首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pentapeptide repeat is a recently discovered protein fold. Mycobacterium tuberculosis MfpA is a founding member of the pentapeptide repeat protein (PRP) family that confers resistance to the antibiotic fluoroquinolone by binding to DNA gyrase and inhibiting its activity. The size, shape, and surface potential of MfpA mimics duplex DNA. As an initial step in a comprehensive biophysical analysis of the role of PRPs in the regulation of cellular topoisomerase activity and conferring antibiotic resistance, we have explored the solution structure and refolding of MfpA by fluorescence spectroscopy, CD, and analytical centrifugation. A unique CD spectrum for the pentapeptide repeat fold is described. This spectrum reveals a native structure whose beta-strands and turns within the right-handed quadrilateral beta-helix that define the PRP fold differ from canonical secondary structure types. MfpA refolded from urea or guanidium by dialysis or dilution forms stable aggregates of monomers whose secondary and tertiary structure are not native. In contrast, MfpA refolded using a novel "time-dependent renaturation" protocol yields protein with native secondary, tertiary, and quaternary structure. The generality of "time-dependent renaturation" to other proteins and denaturation methods is discussed.  相似文献   

2.
MfpA from Mycobacterium tuberculosis is a founding member of the pentapeptide repeat class of proteins (PRP) that is believed to confer bacterial resistance to the drug fluoroquinolone by mimicking the size, shape and surface charge of duplex DNA. We show that phenylalanine side chain stacking stabilizes the N-terminus of MfpA's pentapeptide thus extending the DNA mimicry analogy. The Lumry-Eyring model was applied to multiple spectral measures of MfpA denaturation revealing that the MfpA dimer dissociates to monomers which undergo a structural transition that leads to aggregation. MfpA retains high secondary and tertiary structure content under denaturing conditions. Dimerization stabilizes MfpA's pentapeptide repeat fold. The high Arrhenius activation energy of the barrier to aggregate formation rationalizes its stability. The mechanism of MfpA denaturation and refolding is a ‘double funnel’ energy landscape where the ‘native’ and ‘aggregate’ funnels are separated by the high barrier that is not overcome during in vitro refolding.  相似文献   

3.
The genome of the diurnal cyanobacterium Cyanothece sp. PCC 51142 has recently been sequenced and observed to contain 35 pentapeptide repeat proteins (PRPs). These proteins, while present throughout the prokaryotic and eukaryotic kingdoms, are most abundant in cyanobacteria. The sheer number of PRPs in cyanobacteria coupled with their predicted location in every cellular compartment argues for important, yet unknown, physiological and biochemical functions. To gain biochemical insights, the crystal structure for Rfr32, a 167-residue PRP with an N-terminal 29-residue signal peptide, was determined at 2.1 A resolution. The structure is dominated by 21 tandem pentapeptide repeats that fold into a right-handed quadrilateral beta-helix, or Rfr-fold, as observed for the tandem pentapeptide repeats in the only other PRP structure, the mycobacterial fluoroquinoline resistance protein MfpA from Mycobacterium tuberculosis. Sitting on top of the Rfr-fold are two short, antiparallel alpha-helices, bridged with a disulfide bond, that perhaps prevent edge-to-edge aggregation at the C terminus. Analysis of the main-chain (Phi,Psi) dihedral orientations for the pentapeptide repeats in Rfr32 and MfpA makes it possible to recognize the structural details for the two distinct types of four-residue turns adopted by the pentapeptide repeats in the Rfr-fold. These turns, labeled type II and type IV beta-turns, may be universal motifs that shape the Rfr-fold in all PRPs.  相似文献   

4.
The Nostoc punctiforme genes Np275 and Np276 are two adjacently encoded proteins of 98 and 75 amino acids in length and exhibit sequences composed of tandem pentapeptide repeats. The structures of Np275 and a fusion of Np275 and Np276 were determined to 2.1 and 1.5 A, respectively. The two Nostoc proteins fold as highly symmetric right-handed quadrilateral beta-helices similar to the mycobacterial protein MfpA implicated in fluoroquinolone resistance and DNA gyrase inhibition. The sequence composition of the intervening coding region and the ability to express a fused protein by removing the stop codon for Np275 suggests Np275 and Np276 were recently part of a larger ancestral pentapeptide repeat protein.  相似文献   

5.
QnrB1 is a plasmid-encoded pentapeptide repeat protein (PRP) that confers a moderate degree of resistance to fluoroquinolones. Its gene was cloned into an expression vector with an N-terminal polyhistidine tag, and the protein was purified by nickel affinity chromatography. The structure of QnrB1 was determined by a combination of trypsinolysis, surface mutagenesis, and single anomalous dispersion phasing. QnrB1 folds as a right-handed quadrilateral β-helix with a highly asymmetric dimeric structure typical of PRP-topoisomerase poison resistance factors. The threading of pentapeptides into the β-helical fold is interrupted by two noncanonical PRP sequences that produce outward projecting loops that interrupt the regularity of the PRP surface. Deletion of the larger upper loop eliminated the protective effect of QnrB1 on DNA gyrase toward inhibition by quinolones, whereas deletion of the smaller lower loop drastically reduced the protective effect. These loops are conserved among all plasmid-based Qnr variants (QnrA, QnrC, QnrD, and QnrS) and some chromosomally encoded Qnr varieties. A mechanism in which PRP-topoisomerase poison resistance factors bind to and disrupt the quinolone-DNA-gyrase interaction is proposed.  相似文献   

6.
DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase.  相似文献   

7.
In the budding yeast Saccharomyces cerevisiae, a number of PRP genes known to be involved in pre-mRNA processing have been genetically identified and cloned. Three PRP genes (PRP2, PRP16, and PRP22) were shown to encode putative RNA helicases of the family of proteins with DEAH boxes. However, any such splicing factor containing the helicase motifs in vertebrates has not been identified. To identify human homologs of this family, we designed PCR primers corresponding to the highly conserved region of the DEAH box protein family and successfully amplified five cDNA fragments, using HeLa poly(A)+ RNA as a substrate. One fragment, designated HRH1 (human RNA helicase 1), is highly homologous to Prp22, which was previously shown to be involved in the release of spliced mRNAs from the spliceosomes. Expression of HRH1 in a S. cerevisiae prp22 mutant can partially rescue its temperature-sensitive phenotype. These results strongly suggest that HRH1 is a functional human homolog of the yeast Prp22 protein. Interestingly, HRH1 but not Prp22 contains an arginine- and serine-rich domain (RS domain) which is characteristic of some splicing factors, such as members of the SR protein family. We could show that HRH1 can interact in vitro and in the yeast two-hybrid system with members of the SR protein family through its RS domain. We speculate that HRH1 might be targeted to the spliceosome through this interaction.  相似文献   

8.
9.
We have purified to homogeneity the primer recognition proteins (PRP) from human HeLa cells. PRP is associated with DNA polymerase alpha complex in HeLa cells. Purified PRP is free of DNA polymerases alpha, beta, and delta, deoxyribonuclease, DNA primase, ATPase, topoisomerase, and DNA ligase activities. The protein structure of the PRP was defined by sodium dodecyl sulfate gel electrophoresis, which revealed two polypeptides of 36,000 Da (PRP 1) and 41,000 Da (PRP 2). The two polypeptides are associated in a complex in the native state. The Stokes radius of the PRP complex by gel filtration is 40.5 A and the sedimentation coefficient in glycerol gradients is 5.7 S. Purified PRP, which exhibits no DNA polymerase activity, completely restores the activity of DNA polymerase alpha on templates with low primer to template ratios such as heat-denaturated DNA, poly(dA)-oligo(dT), and singly primed M13 single-stranded DNA. Experiments using various amounts of PRP, DNA polymerase alpha, and DNA indicate that a concentration dependence exists between these components in the DNA replication process. Amino acid composition analysis indicates that the PRP is rich in hydrophobic amino acids.  相似文献   

10.
Key message

A family of repetitive proline-rich proteins interact with acidic pectins and play distinct roles in legume root cell walls affecting cortical and vascular structure.

Abstract

A proline-rich protein (PRP) family, composed of tandemly repeated Pro-Hyp-Val-X-Lys pentapeptide motifs, is found primarily in the Leguminosae. Four distinct size classes within this family are encoded by seven tightly linked genes: MtPRP1, MtPRP2 and MtPRP3, and four nearly identical MtPRP4 genes. Promoter fusions to β-glucuronidase showed strong expression in the stele of hairy roots for all 4 PRP genes tested, with additional expression in the cortex for PRP1, PRP2 and PRP4. All except MtPRP4 are strongly expressed in non-tumorous roots, and secreted and ionically bound to root cell walls. These PRPs are absent from root epidermal cell walls, and PRP accumulation is highly localized within the walls of root cortical and vascular tissues. Within xylem tissue, PRPs are deposited in secondary thickenings where it is spatially exclusive to lignin. In newly differentiating xylem, PRPs are deposited in the regularly spaced paired-pits and pit membranes that hydraulically connect neighboring xylem elements. Hairpin-RNA knock-down constructs reducing PRP expression in Medicago truncatula hairy root tumors disrupted cortical and vascular patterning. Immunoblots showed that the knockdown tumors had potentially compensating increases in the non-targeted PRPs, all of which cross-react with the anti-PRP antibodies. However, PRP3 knockdown differed from knockdown of PRP1 and PRP2 in that it greatly reduced viability of hairy root tumors. We hypothesize that repetitive PRPs interact with acidic pectins to form block-copolymer gels that can play distinct roles in legume root cell walls.

  相似文献   

11.

Background  

The first report on the transferable, plasmid-mediated quinolone-resistance determinant qnrA1 was in 1998. Since then, qnr alleles have been discovered worldwide in clinical strains of Gram-negative bacilli. Qnr proteins confer quinolone resistance, and belong to the pentapeptide repeat protein (PRP) family. Several PRP crystal structures have been solved, but little is known about the functional significance of their structural arrangement.  相似文献   

12.
We previously reported the isolation of PRP28, a gene in Saccharomyces cerevisiae whose activity is required for the first step of nuclear mRNA splicing in vivo. Sequence analysis revealed that PRP28 is included in the 'DEAD-box' gene family, members of which are thought to function as ATP-dependent RNA helicases. Genetic interactions led us to suggest that PRP28 is functionally associated with the U4/U5/U6 snRNP. We have now purified the PRP28 protein from S. cerevisiae and demonstrated that it is required for the first step of splicing in vitro. Interestingly, PRP28 is not a stably associated snRNP protein. Strand displacement assays indicate that PRP28 does not exhibit RNA helicase activity, suggesting that an additional factor or factors may be required for its activation.  相似文献   

13.
Primer recognition proteins (PRP) are cofactors of DNA polymerase alpha and may have a role in lagging strand DNA replication. Purified PRP from HeLa cells and human placenta are composed of two subunits of 36,000 (PRP 1) and 41,000 (PRP 2) daltons. Upon tryptic digestion, amino acid sequencing of tryptic peptides, and homology search against a protein sequence data base, we have identified PRP 2 to be the glycolytic enzyme, phosphoglycerate kinase (PGK). The activities of PRP and PGK increase coordinately in the PRP purification procedure. PRP activity is inhibited by the PGK substrate 3-phosphoglycerate and the competitive inhibitor of substrate binding, DL-alpha-glycerol 3-phosphate. 5'-p-Fluorosulfonylbenzoyl adenosine, which inactivates PGK by binding to the nucleotide binding site, also inhibits PRP. For PRP activity, the two substrate binding sites of PGK are necessary in addition to the as yet unidentified PRP 1 polypeptide.  相似文献   

14.
Two members of the human salivary proline-rich protein (PRP) multigene family have been isolated and completely sequenced. These PRP genes, PRH1 and PRH2, are of the HaeIII-type subfamily and code for acidic PRP proteins. Both genes are approximately 3.5 kilobase pairs (kb) in length and contain four exons. Exon 3 encodes the proline-rich part of the protein and includes five 63-base pair (bp) repeats. CAT and ATA boxes and several possible enhancer sequences occur in a 1-kb region 5' to exon 1. Two sets of repeats occur in the sequenced region in addition to the 63-bp repeats: one pair of about 140 bp flanks 500 bp of DNA in the first intervening sequence, and the other pair of 72 bp is tandemly repeated 1.4 kb 5' to the PRH1 gene. The 4-kb region of sequenced DNA from PRH1 differs by an average of 8.7% from the same region in PRH2, but the nucleotide sequences of the exon 3 of the two genes differ by only 0.2%. This result suggests the occurrence of a recent gene conversion event. The regions containing the 5-fold repeated sequences of 63 bp are identical in the two genes, PRH1 and PRH2. A comparison of the human HaeIII and BstNI subfamily repeats and a comparison of the human, mouse, and rat repeats suggest that the individual repeats have evolved in a concerted fashion within each gene and within the PRP gene family as a whole.  相似文献   

15.
The crystal structure of a hypothetical protein, TM1457, from Thermotoga maritima has been determined at 2.0A resolution. TM1457 belongs to the DUF464 family (57 members) for which there is no known function. The structure shows that it is composed of two helices in contact with one side of a five-stranded beta-sheet. Two identical monomers form a pseudo-dimer in the asymmetric unit. There is a large cleft between the first alpha-helix and the second beta-strand. This cleft may be functionally important, since the two highly conserved motifs, GHA and VCAXV(S/T), are located around the cleft. A structural comparison of TM1457 with known protein structures shows the best hit with another hypothetical protein, Ybl001C from Saccharomyces cerevisiae, though they share low structural similarity. Therefore, TM1457 still retains a unique topology and reveals a novel fold.  相似文献   

16.
Mouse placenta has been found to contain an mRNA that encodes a previously unidentified member of the prolactin-growth hormone family. This 1.1-kb mRNA (designated PRP mRNA) was detected as a cDNA clone that hydridized to a cDNA clone of mouse proliferin, a recently described growth-associated placental protein related to prolactin. PRP mRNA levels are highest in the fetal part of the placenta and peak at day 12 of gestation, decreasing gradually until term. The 972-bp sequence of PRP mRNA, determined from two cDNA clones, encodes a protein of 244 amino acid residues that has a hydrophobic leader sequence. The protein encoded by PRP mRNA has significant homology to all of the members of the prolactin family, yet is different from each of them; it also differs from mouse placental lactogen. Nucleotide sequence homology is most extensive between PRP and proliferin mRNAs, particularly at their 5' ends, where they share 92 of the first 97 nucleotides.  相似文献   

17.
Quinolones inhibit bacterial type II DNA topoisomerases (e.g. DNA gyrase) and are among the most important antibiotics in current use. However, their efficacy is now being threatened by various plasmid-mediated resistance determinants. Of these, the pentapeptide repeat-containing (PRP) Qnr proteins are believed to act as DNA mimics and are particularly prevalent in gram-negative bacteria. Predicted Qnr-like proteins are also present in numerous environmental bacteria. Here, we demonstrate that one such, Aeromonas hydrophila AhQnr, is soluble, stable, and relieves quinolone inhibition of Escherichia coli DNA gyrase, thus providing an appropriate model system for gram-negative Qnr proteins. The AhQnr crystal structure, the first for any gram-negative Qnr, reveals two prominent loops (1 and 2) that project from the PRP structure. Deletion mutagenesis demonstrates that both contribute to protection of E. coli DNA gyrase from quinolones. Sequence comparisons indicate that these are likely to be present across the full range of gram-negative Qnr proteins. On this basis we present a model for the AhQnr:DNA gyrase interaction where loop1 interacts with the gyrase A 'tower' and loop2 with the gyrase B TOPRIM domains. We propose this to be a general mechanism directing the interactions of Qnr proteins with DNA gyrase in gram-negative bacteria.  相似文献   

18.
A soybean cell wall protein is affected by seed color genotype.   总被引:12,自引:3,他引:9       下载免费PDF全文
The dominant I gene inhibits accumulation of anthocyanin pigments in epidermal cells of the soybean seed coat. We compared saline-soluble proteins extracted from developing seed coats and identified a 35-kilodalton protein that was abundant in Richland (genotype I/I, yellow) and much reduced in an isogenic mutant line T157 (genotype i/i, imperfect black seed coats). We purified the 35-kilodalton protein by a novel procedure using chromatography on insoluble polyvinylpolypyrrolidone. The 35-kilodalton protein was composed primarily of proline, hydroxyproline, valine, tyrosine, and lysine. Three criteria (N-terminal amino acid sequence, amino acid composition, and sequence of a cDNA) proved that the seed coat 35-kilodalton protein was PRP1, a member of a proline-rich gene family expressed in hypocotyls and other soybean tissues. The levels of soluble PRP1 polypeptides and PRP1 mRNA were reduced in young seed coats with the recessive i/i genotype. These data demonstrated an unexpected and novel correlation between an anthocyanin gene and the quantitative levels of a specific, developmentally regulated cell wall protein. In contrast, PRP2, a closely related cell wall protein, was synthesized later in seed coat development and was not affected by the genotype of the I locus.  相似文献   

19.
Staphylococcus capitis EPK1 produces a glycylglycine endopeptidase, ALE-1 (M. Sugai, T. Fujiwara, T. Akiyama, M. Ohara, H. Komatsuzawa, S. Inoue, and H. Suginaka, J. Bacteriol. 179:1193-1202, 1997), which hydrolyzes interpeptide pentaglycine chains of cell wall peptidoglycan of S. aureus. Characterizations of the enzyme activity and cloning of ale-1 revealed that ALE-1 is very similar to prolysostaphin produced by S. simulans bv. staphylolyticus. Strain EPK1 is resistant to lysis by ALE-1 and by lysostaphin. A gene that renders the cells resistant to glycylglycine endopeptidase (epr) was found 322 bp upstream of and in the opposite orientation to ale-1. The deduced amino acid sequence of epr showed similarities to FemA and FemB, which have been characterized as factors essential for methicillin resistance of S. aureus. Inactivation of either femA or femB causes decreased resistance to methicillin, increased resistance to lysostaphin, and decreased glycine content in the interpeptide chains of peptidoglycan. Therefore, femAB is suggested to be involved in the addition of glycine to pentapeptide peptidoglycan precursor. S. aureus with epr on a multicopy plasmid had phenotypes similar to those of femAB mutants except that it did not alter resistance level to methicillin. These results suggest that epr and femAB belong to the protein family involved in adding amino acids to the pentapeptide peptidoglycan precursor and that epr is involved in the addition of serine to the pentapeptide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号