共查询到20条相似文献,搜索用时 0 毫秒
1.
Yan YX Boldt-Houle DM Tillotson BP Gee MA D'Eon BJ Chang XJ Olesen CE Palmer MA 《Journal of biomolecular screening》2002,7(5):451-459
A novel cell-based functional assay to directly monitor G protein-coupled receptor (GPCR) activation in a high-throughput format, based on a common GPCR regulation mechanism, the interaction between beta-arrestin and ligand-activated GPCR, is described. A protein-protein interaction technology, the InteraX trade mark system, uses a pair of inactive beta-galactosidase (beta-gal) deletion mutants as fusion partners to the protein targets of interest. To monitor GPCR activation, stable cell lines expressing both GPCR- and beta-arrestin-beta-gal fusion proteins are generated. Following ligand stimulation, beta-arrestin binds to the activated GPCR, and this interaction drives functional complementation of the beta-gal mutant fragments. GPCR activation is measured directly by quantitating restored beta-gal activity. The authors have validated this assay system with two functionally divergent GPCRs: the beta2-adrenergic amine receptor and the CXCR2 chemokine-binding receptor. Both receptors are activated or blocked with known agonists and antagonists in a dose-dependent manner. The beta2-adrenergic receptor cell line was screened with the LOPAC trade mark compound library to identify both agonists and antagonists, validating this system for high-throughput screening performance in a 96-well microplate format. Hit specificity was confirmed by quantitating the level of cAMP. This assay system has also been performed in a high-density (384-well) microplate format. This system provides a specific, sensitive, and robust methodology for studying and screening GPCR-mediated signaling pathways. 相似文献
2.
Kumar A Aravamudhan S Gordic M Bhansali S Mohapatra SS 《Biosensors & bioelectronics》2007,22(9-10):2138-2144
Cortisol is a member of the glucocorticoid hormone family and a key metabolic regulator. Increased intracellular cortisol levels have been implicated in type 2 diabetes, obesity, and metabolic syndrome. Cortisol is an important bio-marker of stress and its detection is also important in sports medicine. However, rapid methods for sensitive detection of cortisol are limited. Functionalized gold nanowires were used to enhance the sensitivity and selectivity of cortisol detection. Gold nanowires are used to improve the electron transfer between the electrodes. Moreover, the large surface to volume ratio, small diffusion time and high electrical conductivity and their aligned nature will enhance the sensitivity and detection limit of the biosensor several fold. The biosensor was fabricated using, aligned gold (Au) nanowires to behave as the working electrode, platinum deposited on a silicon chip to function as the counter electrode, and silver/silver chloride as reference electrode. The gold nanowires were coupled with cortisol antibodies using covalent linkage chemistry and a fixed amount of 3alpha-hydroxysteroid dehydrogenase was introduced into the reaction cell during each measurement to convert (reduce) ketosteroid into hydroxyl steroid. Furthermore, the micro-fluidic, micro-fluid part of the sensor was fabricated using micro-electro-mechanical system (MEMS) technology to have better control on liquid flow over Au nanowires to minimize the signal to noise ratio. The biosensor was characterized using SEM, AFM and FTIR technique. The response curve of the biosensor was found to be linear in the range of 10-80 microM of cortisol. Moreover, the presence of hydrocortisone is sensitively detected in the range of 5-30 microM. It is concluded that the functionalized gold nanowires with micro-fluidic device using enzyme fragment complementation technology can provide an easy and sensitive assay for cortisol detection in serum and other biological fluids. 相似文献
3.
Zhao X Jones A Olson KR Peng K Wehrman T Park A Mallari R Nebalasca D Young SW Xiao SH 《Journal of biomolecular screening》2008,13(8):737-747
G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the human genome and have long been regarded as valuable targets for small-molecule drugs. The authors describe a new functional assay that directly monitors GPCR activation. It is based on the interaction between beta-arrestin and ligand-activated GPCRs and uses enzyme fragment complementation technology. In this format, a GPCR of interest is fused to a small (approximately 4 kDa), optimized alpha fragment peptide (termed ProLink) derived from beta-galactosidase, and beta-arrestin is fused to an N-terminal deletion mutant of beta-galactosidase (termed the enzyme acceptor [EA]). Upon activation of the receptor, the beta-arrestin-EA fusion protein binds the activated GPCR. This interaction drives enzyme fragment complementation, resulting in an active beta-galactosidase enzyme, and thus GPCR activation can be determined by quantifying beta-galactosidase activity. In this report, the authors demonstrate the utility of this technology to monitor GPCR activation and validate the approach using a Galphai-coupled GPCR, somatostatin receptor 2. Potential application to high-throughput screens in both agonist and antagonist screening modes is exemplified. 相似文献
4.
5.
In the new high-throughput screening (HTS) campaign, receptor functional assays, 3',5'-cyclic adenosine monophosphate (cAMP), intracellular [Ca(2)+](i), phosphatidylinositol turnover, and reporter-based assays are being used as primary screens as they are now developed as homogeneous and automation-friendly assays. FlashPlate assay and scintillation proximity assay using radiolabeled cAMP have been used for measuring cAMP. A nonradioactive homogeneous HTS assay using HitHunter trade mark enzyme fragment complementation (EFC) technology was evaluated for measuring cAMP in adherent and suspension cells overexpressing a Galpha(s)-coupled receptor. In the EFC-cAMP assay, the beta-galactosidase (beta-gal) donor fragment-cAMP (ED-cAMP) conjugate complements with the beta-gal enzyme acceptor (EA) fragment to form an active beta-gal enzyme. Binding of ED-cAMP conjugate to the anti-cAMP antibody prevents its complementation with the EA fragment to form an active enzyme. Cyclic AMP in the samples compete with ED-cAMP to bind to the anti-cAMP antibody, thus increasing the free ED-cAMP that can complement with the EA fragment to form an active enzyme that is assayed with a luminescent substrate. Thus, this assay results in a positive signal unlike other technologies, wherein the signal is completed by cAMP in the sample. Glucagon-like peptide (GLP)-1 binds to GLP-1 receptor (with a Kd of 0.2 nM) signals through Galpha(s) to activate adenylate cyclase, which results in an increase of intracellular cAMP (EC(50) of 0.3 nM). GLP-1 stimulation of cAMP levels measured by the EFC method was similar in both adherent and suspension cell formats (EC(50)~0.3 nM) at different cell numbers. The assay was further validated with forskolin, exendin, and several active GLP-1 peptide analogues. The stimulation of cAMP by GLP-1 and forskolin was effectively inhibited by the adenylate cyclase inhibitors MDL-12330A and SQ-22536, confirming that the increased cAMP is through the AC pathway. The assay tolerates dimethyl sulfoxide (DMSO) up to 10%, and tartrazine does not interfere with the assay with the adherent cells up to 1 mM and affects minimally up to 10 microM in suspension cells. The assay is very robust, with a Z' value of 0.7 to 0.8. The assay was validated with several plates of low molecular weight nonpeptide compounds and peptide agonists with different potencies. The suspension cell protocol is a robust homogeneous assay that involves fewer steps than the adherent cell protocol and is suitable for HTS. The cAMP assay using EFC technology is advantageous in that it has a greater dynamic range of detection; is nonradioactive, very sensitive, robust; has minimal interference from DMSO and colored compounds; and is amenable for automation. An added advantage of this assay is that the cAMP is measured as a positive signal, thereby reducing the incidence of false positives. 相似文献
6.
Scott Legare Fabian Heide Ben A. Bailey-Elkin Jrg Stetefeld 《The Journal of biological chemistry》2022,298(4)
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a global threat to human health has highlighted the need for the development of novel therapies targeting current and emerging coronaviruses with pandemic potential. The coronavirus main protease (Mpro, also called 3CLpro) is a validated drug target against coronaviruses and has been heavily studied since the emergence of SARS-CoV-2 in late 2019. Here, we report the biophysical and enzymatic characterization of native Mpro, then characterize the steady-state kinetics of several commonly used FRET substrates, fluorogenic substrates, and six of the 11 reported SARS-CoV-2 polyprotein cleavage sequences. We then assessed the suitability of these substrates for high-throughput screening. Guided by our assessment of these substrates, we developed an improved 5-carboxyfluorescein-based FRET substrate, which is better suited for high-throughput screening and is less susceptible to interference and false positives than existing substrates. This study provides a useful framework for the design of coronavirus Mpro enzyme assays to facilitate the discovery and development of therapies targeting Mpro. 相似文献
7.
Aptamers as reagents for high-throughput screening 总被引:1,自引:0,他引:1
The identification of new drug candidates from chemical libraries is a major component of discovery research in many pharmaceutical companies. Given the large size of many conventional and combinatorial libraries and the rapid increase in the number of possible therapeutic targets, the speed with which efficient high-throughput screening (HTS) assays can be developed can be a rate-limiting step in the discovery process. We show here that aptamers, nucleic acids that bind other molecules with high affinity, can be used as versatile reagents in competition binding HTS assays to identify and optimize small-molecule ligands to protein targets. To illustrate this application, we have used labeled aptamers to platelet-derived growth factor B-chain and wheat germ agglutinin to screen two sets of potential small-molecule ligands. In both cases, binding affinities of all ligands tested (small molecules and aptamers) were strongly correlated with their inhibitory potencies in functional assays. The major advantages of using aptamers in HTS assays are speed of aptamer identification, high affinity of aptamers for protein targets, relatively large aptamer-protein interaction surfaces, and compatibility with various labeling/detection strategies. Aptamers may be particularly useful in HTS assays with protein targets that have no known binding partners such as orphan receptors. Since aptamers that bind to proteins are often specific and potent antagonists of protein function, the use of aptamers for target validation can be coupled with their subsequent use in HTS. 相似文献
8.
Reconstitution of the enzyme AroA and its glyphosate tolerance by fragment complementation 总被引:3,自引:0,他引:3
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase (AroA) is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants, and is the target of the herbicide glyphosate. Glyphosate tolerance activity of the enzyme could be obtained by natural occurrence or by site-directed mutagenesis. A functional Pseudomonas putida AroA was obtained by co-expression of two protein fragments AroA(P. putida)-N210 and AroA(P. putida)-C212 in Escherichia coli aroA mutant strain AB2829. From sequence analysis, the equivalent split site on E. coli AroA was chosen for further study. The result indicated that functional E. coli AroA could also be reconstituted from two protein fragments AroA(E. coli)-N218 and AroA(E. coli)-C219, under both in vivo and in vitro conditions. This result suggested that the fragment complementation property of this family of enzyme may be general. Additional experiments indicated that the glyphosate tolerance property of AroA could also be reconstituted in parallel with its enzyme activity. The implication of this finding is discussed. 相似文献
9.
Noble M Sinha Y Kolupaev A Demin O Earnshaw D Tobin F West J Martin JD Qiu C Liu WS DeWolf WE Tew D Goryanin II 《Biotechnology and bioengineering》2006,95(4):560-573
Four-enzyme section of the shikimate pathway (Aro B, D, E, and K) of Streptococcus pneumoniae has been studied. Kinetic properties of the individual enzymes and three- and four-enzyme linked reactions have been characterized in vitro. On the basis of the data measured in spectrophotometric and LC-MS experiments, kinetic mechanisms of the enzymes have been suggested and all kinetic parameters have been identified. Kinetic models for these three- and four-enzyme sections of the shikimate pathway have been constructed and validated. The model of the four-enzyme section of shikimate pathway has been employed to design an inhibition-sensitive reconstituted pathway for a high-throughput screening effort on the shikimate pathway. It was demonstrated that using the model it was possible to optimize this reconstituted pathway in such a way to provide equal sensitivity of the enzymes to inhibition. 相似文献
10.
Büttner FH Kumpf R Menzel S Reulle D Valler MJ 《Journal of biomolecular screening》2005,10(5):485-494
The authors have developed a cell-based high-throughput screening (HTS)-compatible assay to measure EGFR dimerization using the InteraX enzyme complementation technology of Applied Biosystems. The cells contain 2 chimeric proteins with complementing deletion mutants of the beta galactosidase enzyme, each fused to the extracellular and transmembrane part of EGFR. On binding of EGF, EGF receptor dimerizes and an active beta galactosidase is built. The authors used this homogeneous 384-well assay to screen about 20,000 diverse compounds. From 2 independent primary screen runs 239 hits were identified. For run 1, a mean S/B ratio of 4.26 and a mean Z' factor of 0.74 were obtained, for run 2 a mean S/B ratio of 3.88 and a mean Z' factor of 0.71 were obtained. After hit confirmation, repeated 4 times, 112 hits remained with a confirmation rate of 48.9%. Thirty of the 112 could be identified as cytotoxic. Fifty-one of the remaining 82 compounds could be shown to be inhibitors of the beta galactosidase enzyme itself. In summary, 31 compounds remained as potential EGFR dimerization or EGF stimulation inhibitors. The authors conclude that the InteraX system technology is HTS capable and can detect small molecule inhibitors capable of inhibiting protein-protein interactions. 相似文献
11.
Toll-like receptors (TLRs) detect the presence of microbial challenge and initiate innate immune defensive responses. In this work we have explored the mechanism and role of TLR dimerization in signal transduction using the newly developed technique of beta-lactamase protein fragment complementation, among others. We observed that TLR4 interactions with itself, with MyD88, or with TLR2 were accurately reported by the enzyme complementation technique. That technique, as well as co-immunoprecipitation, transfection-initiated cell activation, and site-directed mutagenesis all suggest an important role for TLR intracellular domains in receptor dimerization. These findings broaden our understanding of TLR self-interactions as well as heterodimer formation. 相似文献
12.
Potent and selective inhibitors of the enzyme dimethylarginine dimethylaminohydrolase (DDAH) are useful as molecular probes to better understand cellular regulation of nitric oxide. Inhibitors are also potential therapeutic agents for treatment of pathological states associated with the inappropriate overproduction of nitric oxide, such as septic shock, selected types of cancer, and other conditions. Inhibitors with structures dissimilar to substrate may overcome limitations inherent to substrate analogs. Therefore, to identify structurally-diverse inhibitor scaffolds, high-throughput screening (HTS) of a 4000-member library of fragment-sized molecules was completed using the Pseudomonas aeruginosa DDAH and human DDAH-1 isoforms. Use of a substrate concentration equal to its KM value during the primary screen allowed for the detection of inhibitors with different modes of inhibition. A series of validation tests were designed and implemented in the identification of four inhibitors of human DDAH-1 that were unknown prior to the screen. Two inhibitors share a 4-halopyridine scaffold and act as quiescent affinity labels that selectively and covalently modify the active-site Cys residue. Two inhibitors are benzimidazole-like compounds that reversibly and competitively inhibit human DDAH-1 with Ligand Efficiency values ?0.3 kcal/mol/heavy (non-hydrogen) atom, indicating their suitability for further development. Both inhibitor scaffolds have available sites to derivatize for further optimization. Therefore, use of this fragment-based HTS approach is demonstrated to successfully identify two novel scaffolds for development of DDAH-1 inhibitors. 相似文献
13.
Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity 总被引:3,自引:0,他引:3
We developed versatile low-cost arrays of sol-gel-encapsulated enzymes (referred to as solzymes) suitable for repeated assays of bioactivity or enzyme inhibition. Sol-gel microstructures containing active enzymes were stabilized on glass at moderate pH and room temperature without harsh calcination. A multi-well bilayer of polydimethylsiloxane was used to support the solzyme array and contain the reaction medium. Each of the 147 microwells has a working volume of 5 muL and contains 50 mug of immobilized enzyme. The solzyme arrays maintained high activity through repeated applications and exhibited superior thermostability compared to soluble enzymes. Among the enzymes used were lipases, glucose oxidase, and horseradish peroxidase. Twenty different lipases and proteases were also used to prepare a hydrolase array, for which bromthymol blue served as a generic indicator of activity. The relative activities of the encapsulated hydrolases correlated closely with those of the soluble hydrolases, illustrating that sol-gel encapsulation preserved the hierarchy of enzyme activity. The development of solzyme arrays paves the way to higher throughput screening of diverse proteins and enzymes, including those that are available only in trace amounts. 相似文献
14.
15.
16.
Zeng Weizhu Xu Bingbing Du Guocheng Chen Jian Zhou Jingwen 《Journal of industrial microbiology & biotechnology》2019,46(12):1631-1641
Journal of Industrial Microbiology & Biotechnology - l-DOPA is a key pharmaceutical agent for treating Parkinson’s, and market demand has exploded due to the aging population. There are... 相似文献
17.
Mestres J 《Biochemical Society transactions》2002,30(4):797-799
18.
19.
萜类化合物种类繁多,生物活性多样,在食品、药品与化妆品等行业中具有广泛的应用。萜类化合物多来源于植物,然而随着合成生物学的快速发展,相较于传统的天然植物提取与化学合成方法,利用工程微生物进行萜类化合物异源合成的方法显得更为经济与环保。萜类合成酶的催化活性及合成产物的结构特性是萜类化合物异源合成的关键。通过蛋白定向进化与理性设计可以有针对性地优化萜类合成酶的催化性能及产物专一性,但该方案需要一个特异的筛选方法来实现蛋白突变体库的高通量筛选。近年来,一系列高通量筛选方法的建立使得萜类合成酶的筛选变得更加灵敏与高效。本文对近期建立的萜类合成酶高通量筛选方法进行了综述,简要概述了各种筛选方法的基本原理与优缺点,并对高通量筛选技术在萜类合成酶改造中的应用做出了展望。 相似文献