首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of the lumbosacral (L-S) segment on magnetic resonance (MR) images is important for appropriate treatment of disease in the lumbosacral (L-S) area. In the study, data obtained from plain A-P radiographs of the L-S spine and sagittal MR imaging scans (sagittal T1- and T2-weighted sequences) of the L-S spine and sacrum with the coccygeal bone, are analyzed. Twenty-six children aged 10 to 14 years were examined for back pain. On the standard A-P radiographs of the L-S spine, a L-S transitional vertebra as classified according to the method of Castellvi et al. was found in 17 subjects. The problem arose as to whether this was lumbalisation or sacralisation, and how to determine which vertebra was L5 wich S1. On the sagittal MR imaging studies the same question applied. A need emerged for a simple method which would identify the L-S segment on the sagittal MR imaging studies of the L-S spine in children so that in case of a tumor, inflammation, spondilolystesis, or protrusion of a disc, the level in the L-S spine where the problem is localized can be accurately identified. To this objective we selected the method using detection of the S1 vertebra. This involved that, in addition to the sagittal MR imaging scans of the L-S spine, sagittal images of the sacrum and coccygeal bone be also obtained. on the T2-weighted sequence, the sacrum can be clearly distinquished from the coccygeal bone. By counting from the S5 up, the S1 vertebra can be accurately identified. Determination of the S1 vertebra enables detection of the L5 vertebra and, in turn, of all other lumbar vertebrae. In patients in whom a T2-weighted MR studies were done S1 could be precisely determined and so could the L5 vertebra. In this process, whether the patient had a transitional vertebra or whether there was lumbarisation or sacralisation was irrelevant.  相似文献   

2.
Changes in spinal posture between the erect and flexed positions were calculated using angular measurements from lateral photographs and radiographs of ten adult male subjects. For photographic measurements, the thoracolumbar vertebral column was modelled as either a single segment or as three segments. In the three-segment model, there was a non-significant correlation between the decrease in lumbar concavity and intervertebral motion. In addition, there was a non-significant negative correlation between the increase in thoracic convexity and lumbar motion determined radiographically. In the single-segment model, the decrease in angulation between the thoracolumbar spine and pelvis was a good representation of lumbar spine flexion as determined by the mean lumbar intervertebral angular change. Therefore, modelling the thoracolumbar vertebral column as a single segment allowed better estimation of lumbar intervertebral angular change during flexion than a three-segment model. The results indicate that large range dynamic motion of the lumbar vertebral column can be represented using photographic analysis of the positions of three easily identified anatomical landmarks: the anterior superior iliac spine, posterior superior iliac spine and the spinous process of the first thoracic vertebra.  相似文献   

3.
4.
对于腰椎退变和不稳的治疗,传统方法是采用后路减压、椎弓根螺钉固定同时行植骨术(僵硬固定)。然而,僵硬固定存在加速周围椎体的退变等缺点。因而,人们逐步把目光投向腰椎弹性固定。最近几年,腰椎弹性固定因具有利于应力分散,防止周围节段退行性变,降低应力遮挡等优点,越来越多地被用于临床。大多数临床资料显示相较于传统坚强固定,弹性固定疗效相当,而固定节段骨萎缩、骨质疏松以及邻近节段退变的发生率显著降低,更利于脊柱生理特性。该文就腰椎弹性固定的发展过程、各种类型弹性固定的工作原理以及临床效果等作一综述。  相似文献   

5.
Reported investigations of facet articulation in the human spine have often been conducted through the insertion of pressure sensitive film into the joint space, which requires incision of the facet capsule and may alter the characteristics of interaction between the facet surfaces. Load transmission through the facet has also been measured using strain gauges bonded to the articular processes. While this method allows for preservation of the facet capsule, it requires extensive instrumentation of the spine, as well as strain-gauge calibration, and is highly sensitive to placement and location of the strain gauges. The inherently invasive nature of these techniques makes it difficult to translate them into medical practice. A method has been developed to investigate facet articulation through the application of test kinematics to a specimen-specific rigid-body model of each vertebra within a lumbar spine segment. Rigid-body models of each vertebral body were developed from CT scans of each specimen. The distances between nearest-neighboring points on each facet surface were calculated for specific time frames of each specimen's flexion/extension test. A metric describing the proportion of each facet surface within a distance (2 mm) from the neighboring surface, the contact area ratio (CAR), was calculated at each of these time frames. A statistically significant difference (p<0.037) was found in the CAR between the time frames corresponding to full flexion and full extension in every level of the lumbar spine (L1-L5) using the data obtained from the seven specimens evaluated in this study. The finding that the contact area of the facet is greater in extension than flexion corresponds to other findings in the literature, as well as the generally accepted role of the facets in extension. Thus, a biomechanical method with a sufficiently sensitive metric is presented as a means to evaluate differences in facet articulation between intact and treated or between healthy and pathologic spines.  相似文献   

6.
The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using dummy rigid beam elements that originated from the spinous process. Up to 10 Nm of flexion and 7.5 Nm of extension moment was applied with and without 20 N of lateral tension in the LF. A follower load of 400 N was additionally applied along the curvature of the spine. To identify how the magnitude of LF tension related to the stability of the spine, the tensioning on the fasciae was increased up to 40 N with an interval of 10 N under 7.5 Nm of flexion/extension moment. A fascial tension of 20 N produced a 59% decrease in angular motion at 2.5 Nm of flexion moment while there was a 12.3% decrease at 10 Nm in the L5-S1 segment. Its decrement was 53 and 9.6% at 2.5 Nm and 10 Nm, respectively, in the L4-L5 segment. Anterior translation was reduced by 12.1 and 39.0% at the L4-L5 and L5-S1 segments under 10 Nm of flexion moment, respectively. The flexion stiffness shows an almost linear increment with the increase in fascial tension. The results of this study showed that the effect of the LF on the stability of the spine is significant.  相似文献   

7.
Three-dimensional finite element models of the thoracolumbar junction (T12–L2) and isolated L1 vertebra were developed to investigate the role of material properties and loading conditions on vertebral stresses and strains to predict fracture risk. The geometry of the vertebrae was obtained from computed tomography images. The isolated vertebra model included an L1 vertebra loaded through polymethylmethacrylate plates located at the top and bottom of the vertebra, and the segment model included T12 to L2 vertebrae and seven ligaments, fibrous intervertebral discs and facet joints. Each model was examined with both homogeneous and spatially varying bone tissue properties. Stresses and strains were compared for uniform compression and flexion. Including material heterogeneity remarkably reduced the stiffness of the isolated L1 vertebra and increased the magnitudes of the minimum principal strains and stresses in the mid-transverse section. The stress and strain distributions further changed when physiological loading was applied to the L1 vertebra. In the segment models, including heterogeneous material properties increased the magnitude of the minimum principal strain by 158% in the centre of the mid-transverse section. Overall, the inclusion of heterogeneity and physiological loading increased the magnitude of the strains up to 346% in flexion and 273% in compression.  相似文献   

8.
The fifth lumbar vertebra, like the other units of the lumbar spine, shows a significant trend toward lowering and broadening of the body with age. In most individuals the pedicales of L5 arise from the lateral surface of the body, rather than posteriorly as in the other lumbar vertebrae, and the increase in body breadth is very often associated with the formation of reinforcing columns of bone between the bases of the pedicles and osteophytes bordering the inferior endplate. In L5 midbody breadth shows a greater gain than endplate breadths, so "flaring" is decreased with age, a change that is statistically significant in Black males and White females. This vertebra shows no significant change in endplate biconcavity or posterior wedging with age.  相似文献   

9.
目的:研究髂骨钉在脊柱-骨盆固定系统中对腰骶稳定性及螺钉应力分布的影响。方法:6具成人腰椎-骨盆防腐标本,分别按照三种不同的固定方式完成置钉连接操作,制成3个实验组:单纯腰椎后路长节段固定组(L2-L5组)、腰骶固定组(L2-S1组)、髂骨钉固定组(L2-S1-I组)。生物力学测试采用8 N·m纯力矩执行前屈、后伸、左右侧弯、左右旋转6个工况运动,比较各固定组L2、L5水平活动度以及L5椎弓根钉、S1螺钉应力。结果:L2-S1组、L2-S1-I组内固定系统以及腰骶关节活动度均明显降低(P0.05),L2-S1-I组的优势更加显著,尤其在抵抗固定系统旋转活动以及腰骶关节前屈活动时作用更明显。L2-S1-I组、L2-S1组L5椎弓根钉应力均较L2-L5组明显减小(P0.05);L2-S1-I组S1螺钉应力较L2-S1组显著减小(P0.05)。结论:髂骨钉技术能够提供良好的脊柱-骨盆固定效果,在维持腰骶稳定性方面优势明显;对近端固定螺钉有保护作用,在与S1螺钉联合使用时,能有效分担S1螺钉所受应力,显著降低螺钉松动、拔出的风险。  相似文献   

10.
《Journal of Physiology》1998,92(1):37-42
Electrophysiological investigations of neurons of the C6 segment of the spinal cord were made in α-chloralose anesthetized animals. It was established in the experiments that a part of long descending propriospinal neurons originating in the sixth cervical segment (C6) that projected to sacral segments (S1/S2) gave off collateral branches at the level of the fourth lumbar segment (L4). Several types of neurons were distinguished according to the ipsilateral, contralateral or bilateral course of axons at the thoracic level as well as their lumbar or sacral projections. The cell bodies of 58 identified neurons were distributed in Rexed's laminae VII and VIII of the gray matter. Axons descended in lateral funiculi and their conduction velocities varied from 50 to 85 m/s. The existence of collaterals to various segments of the lumbosacral enlargement indicates that the same information conveyed by long descending propriospinal neurons can reach separate motor centers controlling various muscles of the hindlimbs.  相似文献   

11.
BACKGROUND: Interbody arthrodesis is employed in the lumbar spine to eliminate painful motion and achieve stability through bony fusion. Bone grafts, metal cages, composite spacers, and growth factors are available and can be placed through traditional open techniques or minimally invasively. Whether placed anteriorly, posteriorly, or laterally, insertion of these implants necessitates compromise of the anulus--an inherently destabilizing procedure. A new axial percutaneous approach to the lumbosacral spine has been described. Using this technique, vertical access to the lumbosacral spine is achieved percutaneously via the presacral space. An implant that can be placed across a motion segment without compromise to the anulus avoids surgical destabilization and may be advantageous for interbody arthrodesis. The purpose of this study was to evaluate the in vitro biomechanical performance of the axial fixation rod, an anulus sparing, centrally placed interbody fusion implant for motion segment stabilization. METHOD OF APPROACH: Twenty-four bovine lumbar motion segments were mechanically tested using an unconstrainedflexibility protocol in sagittal and lateral bending, and torsion. Motion segments were also tested in axial compression. Each specimen was tested in an intact state, then drilled (simulating a transaxial approach to the lumbosacral spine), then with one of two axial fixation rods placed in the spine for stabilization. The range of motion, bending stiffness, and axial compressive stiffness were determined for each test condition. Results were compared to those previously reported for femoral ring allografts, bone dowels, BAK and BAK Proximity cages, Ray TFC, Brantigan ALIF and TLIF implants, the InFix Device, Danek TIBFD, single and double Harms cages, and Kaneda, Isola, and University plating systems. RESULTS: While axial drilling of specimens had little effect on stiffness and range of motion, specimens implanted with the axial fixation rod exhibited significant increases in stiffness and decreases in range of motion relative to intact state. When compared to existing anterior, posterior, and interbody instrumentation, lateral and sagittal bending stiffness of the axial fixation rod exceeded that of all other interbody devices, while stiffness in extension and axial compression were comparable to plate and rod constructs. Torsional stiffness was comparable to other interbody constructs and slightly lower than plate and rod constructs. CONCLUSIONS: For stabilization of the L5-S1 motion segment, axial placement of implants offers potential benefits relative to traditional exposures. The preliminary biomechanical data from this study indicate that the axial fixation rod compares favorably to other devices and may be suitable to reduce pathologic motion at L5-S1, thus promoting bony fusion.  相似文献   

12.
A fundamental adaptation to orthograde posture and locomotion amongst living hominoid primates is a numerically reduced lumbar column, which acts to stiffen the lower back and reduce injuries to the intervertebral discs. A related and functionally complementary strategy of spinal stability is a caudal position of the diaphragmatic vertebra relative to the primitive condition found in nonhominoid primates and most other mammals. The diaphragmatic vertebra marks the transition in vertebral articular facet (zygapophysis) orientation, which either resists (prediaphragmatic) or allows (postdiaphragmatic) trunk movement in the sagittal plane (i.e., flexion and extension). Unlike most mammals, which have dorsomobile spines (long lumbar columns and cranially placed diaphragmatic vertebrae) for running and leaping, hominoids possess dorsostable spines (short lumbar columns and caudally placed diaphragmatic vertebrae) adapted to orthogrady and antipronogrady. In contrast to humans and other extant hominoids, all known early hominin partial vertebral columns demonstrate cranial displacement of the diaphragmatic vertebra. To address this difference, variation in diaphragmatic placement is assessed in a large sample of catarrhine primates. I show that while hominoids are characterized by modal common placement of diaphragmatic and last rib-bearing vertebrae in general, interspecific differences in intraspecific patterns of variation exist. In particular, humans and chimpanzees show nearly identical patterns of diaphragmatic placement. A scenario of hominin evolution is proposed in which early hominins evolved cranial displacement from the ancestral hominid condition of common placement to achieve effective lumbar lordosis during the evolution of bipedal locomotion.  相似文献   

13.
Axial compression on the spine could reach large values especially in lifting tasks which also involve large rotations. Experimental and numerical investigations on the spinal multi motion segments in presence of physiological compression loads cannot adequately be carried out due to the structural instability and artefact loads. To circumvent these problems, a novel wrapping cable element is used in a nonlinear finite element model of the lumbosacral spine (L1-S1) to investigate the role of moderate to large compression loads on the lumbar stiffness in flexion and axial moments/rotations. The compression loads up to 2,700 N was applied with no instability or artefact loads. The lumbar stiffness substantially increased under compression force, flexion moment, and axial torque when applied alone. The presence of compression preloads significantly stiffened the load-displacement response under flexion and axial moments/rotations. This stiffening effect was much more pronounced under larger preloads and smaller moments/rotations. Compression preloads also increased intradiscal pressure, facet contact forces, and maximum disc fibre strain at different levels. Forces in posterior ligaments were, however, diminished with compression preload. The significant increase in spinal stiffness, hence, should be considered in biomechanical studies for accurate investigation of the load partitioning, system stability, and fixation systems/disc prostheses.  相似文献   

14.
Structural vibration testing might be a promising method to study the mechanical properties of spinal motion segments as an alternative to imaging and spinal manipulation techniques. Structural vibration testing is a non-destructive measurement technique that measures the response of a system to an applied vibration as a function of frequency, and allows determination of modal parameters such as resonance frequencies (ratio between stiffness and mass), vibration modes (pattern of motion) and damping. The objective of this study was to determine if structural vibration testing can reveal the resonance frequencies that correspond to the mode shapes flexion-extension, lateroflexion and axial rotation of lumbar motion segments, and to establish whether resonance frequencies can discriminate specific structural alterations of the motion segment. Therefore, a shaker was used to vibrate the upper vertebra of 16 goat lumbar motion segments, while the response was obtained from accelerometers on the transverse and spinous processes and the anterior side of the upper vertebra. Measurements were performed in three conditions: intact, after dissection of the ligaments and after puncturing the annulus fibrosus. The results showed clear resonance peaks for flexion-extension, lateral bending and axial rotation for all segments. Dissection of the ligaments did not affect the resonance frequencies, but puncturing the annulus reduced the resonance frequency of axial rotation. These results indicate that vibration testing can be utilised to assess the modal parameters of lumbar motion segments, and might eventually be used to study the mechanical properties of spinal motion segments in vivo.  相似文献   

15.
Spondylolysis, a fatigue fracture in the neural arch of lumbar vertebrae, is common in Eskimos and some athletes. In Archaic Indians from northwestern Alabama, 17% of males and 20% of females with complete lumbar regions showed this defect. It is found at a fairly early age in adult males in this group, but in females it does not appear until after age 40 years. Spondylolysis is associated with higher levels of osteoarthritis around the fifth lumbar vertebra, where this defect typically occurs. Otherwise, there is little relationship between its presence and degenerative joint disease, especially in the weight-bearing joints. The incidence in young males may be related to activities necessitating a high level of mobility around the lumbar spine. The late occurrence in females suggests that osteoporosis may have been a contributing factor.  相似文献   

16.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

17.
Different modes of load applications are used to simulate flexion and extension of the upper body. It is not clear which loading modes deliver realistic results and allow the comparison of different studies.In a numerical study, a validated finite element model of the lumbar spine, ranging from the vertebra L1 to the disc L5–S1 was employed. Each of six different loading modes was studied for simulating flexion and extension, including pure moments, an eccentric axial force, using a wedged fixture, and applying upper body weight plus follower load plus muscle forces. Intersegmental rotations, intradiscal pressures and facet joint contact forces were calculated. Where possible, results were compared to data measured in vivo.The results of the loading modes studied show a large variance for some values. Outcome measures such as flexion angle and intradiscal pressure differed at a segment by up to 44% and 88%, respectively, related to their maximum values. Intradiscal pressure is mainly determined by the magnitude of the applied compressive force. For flexion maximum contact forces between 0 and 69 N are predicted in each facet joint for different loading modes. For both flexion and extension, applying upper body weight plus follower load plus muscle forces as well as a follower load together with a bending moment delivers results which agreed well with in vivo data from the literature.Choosing an adequate loading mode is important in spine biomechanics when realistic results are required for intersegmental rotations, intradiscal pressure and facet joint contact forces. Only then will results of different studies be comparable.  相似文献   

18.
Determination of physiological loads in human lumbar spine is critical for understanding the mechanisms of lumbar diseases and for designing surgical treatments. Computational models have been used widely to estimate the physiological loads of the spine during simulated functional activities. However, various assumptions on physiological factors such as the intra-abdominal pressure (IAP), centers of mass (COMs) of the upper body and lumbar segments, and vertebral centers of rotation (CORs) have been made in modeling techniques. Systematic knowledge of how these assumptions will affect the predicted spinal biomechanics is important for improving the simulation accuracy. In this paper, we developed a 3D subject-specific numerical model of the lumbosacral spine including T12 and 90 muscles. The effects of the IAP magnitude and COMs locations on the COR of each motion segment and on the joint/muscle forces were investigated using a global convergence optimization procedure when the subject was in a weight bearing standing position. The data indicated that the line connecting the CORs showed a smaller curvature than the lordosis of the lumbar spine in standing posture when the IAP was 0?kPa and the COMs were 10?mm anterior to the geometric center of the T12 vertebra. Increasing the IAP from 0 kPa to 10 kPa shifted the location of CORs toward the posterior direction (from 1.4?±?8.9 mm anterior to intervertebral disc (IVD) centers to 40.5?±?3.1 mm posterior to the IVD centers) and reduced the average joint force (from 0.78?±?0.11 Body weight (BW) to 0.31?±?0.07 BW) and overall muscle force (from 349.3?±?57.7 N to 221.5?±?84.2 N). Anterior movement of the COMs from -30 mm to 70 mm relative to the geometric center of T12 vertebra caused an anterior shift of the CORs (from 25.1?±?8.3 mm posterior to IVD centers to 7.8?±?6.2 mm anterior to IVD centers) and increases of average joint forces (from 0.78?±?0.1 BW to 0.93?±?0.1 BW) and muscle force (from 348.9?±?47.7 N to 452.9?±?58.6 N). Therefore, it is important to consider the IAP and correct COMs in order to accurately simulate human spine biomechanics. The method and results of this study could be useful for designing prevention strategies of spinal injuries and recurrences, and for enhancing rehabilitation efficiency.  相似文献   

19.
The follower load (FL) combined with moments is commonly used to approximate flexed/extended posture of the lumbar spine in absence of muscles in biomechanical studies. There is a lack of consensus as to what magnitudes simulate better the physiological conditions. Considering the in-vivo measured values of the intradiscal pressure (IDP), intervertebral rotations (IVRs) and the disc loads, sensitivity of these spinal responses to different FL and flexion moment magnitudes was investigated using a 3D nonlinear finite element (FE) model of ligamentous lumbosacral spine. Optimal magnitudes of FL and moment that minimize deviation of the model predictions from in-vivo data were determined. Results revealed that the spinal parameters i.e. the IVRs, disc moment, and the increase in disc force and moment from neutral to flexed posture were more sensitive to moment magnitude than FL magnitude in case of flexion. The disc force and IDP were more sensitive to the FL magnitude than moment magnitude. The optimal ranges of FL and flexion moment magnitudes were 900–1100 N and 9.9–11.2 Nm, respectively. The FL magnitude had reverse effect on the IDP and disc force. Thus, magnitude for FL or flexion that minimizes the deviation of all the spinal parameters together from the in-vivo data can vary. To obtain reasonable compromise between the IDP and disc force, our findings recommend that FL of low magnitude must be combined with flexion moment of high intensity and vice versa.  相似文献   

20.
Epidemiological studies have shown a relatively strong association between occupational lower back pain (LBP) and long-term exposure to vibration. However, there is limited knowledge of the impact of vibration and sedentariness on bone metabolism of the lumbar vertebra and the mechanism of bone-derived LBP. The aim of this study was to investigate the effects of vibration in forced posture (a seated posture) on biochemical bone metabolism indices, and morphometric and mechanical properties of the lumbar vertebra, and provide a scientific theoretical basis for the mechanism of bone-derived LBP, serum levels of Ca2+, (HPO4)2−, tartrate-resistant acid phosphatase (TRAP), bone-specific alkaline phosphatase (BALP), and bone gla protein (BGP),the pathological changes and biomechanics of lumbar vertebra of New Zealand white rabbits were studied. The results demonstrate that both forced posture and vibration can cause pathological changes to the lumbar vertebra, which can result in bone-derived LBP, and vibration combined with a seated posture could cause further damage to bone metabolism. Serological changes can be used as early markers for clinical diagnosis of bone-derived LBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号