首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substance P binding sites in the nucleus tractus solitarius were visualized with receptor autoradiography using Bolton-Hunter [125I]substance P. Substance P binding sites were found to have distinct patterns within the cat nucleus tractus solitarius. The majority of substance P binding sites were present in the medial, intermediate and the peripheral rim of the parvocellular subdivisions. Lower amounts of substance P binding sites were present in the commissural, ventrolateral, interstitial and dorsolateral subdivisions. No substance P binding sites were present in the central region of the parvocellular subdivision or the solitary tract. The localization of substance P binding sites in the nucleus tractus solitarius is very similar to the patterns of substance P immunoreactive fibers previously described for this region. Results of this study add further support for a functional role of substance P in synaptic circuits of the nucleus tractus solitarius.  相似文献   

2.
The distributions of classical and putative neurotransmitters within somata and fibres of the dorsal vagal complex are reviewed. The occurrence within the dorsal medulla oblongata of receptors specific for some of these substances is examined, and possible functional correlations of the specific neurochemicals with respect to their distribution within the dorsal vagal complex are discussed.Many of the known transmitters and putative transmitters are represented in the dorsal vagal complex, particularly within various subnuclei of the nucleus of the solitary tract, the main vagal afferent nucleus. In a few cases, some of these have been examined in detail, particularly with respect to their possible mediation of cardiovascular or gastrointestinal functions. For example, the catecholamines, substance P and angiotensin II in the nucleus of the solitary tract have all been strongly implicated as playing a role in the central control of cardiovascular function. Other neurotransmitters or putative transmitters may be involved as well, but probably to a lesser extent. Similarly, the roles in the dorsal vagal complex of dopamine, the endorphins and cholecystokinin in control of the gut have been studied in some detail.Future investigations of the distributions of and electrophysiological parameters of neurotransmitters at the cellular level should provide much needed clues to advance our knowledge of the correlations between anatomical distributions of specific neurochemicals and physiological functions mediated by them.  相似文献   

3.
4.
5.
The nucleus tractus solitarius (NTS), the site of termination of visceral afferents of the ninth and tenth cranial nerves, mediates and integrates the reflex cardiovascular and noncardiovascular responses to stimulation of cardiopulmonary and other visceral afferents. On injection into the NTS, the amino acid L-glutamate (L-Glu) and its excitatory analogs produce dose-dependent hypotension and bradycardia, a baroreceptor reflex-like response. The L-Glu antagonist glutamate diethyl ester blocks the response both to L-Glu and to baroreceptor reflex activation. Electrical stimulation of vagal c-fibers selectively releases 3H into a push-pull cannula after preloading of the NTS with L-[3H]Glu or D-[3H]aspartate. The NTS contains a high-affinity uptake system for inactivation of L-Glu. Like L-Glu, acetylcholine and serotonin, which are also found in the NTS, both elicit a baroreceptor reflex-like response when microinjected into the NTS. However, cholinergic and serotonergic antagonists do not block the baroreceptor reflex. A glutamatergic neuron (or neurons) projecting into NTS appears to be an integral part of the baroreceptor reflex arc.  相似文献   

6.
7.
The effects of unilateral and bilateral intrathoracic vagotomy on the neuronal structure of the dorsal motor nucleus of the vagus were studied in rabbits. Degeneration affected mainly the small neurones which disintegrated and vanished from dorsal motor nucleus relative to the survival time after operation. A substantial proportion of large neurones was lost or degenerated, but some were preserved unchanged. In unilaterally vagotomized rabbits the dorsal motor nucleus of the intact side showed scattered neurones with axonal reaction which stands up for peripheral crossing of the vagi. The degree of retrograde degeneration was largely determined by the survival time. The nucleus ambiguus was bilaterally preserved unchanged.  相似文献   

8.
The nucleus tractus solitarius possessed distinct patterns of cholecystokinin immunoreactive fibers and cell bodies within its various subdivisions. The commissural, medial, intermediate, parvocellular, dorsolateral and interstitial subdivisions contained relatively dense amounts of CCK immunolabelled fibers. In contrast, CCK immunoreactivity within the ventrolateral subdivision consisted of a few scattered fibers and small neurons. The commissural, intermediate, medial, dorsolateral and parvocellular subdivisions contained CCK immunoreactive neurons following colchicine treatment. The presence of CCK in the NTS suggest that it may be involved as a neuromodulator and/or neurotransmitter in circuitry that mediate cardiovascular, respiratory, gastrointestinal and taste functions.  相似文献   

9.
F J Gordon 《Peptides》1990,11(2):305-309
These studies investigated whether the nucleus of the tractus solitarius (NTS) is a central site where opioids modulate baroreceptor reflexes. Microinjections into the NTS of [D-Ala2,MePhe4, Gly-ol5]enkephalin (DAGO) significantly reduced reflex-mediated depressor responses evoked by electrical stimulation of the aortic nerve. Subsequent NTS injections of naloxone restored baroreflexes to control levels. These results demonstrate that the NTS is a central site where exogenously administered opioids can modulate baroreceptor reflexes. NTS injections of naloxone had no effect on baroreflex function, suggesting that tonic activation of opioid receptors at this site plays little or no role in central baroreflex control.  相似文献   

10.
We tested the hypothesis that glucocorticoids attenuate changes in arterial pressure and renal sympathetic nerve activity (RSNA) in response to activation and blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors within the nucleus of the solitary tract (NTS). Experiments were performed in Inactin-anesthetized male Sprague-Dawley rats treated for 7 +/- 1 days with a subcutaneous corticosterone (Cort) pellet or in control rats. Baseline mean arterial pressure (MAP) was significantly higher in Cort-treated rats (109 +/- 2 mmHg, n = 39) than in control rats (101 +/- 1 mmHg, n = 48, P < 0.05). In control rats, microinjection of AMPA (0.03, 0.1, and 0.3 pmol/100 nl) into the NTS significantly decreased MAP at all doses and decreased RSNA at 0.1 and 0.3 pmol/100 nl. Responses to AMPA in Cort-treated rats were attenuated at all doses of AMPA (P < 0.05). Responses to the AMPA-kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were also significantly reduced in Cort-treated rats relative to control rats. Blockade of glucocorticoid type II receptors with mifepristone significantly enhanced responses to CNQX in both control and Cort rats. We conclude that glucocorticoids attenuate MAP and RSNA responses to activation and blockade of AMPA receptors in the NTS.  相似文献   

11.
12.
To evaluate the function of widely distributed central chemoreceptors during sleep and wakefulness in the rat, we focally stimulate single chemoreceptor sites during naturally occurring sleep-wake cycles by microdialysis of artificial cerebrospinal fluid equilibrated with 25% CO2. In retrotrapezoid nucleus, this increased ventilation (tidal volume) by 24% only in wakefulness (Li A, Randall M, and Nattie E. J Appl Physiol 87: 910-919, 1999). In caudal medullary raphé, it increased ventilation (frequency) by 15-20% only in sleep (Nattie EE and Li A. J Appl Physiol 90: 1247-1257, 2001). Here, in nucleus tractus solitarius (NTS), focal acidification significantly increased ventilation by 11% in sleep and 7% in wakefulness rostrally (n = 5) and by 16% in sleep and 28% in wakefulness caudally (n = 5). The sleep-wake cycle was unaltered. Dialysis with 5% CO2 had no effect. Dialysis with 50% CO2 caudally did not further stimulate ventilation but did disrupt sleep. Central chemoreceptors in the NTS affect breathing in both sleep and wakefulness. The threshold for arousal in caudal NTS is greater than that for the stimulation of breathing.  相似文献   

13.
It has been suggested that an opioidergic feeding pathway exists between the nucleus of the solitary tract (NTS) and the central nucleus of the amygdala. We studied the following three groups of rats: 1) artificial cerebrospinal fluid (CSF) infused in the NTS, 2) naltrexone (100 microg/day) infused for 13 days in the NTS, and 3) artificial CSF infused in the NTS of rats pair fed to the naltrexone-infused group. Naltrexone administration resulted in a decrease in body weight and food intake. Also, naltrexone infusion increased dynorphin, but not enkephalin, gene expression in the amygdala, independent of the naltrexone-induced reduction in food intake. Gene expression of neuropeptide Y in the arcuate nucleus and neuropeptide Y peptide levels in the paraventricular nucleus did not change because of naltrexone infusion. However, naltrexone induced an increase in serum leptin compared with pair-fed controls. Thus chronic administration of naltrexone in the NTS increased dynorphin gene expression in the amygdala, further supporting an opioidergic feeding pathway between these two brain sites.  相似文献   

14.
The purpose of this study was to examine cardiovascular responses to fourth cerebral ventricle (4V) administration of nitroglycerin (NTG) or an inhibitor of nitric oxide (NO) synthase (NOS) in the near-term ovine and to determine whether, during birth, neuronal NOS (nNOS) is induced in noradrenergic A1 neurons in the medial nucleus tractus solitarius (mNTS). In chronically instrumented fetal sheep, 4V injection of NTG (1.2 nmol), an NO donor, produced an arterial blood depressor and a moderate decrease in heart rate. Arterial blood pressure is increased by 4V administration of NG-nitro-L-arginine methyl ester (10 nmnol), an inhibitor of NOS, in fetuses. Sections of the medulla from fetuses and newborn lambs were examined by using immunolabeling with tyrosine hydroxylase (TH) antibody combined with NADPH diaphorase (NADPHd) histochemistry, a marker of nNOS activity. The NADPHd-positive cells and TH-positive cells containing NADPHd reactivity were significantly increased in the mNTS of newborns compared with the fetuses. The results suggest that during birth, there is upregulation of NADPHd/nNOS in the noradrenergic neurons of mNTS resulting in a centrally mediated reduction of fetal arterial blood pressure.  相似文献   

15.
The nucleus tractus solitarius (NTS) is the first central nervous system (CNS) site for synaptic contact of the primary afferent fibers from the lungs and airways. The signal processing at these synapses will determine the output of the sensory information from the lungs and airways to all downstream synapses in the reflex pathways. The second-order NTS neurons bring to bear their own intrinsic and synaptic properties to temporally and spatially integrate the sensory information with inputs from local networks, higher brain regions, and circulating mediators, to orchestrate a coherent reflex output. There is growing evidence that NTS neurons share the rich repertoire of forms of plasticity demonstrated throughout the CNS. This review focuses on existing evidence for plasticity in the NTS, potential targets for plasticity in the NTS, and the impact of this plasticity on lung and airway reflexes.  相似文献   

16.
Acute ozone exposure evokes adverse respiratory responses, particularly in children. With repeated ozone exposures, however, despite the persistent lung inflammation and increased sensory nerve excitability, the central nervous system reflex responses, i.e., rapid shallow breathing and decreased lung function, adapt, suggesting changes in central nervous system signaling. We determined whether repeated ozone exposures altered the behavior of nucleus tractus solitarius (NTS) neurons where reflex respiratory motor outputs are first coordinated. Whole cell recordings were performed on NTS neurons in brain stem slices from infant monkeys exposed to filtered air or ozone (0.5 ppm, 8 h/day for 5 days every 14 days for 11 episodes). Although episodic ozone exposure depolarized the membrane potential, increased the membrane resistance, and increased neuronal spiking responses to depolarizing current injections (P < 0.05), it decreased the excitability to vagal sensory fiber activation (P < 0.05), suggesting a diminished responsiveness to sensory transmission, despite overall increases in excitability. Substance P, implicated in lung and NTS signaling, contributed to the increased responsiveness to current injections but not to the diminished sensory transmission. The finding that NTS neurons undergo plasticity with repeated ozone exposures may help to explain the adaptation of the respiratory motor responses.  相似文献   

17.
We have shown recently that cholecystokinin octapeptide (CCK-8s) increases glutamate release from nerve terminals onto neurons of the nucleus tractus solitarius pars centralis (cNTS). The effects of CCK on gastrointestinal-related functions have, however, been attributed almost exclusively to its paracrine action on vagal afferent fibers. Because it has been reported that systemic or perivagal capsaicin pretreatment abolishes the effects of CCK, the aim of the present work was to investigate the response of cNTS neurons to CCK-8s in vagally deafferented rats. In surgically deafferented rats, intraperitoneal administration of 1 or 3 mug/kg CCK-8s increased c-Fos expression in cNTS neurons (139 and 251% of control, respectively), suggesting that CCK-8s' effects are partially independent of vagal afferent fibers. Using whole cell patch-clamp techniques in thin brain stem slices, we observed that CCK-8s increased the frequency of spontaneous and miniature excitatory postsynaptic currents in 43% of the cNTS neurons via a presynaptic mechanism. In slices from deafferented rats, the percentage of cNTS neurons receiving glutamatergic inputs responding to CCK-8s decreased by approximately 50%, further suggesting that central terminals of vagal afferent fibers are not the sole site for the action of CCK-8s in the brain stem. Taken together, our data suggest that the sites of action of CCK-8s include the brain stem, and in cNTS, the actions of CCK-8s are not restricted to vagal central terminals but that nonvagal synapses are also involved.  相似文献   

18.

Background  

Physiological experiments have shown that the mean arterial blood pressure (MAP) can not be regulated after chemo and cardiopulmonary receptor denervation. Neuro-physiological information suggests that the nucleus tractus solitarius (NTS) is the only structure that receives information from its rostral neural nuclei and from the cardiovascular receptors and projects to nuclei that regulate the circulatory variables.  相似文献   

19.
Yumi Takemoto 《Amino acids》2014,46(7):1707-1713
The sulfur-containing excitatory amino acid (EAA) l-cysteine sulfinic acid (CSA), a neurotransmitter candidate, is endogenously synthesized from l-cysteine (Cys). Exogenous Cys administration into the brain produces cardiovascular effects; these effects likely occur via synaptic stimulation of central nervous system (CNS) neurons that regulate peripheral cardiovascular function. However, the cardiovascular responses produced by CNS Cys administration could result from CSA biosynthesized in synapse. The present study examined the role of CSA in Cys-induced cardiovascular responses within the nucleus tractus solitarius (NTS) of anesthetized rats. The NTS receives input from various visceral afferents that gate autonomic reflexes, including cardiovascular reflexes. Within the NTS, both Cys and CSA microinjections produced decrease responses in arterial blood pressure and heart rate that were similar to those produced by l-glutamate. Co-injection of the ionotropic EAA receptor antagonist kynurenic acid abolished Cys-, but not CSA-, induced cardiovascular responses. This finding suggests that only Cys-induced cardiovascular responses are mediated by kynurenate-sensitive receptors. This study provides the first demonstration that Cys- and CSA-induced cardiovascular responses occur via different mechanisms in the NTS of rats. Further, this study also indicates that Cys-induced cardiovascular responses do not occur via CSA. Thus, within the NTS, endogenous Cys and/or CSA might be involved in cardiovascular regulation.  相似文献   

20.
It has been suggested that nitric oxide (NO) is a key modulator of both baroreceptor and exercise pressor reflex afferent signals processed within the nucleus tractus solitarius (NTS). However, studies investigating the independent effects of NO within the NTS on the function of each reflex have produced inconsistent results. To address these concerns, the effects of microdialyzing 10 mM L-arginine, an NO precursor, and 20 mM N(G)-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, into the NTS on baroreceptor and exercise pressor reflex function were examined in 17 anesthetized cats. Arterial baroreflex regulation of heart rate was quantified using vasoactive drugs to induce acute changes in mean arterial pressure (MAP). To activate the exercise pressor reflex, static hindlimb contractions were induced by electrical stimulation of spinal ventral roots. To isolate the exercise pressor reflex, contractions were repeated after barodenervation. The gain coefficient of the arterial cardiac baroreflex was significantly different from control (-0.24 +/- 0.04 beats.min(-1).mmHg(-1)) after the dialysis of L-arginine (-0.18 +/- 0.02 beats.min(-1).mmHg(-1)) and L-NAME (-0.29 +/- 0.02 beats.min(-1).mmHg(-1)). In barodenervated animals, the peak MAP response to activation of the exercise pressor reflex (change in MAP from baseline, 39 +/- 7 mmHg) was significantly attenuated by the dialysis of L-arginine (change in MAP from baseline, 29 +/- 6 mmHg). The results demonstrate that NO within the NTS can independently modulate both the arterial cardiac baroreflex and the exercise pressor reflex. Collectively, these findings provide a neuroanatomical and chemical basis for the regulation of baroreflex and exercise pressor reflex function within the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号