首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients.  相似文献   

2.
3.
Wang H  Wang K  Xu W  Wang C  Qiu W  Zhong X  Dai Y  Wu A  Hu X 《Journal of neurochemistry》2012,122(1):19-23
The concept that the immune system plays a central role in the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica (NMO) was indisputable. However, neurodegenerative pathological features including loss of axons and neurons were also found in the lesions of these diseases. α-Synuclein is one of the most abundant proteins in pre-synaptic terminals. Recently, many research show α-synuclein level in CSF may reflect the progression of synaptic dysfunction and neuronal apoptosis. Whether the levels of CSF α-synuclein are changed in MS and NMO patients remain unknown. In this study, CSF α-synuclein was measured by an enzyme-linked immunosorbent assay (ELISA) in MS (n = 18) patients, NMO (n = 22) patients, Parkinson's disease patients (n = 9), and the controls (n = 11). We found concentration of α-synuclein in MS and NMO patients were significantly higher than Parkinson's disease subgroup and the controls. Both MS and NMO revealed an increased disease disability with increased CSF α-synuclein. Thus, CSF α-synuclein may be reflect injure axons and neurons in inflammatory demyelinating diseases.  相似文献   

4.
BACKGROUND: The histopathology of multiple sclerosis (MS) is characterized by a loss of myelin and oligodendrocytes, relative preservation of axons, and a modest inflammatory response. The reasons for this selective oligodendrocyte death and demyelination are unknown. MATERIALS AND METHODS: In light of the T lymphocyte and macrophage infiltrates in MS lesions and the numerous cytokines these cells secrete, the direct influence of cytokines on survival of cultured oligodendrocytes and sensory neurons was investigated. Expression of cytokines in vivo was determined by immunolabeling cryostat sections of snap-frozen tissue containing chronic active lesions from four different patients. The samples were also analyzed for the presence of apoptotic nuclei by in situ labeling of 3'-OH ends of degraded nuclear DNA. RESULTS: The results showed: (i) interferon-gamma (IFN gamma) to be a potent inducer of apoptosis among oligodendrocytes in vitro and that this effect can be reversed by leukemia inhibitory factor (LIF); (ii) IFN gamma has a minimal effect on the survival of cultured neurons; (iii) IFN gamma at the margins of active MS plaques but not in unaffected white matter; (iv) evidence for apoptosis of oligodendrocytes at the advancing margins of chronic active MS plaques. CONCLUSIONS: Injury to a substantial number of oligodendrocytes in MS is the results of programmed cell death rather than necrotic cell death mechanisms. We postulate that IFN gamma plays a role in the pathogenesis of MS by activating apoptosis in oligodendrocytes.  相似文献   

5.
Multiple sclerosis (MS), an autoimmune neurological disorder, is driven by self-reactive T helper (Th) cells. Research on the role of Th17 lymphocytes in MS pathogenesis has made significant progress in identifying various immunological as well as environmental factors that induce the differentiation and expansion of these cells, different subsets of Th17 cells with varying degrees of pathogenicity, and the role of the secreted effector cytokines. While approved therapies for MS offer significant benefit to patients, there remain unmet needs. Ongoing clinical trials aim to translate the advanced knowledge of Th17 cytokines to improved therapies. This review discusses the current status and future developments of research into the role of Th17 and related cytokines in MS pathogenesis and therapy.  相似文献   

6.
Neuronal degeneration is a common mechanism of many neurological diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), and Multiple Sclerosis (MS). While AD and PD are classical neurodegenerative diseases, the primary pathology in MS is driven by autoimmune inflammation, attacking oligodendrocytes and thereby inducing neurodegeneration. In AD and PD, immune cells are also considered to play an important role in the disease progression. While the role of local central nervous system (CNS) innate immune cells is well described, a potential influence of adaptive immune cells in PD and AD is not yet fully understood.Here, we aim to summarize findings concerning adaptive immune cells in PD pathogenesis and compare them to AD and MS. In the first part, we focus on disease-specific alterations of lymphocytes in the circulating blood. Subsequently, we describe what is known about CNS-infiltrated lymphocytes and mechanisms of their infiltration. Finally, we summarize published data and try to understand the mechanisms of how lymphocytes contribute to neurodegeneration in PD, AD, and MS.Lymphocytes are critically involved in the pathogenesis of MS, and clarifying the role of lymphocytes in PD and AD pathogenesis might lead to an identification of a common signature of lymphocytes in neurodegeneration and thus pave the road towards novel treatment options.  相似文献   

7.

Background  

The role of different chemokine receptors in the pathogenesis of multiple sclerosis (MS) has been extensively investigated; however, little is known about the difference in the role of chemokine receptors between the pathogenesis of neuromyelitis optica (NMO) and MS. Therefore, we examined the expression of chemokine receptors on peripheral blood lymphocytes (PBL) in MS and NMO.  相似文献   

8.
9.
Imbalances in T cell subpopulations in multiple sclerosis patients.   总被引:3,自引:0,他引:3  
Abnormal proportions of a distinct T cell subpopulation able to bind IgG immune complexes (T.G cells) were found in peripheral blood samples from patients with MS. About 50% of the patients examined had an overabundance of T.G cells. The possible role of these cells in the pathogenesis of MS is considered.  相似文献   

10.
Yuan B  Ohyama K  Bessho T  Uchide N  Toyoda H 《Life sciences》2008,82(11-12):623-630
We have previously demonstrated that induction of apoptosis was observed in the smooth chorion trophoblast cells of human fetal membranes prepared at term, and that apoptosis progressed rapidly during in vitro incubation of the tissues. Furthermore, we identified the contribution of ROS production system (e.g., oxidant enzymes, such as iNOS and Cox-2) to the apoptosis induction in the chorion cells, suggesting an important role of the two inducible enzymes in the induction process. In this study, we examined the role of ROS elimination system (e.g., antioxidant enzymes, such as glutathione peroxidase (GPx) and catalase) in the apoptosis induction of the chorion cells, since the apoptosis induction by oxidative stress is a result of imbalance between production and elimination of ROS. Treatment of chorion and amnion cells with mercaptosuccinic acid (MS, GPx inhibitor) and 3-amino-1,2,4-triazole (ATZ, catalase inhibitor) resulted in an inhibition of GPx and catalase activity, respectively. Furthermore, incubation with MS alone induced apoptosis in the chorion cells and apoptosis level was enhanced by the addition of ATZ, while ATZ alone hardly induced apoptosis in the chorion cells. However, none of these reagents induced apoptosis in the amnion cells. Moreover, an increase of the level of hemeoxygenase-1 gene expression was observed only in the amnion cells when both antioxidant enzyme activities were suppressed. Therefore, we concluded that GPx played a more critical role than catalase in the control of the apoptosis induction of the chorion cells, suggesting that the threshold levels of stress tolerance in the chorion cells are much lower than those in the amnion cells.  相似文献   

11.
The pathogenesis of MS is unknown. In our studies, we have demonstrated an important role for citrullinated myelin basic protein (MBP). The accompanying loss of positive charge compromises the ability of MBP to interact with the lipid bilayer. The conversion of arginine to citrulline in brain is carried out by an enzyme peptidyl arginine deiminase (PAD) 2. The amount of PAD 2 in brain was increased in MS normal-appearing white matter. The mechanism responsible for this increase involved hypomethylation of the promoter region in the PAD 2 gene in MS, but no change (compared to normal) was found in thymus tissue DNA from the same MS patients. In addition, no change was observed in other neurological diseases, including Alzheimer’s, Parkinson’s, and Huntington’s. We propose that citrullinated MBP, resulting from elevated levels of PAD 2 represents an important biochemical pathway in the pathogenesis of MS. Special issue dedicated to Anthony Campagnoni.  相似文献   

12.
Recent studies report that a conflict between information from the visual system and vestibular system is one of the main reasons for induction of motion sickness (MS). We may be able to clarify the integration mechanism of visual and vestibular information using an animal model with a visual defect, the retinal degeneration fast (rdf) mouse, and the role of vestibular information in the pathogenesis of MS. The rdf mice and wild-type Kunming mice were subjected to rotary stimulation to induce MS. Conditioned taste anorexia to saccharin solution and behavior score were used to observe the differences in MS sensitivity between two types of mice. The decrease in intake of saccharin solution and the behavior score in rdf mice were greater than those in normal mice. After rotatory stimulation, the reduction of intake mass and the behavior score were greater in rdf mice compared to those of normal mice. The rdf mice were more sensitive to rotation than normal mice. We conclude that visual information plays a role in the pathogenesis of MS. Visual information and vestibular information impact each other and integrate through certain channels in the central nervous system in mice.  相似文献   

13.
Jin S  Wu M  Cao H  Ying S  Hua J  Chen Y 《Helicobacter》2012,17(2):140-147
Background and Aims: Infection by Helicobacter pylori is one of the major contributing factors of chronic active gastritis and peptic ulcer and is closely associated with the occurrence and progression of gastric cancer. CagA protein is a major virulence factor of H. pylori that interacts with SHP‐2, a true oncogene, to interfere with cellular signaling pathways; CagA also plays a crucial role in promoting the carcinogenesis of gastric epithelial cells. However, currently, the molecular mechanisms of gastric epithelial cells that antagonize CagA pathogenesis remain inconclusive. Methods: We showed that AGS gastric cancer cells transfected with CagA exhibited the inhibition of proliferation and increased activity of caspase 3/7 using two‐dimensional gel electrophoresis and secondary mass spectrometry (MS/MS). Results: It was found that the AGS gastric cancer cells stably expressing CagA displayed significantly increased the expression of 16 proteins, including hnRNPC1/2. Further analysis revealed that hnRNPC1/2 significantly boosted the expression of the p27kip1 protein. Conclusion: Our data suggested that hnRNPC1/2 upregulates p27kip1 expression and the subsequent suppression of cell proliferation and induction of apoptosis, thereby providing an important mechanism whereby gastric epithelial cells antagonize CagA‐mediated pathogenesis.  相似文献   

14.
Lou LX  Geng B  Yu F  Zhang J  Pan CS  Chen L  Qi YF  Ke Y  Wang X  Tang CS 《Life sciences》2006,79(19):1856-1864
Stress gastric ulcer is a serious complication, but the mechanism involved is not fully clarified. It is well known that mucosal cell apoptosis plays a crucial role in the pathogenesis of gastric ulceration. Recent studies have shown that endoplasmic reticulum (ER) stress is an important pathway leading to cellular apoptosis. To investigate the role of ER stress in the pathogenesis of stress gastric ulcer, we studied the alteration in the expression of ER stress markers GRP78 (glucose-regulated protein 78) and caspase-12 (an ER stress-specific proapoptotic molecule) and their relations with gastric mucosal apoptosis during development of stress gastric lesions in the water-immersion and restraint stress (WRS) model in rats. Rats developed severe gastric lesions after 6 h of WRS. Typical apoptosis was observed at the edge cells of WRS induced gastric lesions. Western blot analysis showed that GRP78 and activated caspase-12 were over-expressed in the gastric tissues of WRS rats. Immunohistochemical analysis demonstrated that increased GRP78 and caspase-12 were distributed only under the lesions. In addition, dithiothreitol and tunicamycin (ER stress inducers), which increased the expression of GRP78 and activated caspase-12, caused gastric mucosal injury and mucosal cell apoptosis in vitro. These findings suggest that ER stress might be involved in the development of stress gastric ulcer through an apoptotic mechanism.  相似文献   

15.
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the CNS with associated axonal loss. There is strong evidence for an autoimmune pathogenesis driven by myelin-specific T cells. Myelin oligodendrocyte glycoprotein (MOG) induces a type of experimental autoimmune encephalomyelitis in animals which is very MS-like since there are demyelinating CNS lesions and axonal loss. This underscores the potential role of MOG in MS pathogenesis. We performed a T cell reactivity pattern analysis of MS patients at the onset of relapse or progression of neurological deficits and controls that were stratified for the genetic risk factor HLA-DRB1*1501. For the first time, we show that there is an HLA-DR-restricted promiscuous dominant epitope for CD4(+) T cells within the transmembrane/intracellular part of MOG comprising aa 146-154 (FLCLQYRLR). Surprisingly, controls had broader T cell reactivity patterns toward MOG peptides compared with MS patients, and the transmembrane and intracellular parts of MOG were much more immunogenic compared with the extracellular part. Measurements of in vitro binding affinities revealed that HLA-DRB1*1501 molecules bound MOG 146-154 with intermediate and HLA-DRB1*0401 molecules with weak affinities. The binding of MOG 146-154 was comparable or better than myelin basic protein 85-99, which is the dominant myelin basic protein epitope in context with HLA-DRB1*1501 molecules in MS patients. This is the first study in which the data underscore the need to investigate the pathogenic or regulatory role of the transmembrane and intracellular part of MOG for MS in more detail.  相似文献   

16.
Reactive oxygen species (ROS) contain one or more unpaired electrons and are formed as intermediates in a variety of normal biochemical reactions. However, when generated in excess amounts or not appropriately controlled, ROS initiate extensive cellular damage and tissue injury. ROS have been implicated in the progression of cancer, cardiovascular disease and neurodegenerative and neuroinflammatory disorders, such as multiple sclerosis (MS). In the last decade there has been a major interest in the involvement of ROS in MS pathogenesis and evidence is emerging that free radicals play a key role in various processes underlying MS pathology. To counteract ROS-mediated damage, the central nervous system is equipped with an intrinsic defense mechanism consisting of endogenous antioxidant enzymes. Here, we provide a comprehensive overview on the (sub)cellular origin of ROS during neuroinflammation as well as the detrimental effects of ROS in processing underlying MS lesion development and persistence. In addition, we will discuss clinical and experimental studies highlighting the therapeutic potential of antioxidant protection in the pathogenesis of MS.  相似文献   

17.
Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic beta-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-alpha-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-alpha-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-alpha-induced apoptosis; (iv) XIAP expression was induced by TNF-alpha through a nuclear factor-kappaB (NF-kappaB)-dependent pathway, and interferon (IFN)-gamma prevented such an induction in a manner independent of NF-kappaB, which presents a potential mechanism underlying cytotoxic IFN-gamma/TNF-alpha synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-alpha-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic beta-cells might play an important role in pancreatic beta-cell apoptosis and in the pathogenesis of type 1 diabetes.  相似文献   

18.
Keshan disease (KD) is an endemic cardiomyopathy with high mortality. Selenium (Se) and zinc (Zn) deficiencies are closely related to KD. The molecular mechanism of KD pathogenesis is still unclear. There are only few studies on the interaction of trace elements and proteins associated with the pathogenesis of KD. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-coupled two-dimensional liquid chromatography tandem mass spectrometry (2DLC-MS/MS) technique analysis was used to analyze the differential expression of proteins from serum samples. Comparative Toxicogenomics Database (CTD) was used to screen Se- and Zn-associated proteins. Then, pathway and network analyses of Se- and Zn-associated proteins were constituted by Cytoscape ClueGO and GeneMANIA plugins. One hundred and five differentially expressed proteins were obtained by 2DLC-MS/MS, among them 19 Se- and 3 Zn-associated proteins. Fifty-two pathways were identified from ClueGO and 1 network from GeneMANIA analyses. The results showed that Se-associated proteins STAT3 and MAPK1 and Zn-associated proteins HIF1A and PARP1, the proteins involved in HIF-1 signaling pathway and apoptosis pathway, may play significant roles in the pathogenesis of KD. The approach of this study would be also beneficial for further dissecting molecular mechanism of other trace element-associated disease.  相似文献   

19.
为了探讨酸性鞘磷脂水解酶 (ASM)和MAPK信号通路在UVA诱导的细胞凋亡中的作用 ,用DNA梯形条带 (DNAladder)和荧光显微镜鉴定细胞凋亡 ,Western印迹分析MAPK信号通路的激活情况 .结果显示 :①经UVA照射 ,正常的淋巴母细胞JY出现严重的细胞凋亡 ,而ASM遗传性缺陷的淋巴母细胞MS1 4 1 8出现轻微凋亡 ;给予ASM特异性抑制剂NB6 ,UVA诱导的JY细胞凋亡明显减轻 ,表明UVA诱导的细胞凋亡依赖于ASM .②UVA照射后 ,磷酸化ERK含量在MS1 4 1 8细胞中明显升高 ,在JY细胞中受到抑制 ;UVA照射前给予NB6 ,JY细胞中磷酸化ERK含量上升 ,表明ASM能抑制ERK的激活 .③UVA照射后 ,磷酸化JNK含量在MS1 4 1 8细胞中几乎没有变化 ,而在JY细胞中含量升高 ;UVA照射前给予NB6 ,JY细胞中磷酸化JNK含量没有明显升高 ,表明ASM激活JNK通路 .④NB6对UVA激活的p38MAPK信号通路没有影响 ,表明p38的激活与ASM关系不大 .研究表明 ,UVA诱导的细胞凋亡是通过激活ASM、激活JNK信号通路并抑制ERK信号通路来完成的  相似文献   

20.
BackgroundIn order to retrieve useful information from scientific literature and electronic medical records (EMR) we developed an ontology specific for Multiple Sclerosis (MS).MethodsThe MS Ontology was created using scientific literature and expert review under the Protégé OWL environment. We developed a dictionary with semantic synonyms and translations to different languages for mining EMR. The MS Ontology was integrated with other ontologies and dictionaries (diseases/comorbidities, gene/protein, pathways, drug) into the text-mining tool SCAIView. We analyzed the EMRs from 624 patients with MS using the MS ontology dictionary in order to identify drug usage and comorbidities in MS. Testing competency questions and functional evaluation using F statistics further validated the usefulness of MS ontology.ResultsValidation of the lexicalized ontology by means of named entity recognition-based methods showed an adequate performance (F score = 0.73). The MS Ontology retrieved 80% of the genes associated with MS from scientific abstracts and identified additional pathways targeted by approved disease-modifying drugs (e.g. apoptosis pathways associated with mitoxantrone, rituximab and fingolimod). The analysis of the EMR from patients with MS identified current usage of disease modifying drugs and symptomatic therapy as well as comorbidities, which are in agreement with recent reports.ConclusionThe MS Ontology provides a semantic framework that is able to automatically extract information from both scientific literature and EMR from patients with MS, revealing new pathogenesis insights as well as new clinical information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号