A CELL MEMBRANE FRACTION FROM RAT LIVER   总被引:34,自引:18,他引:16       下载免费PDF全文
A procedure is described for isolating cell membranes from rat liver homogenates. 20 gm. of rat liver was homogenized in a Dounce homogenizer in ice cold water buffered to pH 7.5 with NaHCO3, rupturing all of the cells and most nuclei. The diluted homogenate was filtered through cheesecloth to remove precipitated nucleoprotein and centrifuged at 1500 g, 10 minutes, to sediment a crude membrane fraction. The membrane containing sediment was recentrifuged 3 times in conical tubes (1220 g, 10 minutes), the top layer of the 2-layered sediment being retained. Flotation in a sucrose solution d = 1.22 freed the preparation from contaminating cell fragments and nuclear membranes not previously disintegrated. The floating material ~0.4 ml. was quite homogeneous and consisted of thin amorphous membranes. Electron micrographs revealed numerous double profiles similar in shape and dimensions to apposed liver cell membranes in intact tissue.  相似文献   

4.
Treatment of chloroplast membranes of Chlamydomonas reinhardi with Triton-× 100 yielded membrane particles which were resolved into three bands on discontinuous sucrose gradients. One of these was enriched in the chlorophyll absorption and fluorescence properties and photosynthetic activities consistent with photosystem I enrichment, while another had the chlorophyll absorption and fluorescence properties expected to photosystem II enriched particles. The third type of particle was enriched in chlorophyll species which are probably the bulk chlorophylls of photosystem I. Analysis of the proteins of these fractions by polyacrylamide electrophoresis indicated substantial differences, the most striking being that the photosystem II particle type was greatly enriched in the major species of chloroplast membrane protein. Previous work has shown this to be an important protein controlling membrane assembly. This protein was depleted in the photosystem I particle type. We interpret this data to indicate a lack of homogeneity in the distribution of membrane proteins in the chloroplast membranes of Chlamydomonas, at the level of the two photosystems.  相似文献   

5.
After treatment of HeLa and L cells with vinblastine sulfate the material of microtubules (tubulin) was reorganized into (a) large paracrystals (PC) of tightly packed tubules; (b) smaller aggregates of tubules with greater diameter whose walls are constituted from well defined, helically arranged morphological subunits; and (c) microtubules associated with helices of polyribosomes of uniform size. All of these structures survived disruption of cellular membranes by means of a nonionic detergent. Following a thorough stripping of membranes there remained a subcellular fraction sedimenting at 1,500 g for 15 min, in which were contained nuclei, centrioles, and the above mentioned microtubular elements, maintained as a complex of organelles by an interconnecting network of 80 Å microfibrils. As a result of membrane disruption it was possible to localize precisely in the electron microscope the binding of ferritin antibody conjugates. Specific labeling at the surface of PC and microtubule aggregates could be demonstrated. This result was substantiated by means of the immunoperoxidase method of labeling the PC. A concentrated deposit of ferritin was also found in the vicinity of centrioles and related structures, the annuli of the nuclear pore complex and the annulate lamellae. However, the specificity of the label on these organelles remains questionable because ferritin, albeit in lower concentration, was also present on them in control preparations reacted with preimmune sera.  相似文献   

6.
A modification of the freeze-fracturing technique to permit observation of replicas of both sides of the fracture is described. It has been used to study mouse liver cell membrane structure. Membranes break to give two faces with three-dimensional complementarity, although there is some small-scale mismatching which is discussed. Since the two distinctive sets of membrane faces are complementary sets, they cannot be the two outside surfaces. In particular, structures (such as particles) seen on these faces are within the membrane. It is not possible from this work to say precisely where the fracture plane goes with respect to a plasma membrane, only that it must be close to the interface between membrane and cytoplasm, or at that interface. Models, consistent with the appearance of the matching replicas, are derived for three regions of the plasma membrane: (a) The nonjunctional plasma membrane, which contains many scattered particles. Except for these particles, the otherwise flat fracture face is not at variance with a bimolecular leaflet structure. (b) Gap junctions. Each of the two membranes comprising a gap junction contains a close-packed array of particles. (c) Tight junctions. Here membranes have ridges within them.  相似文献   

7.
Wild-type chloroplast membranes from Chlamydomonas reinhardi exhibit four faces in freeze-etchreplicas: the complementary Bs and Cs faces are found where the membranes are stacked together; the complementary Bu and Cu faces are found in unstacked membranes. The Bs face carries a dense population of regularly spaced particles containing the large, 160 ± 10 A particles that appear to be unique to chloroplast membranes. Under certain growth conditions, membrane stacking does not occur in the ac-5 strain. When isolated, these membranes remain unstacked, exhibit only Bu and Cu faces, and retain the ability to carry out normal photosynthesis. Membrane stacking is also absent in the ac-31 strain, and, when isolated in a low-salt medium, these membranes remain unstacked and exhibit only Bu and Cu faces. When isolated in a high-salt medium, however, they stack normally, and Bs and Cs faces are produced by this in vitro stacking process. We conclude that certain particle distributions in the chloroplast membrane are created as a consequence of the stacking process, and that the ability of membranes to stack can be modified both by gene mutation and by the ionic environment in which the membranes are found.  相似文献   

8.
PROTONATION AND CHLOROPLAST MEMBRANE STRUCTURE   总被引:1,自引:0,他引:1       下载免费PDF全文
Light changes the structure of chloroplasts. This effect was investigated by high resolution electron microscopy, photometric methods, and chemical modification. (a) A reversible contraction of chloroplast membrane occurs upon illumination, dark titration with H+, or increasing osmolarity. These gross structural changes arise from a flattening of the thylakoids, with a corresponding decrease in the spacing between membranes. Microdensitometry showed that illumination or dark addition of H+ resulted in a 13–23% decrease in membrane thickness. Osmotically contracted chloroplasts do not show this effect. (b) Rapid glutaraldehyde fixation during actual experiments revealed that transmission changes are closely correlated with the spacing changes and therefore reflect an osmotic mechanism, whereas the light scattering changes have kinetics most similar to changes in membrane thickness or conformation. (c) Kinetic analysis of light scattering and transmission changes with the changes in fluorescence of anilinonaphthalene sulfonic acid bound to membranes revealed that fluorescence preceded light scattering or transmission changes. (d) It is concluded that the temporal sequence of events following illumination probably are protonation, changes in the environment within the membrane, change in membrane thickness, change in internal osmolarity accompanying ion movements with consequent collapse and flattening of thylakoid, change in the gross morphology of the inner chloroplast membrane system, and change in the gross morphology of whole chloroplasts.  相似文献   

9.
Microencapsulation of chloroplast particles   总被引:1,自引:2,他引:1       下载免费PDF全文
Chloroplast and photosystem I particles were encapsulated in small spheres (about 20 μm diameter) with an artificial membrane built up by cross-linking amino groups of protamine with toluenediisocyanate. The artificial membrane was permeable to small substrate and product molecules but not to soluble proteins. Photosystem I activity was retained by the encapsulated chloroplast particles. Washed photosystem I particles were encapsulated with the soluble proteins, ferredoxin, and ferredoxin-NADP oxidoreductase, and the microcapsules photoreduced NADP using ascorbate plus dichlorophenolindophenol as the electron donor. The photosystem I particles were also encapsulated with hydrogenase from Chromatium and a very low rate of photoevolution of hydrogen was obtained. The results show that chloroplast membrane fragments can be encapsulated with soluble proteins that couple transfer reactions to the primary photochemical apparatus.  相似文献   

10.
Subcellular fractions of the electric tissue of the main organ of the eel Electrophorus electricus were prepared in sucrose media by differential centrifugation and differential discontinuous gradient centrifugation. The distributions of acetylcholinesterase, cytochrome oxidase, DNA, and protein were determined. The appearance of the fractions was determined by phase contrast microscopy and by electron microscopy. A fraction prepared by differectial centrifugation at 30,000 g for 20 minutes in 0.89 M sucrose contained 63 per cent of the total acetylcholinesterase activity at 4 times the specific activity of that of the tissue homogenate. A subfraction prepared by centrifugation in a discontinuous density gradient showed a peak of total and relative specific acetylcholinesterase activity of 35 per cent and 1.9, respectively. The average over-all purification was 7 times. The acetylcholinesterase peak was below the cytochrome oxidase peak and above the DNA peak in the density gradient. The presence of acetylcholinesterase in the fractions was correlated with the presence of large fragments of the cell membrane; however, the presence of other tissue components was noted. The acetylcholinesterase associated with membrane was found to be activated by incubation with sodium deoxycholate. The possible use of the peak fraction containing membranes rich in acetylcholinesterase for the investigation of other components of the acetylcholine system and of other properties of the membrane is discussed.  相似文献   

11.
Spinach chloroplast lamellae were stained with aqueous uranyl acetate immediately after glutaraldehyde-osmium fixation but before dehydration and embedding. Under these conditions, the lamellae are shown in thin sections to have 95-Å x 115-Å coupling factor particles on their surfaces. The particles can be seen only on the matrix side of nonopposed thylakoids, and are shown to occur on both stromal and granal lamellae, regardless of the organization of the lamellae into stacks. It is estimated that, in native, fully coupled chloroplast lamellae, there is on the average one coupling factor for every 500 chlorophyll molecules. The morphological appearance of the particles is not affected by a variety of buffers, by changes in illumination or temperature, or by alterations in the energy state of the membranes during preparation. The particles can be removed from the membranes with low concentrations of Na2EDTA, and the photophosphorylating activity of the membranes is concomitantly lost. Both the activity and the appearance of the particles can be restored to the membranes by rebinding EDTA-extracted coupling factors to the uncoupled membranes.  相似文献   

12.
The techniques of thin sectioning and freeze etching were employed in comparing the chloroplast structure of the wild type and photosynthetic mutant P4 of Euglena gracilis, Z strain. The mutant chloroplasts were characterized by a lack of thylakoid pairing even under high salt conditions. In addition the mutant thylakoids were more varied in size and fewer in number than those of the wild type. No differences between the mutant and wild type were observed in the size and distribution of the particles within the chloroplast membranes seen by the freeze-etching technique.  相似文献   

13.
PREPARATION OF PLASMA MEMBRANE FROM ISOLATED NEURONS   总被引:5,自引:3,他引:5  
A bulk fraction enriched with respect to neuronal cell bodies was used as starting material for the isolation of neuronal plasma membrane The cells were gently homogenized in isotonic sucrose and a crude membrane containing fraction sedimented at 3000 g. Subsequently, the membrane fraction was purified on a discontinuous sucrose density gradient between 35% and 25 5% sucrose (w/w). Enzymatic analyses showed a 4–5-fold enrichment in plasma membrane markers, and a 10–15% contamination of mitochondrial and microsomal material. Electron micrographs of the membrane fraction confirmed the enzymatic data Fragmented membranes were found, mainly in vesicular form No ribosomes, but a few mitochondria and some multilamellar membranes were seen  相似文献   

14.
A comparative study of peptide composition and freeze-fracture morphology of chloroplast membranes from a chlorophyll b-less mutant and a normal barley plant (Hordeum vulgare L.) is reported in this work. Using a high resolution, discontinuous sodium dodecyl sulfate—acrylamide gel electrophoretic system, we show that the mutant chloroplast membranes not only completely lack the 25-kilodalton peak, which accounts for about 18% of the chloroplast membrane protein in the normal plant, but also exhibit gross reduction in other components at 27.5- and 20-kilodalton regions. Despite such extensive deletions in the peptide composition of the mutant chloroplast lamellae, no alteration could be detected in either density or size of the intramembranous particles, visualized by freeze-fracturing.  相似文献   

15.
RAPSCH  S.; ASCASO  C. 《Annals of botany》1985,56(4):467-473
Detached leaves of Spinacia oleracea were incubated with evernicacid, the main phenolic substance present in Evernia prunastrithalli. This lichen substance produced a decrease in the amountof total chlorophyll and chlorophyll a in treated spinach leaves.Chloroplast structure suffered a decrease in several parameters,i.e. chloroplast area, number of grana, granal width, numberof thylakoids per granum and starch content. The submicroscopicstructure of the chloroplast membranes revealed smaller particlediameters in several of the fracture faces in the evernic acidtreated samples and even a decrease in the density of particlesin the EF, fracture face. The alterations observed may be relatedto changes in photosynthetic activity, probably by modificationof both photosystem I and photosystem II activities. Evernic acid, chloroplast structure, TEM, thylakoidal membrane, freeze-etching, chlorophyll content  相似文献   

16.
Addition of nutrients to starved mouse S-180 cells leads to rapid conversion of ribosomal monomers to polysomes. During this process, a portion of the ribosomes originally found in the 17,000 g (10 min centrifugation) supernatant of cell lysates becomes firmly attached to structures sedimenting at 500 g (5 min centrifugation). Electron microscopy of sections of the intact cells showed the change from randomly distributed ribosomal particles to clusters. Association with membranes also became evident. The material sedimenting at 500 g comprised nuclei enclosed in an extensive endoplasmic reticulum (ER) network. This fraction prepared from recovering cells showed numerous ribosome clusters associated with the ER network. The appearance of many of these clusters indicated that the ribosomal particles were not directly bound to the membranes. RNase treatment released about 40% of the attached ribosomes as monomers, and ethylenediaminetetraacetic acid released 60% as subunits. It is suggested that during polysome formation a portion of the ribosomes becomes attached to the membranes through the intermediary of messenger RNA.  相似文献   

17.
1. It is shown that collodion membranes which have received one treatment with a 1 per cent gelatin solution show for a long time (if not permanently) afterwards a different osmotic behavior from collodion membranes not treated with gelatin. This difference shows itself only towards solutions of those electrolytes which have a tendency to induce a negative electrification of the water particles diffusing through the membrane, namely solutions of acids, acid salts, and of salts with trivalent and tetravalent cations; while the osmotic behavior of the two types of membranes towards solutions of salts and alkalies, which induce a positive electrification of the water particles diffusing through the membrane, is the same. 2. When we separate solutions of salts with trivalent cation, e.g. LaCl3 or AlCl3, from pure water by a collodion membrane treated with gelatin, water diffuses rapidly into the solution; while no water diffuses into the solution when the collodion membrane has received no gelatin treatment. 3. When we separate solutions of acid from pure water by a membrane previously treated with gelatin, negative osmosis occurs; i.e., practically no water can diffuse into the solution, while the molecules of solution and some water diffuse out. When we separate solutions of acid from pure water by collodion membranes not treated with gelatin, positive osmosis will occur; i.e., water will diffuse rapidly into the solution and the more rapidly the higher the valency of the anion. 4. These differences occur only in that range of concentrations of electrolytes inside of which the forces determining the rate of diffusion of water through the membrane are predominantly electrical; i.e., in concentrations from 0 to about M/16. For higher concentrations of the same electrolytes, where the forces determining the rate of diffusion are molecular, the osmotic behavior of the two types of membranes is essentially the same. 5. The differences in the osmotic behavior of the two types of membranes are not due to differences in the permeability of the membranes for solutes since it is shown that acids diffuse with the same rate through both kinds of membranes. 6. It is shown that the differences in the osmotic behavior of the two types of collodion membranes towards solutions of acids and of salts with trivalent cation are due to the fact that in the presence of these electrolytes water diffuses in the form of negatively charged particles through the membranes previously treated with gelatin, and in the form of positively charged particles through collodion membranes not treated with gelatin. 7. A treatment of the collodion membranes with casein, egg albumin, blood albumin, or edestin affects the behavior of the membrane towards salts with trivalent or tetravalent cations and towards acids in the same way as does a treatment with gelatin; while a treatment of the membranes with peptone prepared from egg albumin, with alanine, or with starch has no such effect.  相似文献   

18.
Attempts have been made to identify intramembranous particles observed in freeze-fracture electron microscopy as specific functional components of the membrane. The intramembranous particles of the exoplasmic fracture (EF) face of freeze-fractured pea (Pisum sativum) chloroplast lamellae are nonuniformly distributed along the membrane. Approximately 20% of the particles are in unpaired membrane regions whereas 80% are localized in regions of stacked lamellae (grana partitions). The EF particles within the grana regions of the chloroplast membrane are of a larger average size than those in stroma lamellae.  相似文献   

19.
Membrane-envelope fragments have been isolated from Escherichia coli by comparatively mild techniques. The use of DNAase, RNAase, detergents, sonication, lysozyme, and ethylenediaminetetraacetate were avoided in the belief that rather delicate, but metabolically important, associations may exist between the plasma membrane and various cytoplasmic components. The membrane-envelope fragments have been characterized in terms of their content of major chemical components as well as their electron microscope appearance. Fractions containing membrane-envelope fragments were found to possess appreciable DNA- and protein-synthesizing activities. The fragments were rich in membrane content as determined by reduced nicotinamide adenine dinucleotide (NADH) oxidase activity and deficient in soluble components as measured by NADH dehydrogenase activity. The particulate fraction obtained between 20,000 g and 105,000 g and usually considered a ribosomal fraction was rich in membrane content and had a relatively high capacity for DNA synthesis. Envelope fragments sedimenting at 20,000 g attained very high levels of incorporation of amino acids into protein.  相似文献   

20.
THE CELL ENVELOPES OF TWO EXTREMELY HALOPHILIC BACTERIA   总被引:4,自引:1,他引:4       下载免费PDF全文
The cell envelope of Halobacterium halobium was seen in thin sections of permanganate-fixed cells to consist of one membrane. This membrane appeared mostly as a unit membrane but in a few preparations it resembled a 5-layered compound membrane. The cell envelope of Halobacterium salinarium at high resolution was always seen as a 5-layered structure different in appearance from the apparent compound membrane of H. halobium. The "envelopes" which were isolated in 12.5 per cent NaCl from each organism were indistinguishable from each other in the electron microscope and comprised, in each case, a single unit membrane with an over-all thickness of about 110 A. Some chemical analyses were made of isolated membranes after freeing them from salt by precipitating and washing with trichloroacetic acid. Such precipitated membranes consisted predominantly of protein, with little carbohydrate and no peptido-aminopolysaccharide (mucopeptide). Sectioned whole cells of H. halobium contained intracellular electron-opaque structures of unknown function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号