首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Streptomyces lividans FtsY (SlFtsY) was cloned and overexpressed in Escherichia coli. Analysis of the amino acid (aa) sequence showed a concentration of hydrophilic aa's in the N-terminal half region of SlFtsY as observed in that of E. coli FtsY (EcFtsY). However, the length of the hydrophilic region was shorter in SlFtsY than in EcFtsY. Overexpression of SlFtsY in E. coli resulted in growth suppression as in the case of the overexpression of EcFtsY, while growth suppression as a result of the overexpression of the C-terminal half region of SlFtsY was limited. This result suggests that the N-terminal hydrophilic region of SlFtsY, regardless of its short length, would behave like its counterpart region of EcFtsY in E. coli. Received: 27 July 2002 / Accepted: 28 August 2002  相似文献   

2.
3.
4.
5.

Background  

The signal recognition particle (SRP) receptor plays a vital role in co-translational protein targeting, because it connects the soluble SRP-ribosome-nascent chain complex (SRP-RNCs) to the membrane bound Sec translocon. The eukaryotic SRP receptor (SR) is a heterodimeric protein complex, consisting of two unrelated GTPases. The SRβ subunit is an integral membrane protein, which tethers the SRP-interacting SRα subunit permanently to the endoplasmic reticulum membrane. The prokaryotic SR lacks the SRβ subunit and consists of only the SRα homologue FtsY. Strikingly, although FtsY requires membrane contact for functionality, cell fractionation studies have localized FtsY predominantly to the cytosolic fraction of Escherichia coli. So far, the exact function of the soluble SR in E. coli is unknown, but it has been suggested that, in contrast to eukaryotes, the prokaryotic SR might bind SRP-RNCs already in the cytosol and only then initiates membrane targeting.  相似文献   

6.
Recent studies have indicated that FtsY, the signal recognition particle receptor of Escherichia coli, plays a central role in membrane protein biogenesis. For proper function, FtsY must be targeted to the membrane, but its membrane-targeting pathway is unknown. We investigated the relationship between targeting and function of FtsY in vivo, by separating its catalytic domain (NG) from its putative targeting domain (A) by three means: expression of split ftsY, insertion of various spacers between A and NG, and separation of A and NG by in vivo proteolysis. Proteolytic separation of A and NG does not abolish function, whereas separation by long linkers or expression of split ftsY is detrimental. We propose that proteolytic cleavage of FtsY occurs after completion of co-translational targeting and assembly of NG. In contrast, separation by other means may interrupt proper synchronization of co-translational targeting and membrane assembly of NG. The co-translational interaction of FtsY with the membrane was confirmed by in vitro experiments.  相似文献   

7.
In this study, the whole genome of Streptomyces peucetius ATCC 27952 was analyzed and two superoxide dismutases (SODs), named sp-sod1 and sp-sod2, were identified. The sp-sod1 is a putative Fe-Zn sod that is 636 bp in length. The sp-sod2 is a putative NiSOD that is 396 bp in length. The deduced amino acid sequence of sp-sod1 shared approximately 85 ∼ 90% identity with the iron sod of S. griseus, S. coelicolor A3(2), and S. avermitilis MA-4680 whereas sp-sod2 shared approximately 87 ∼ 94% identity with S. avermitilis, S. coelicolor A3(2) and S. seoulensis. The sp-sod1 was characterized to be FeSOD in the sod mutant E. coli QC871. The N-terminal deleted sp-sod2 along with a putative signal peptidase sp-sodX, which was immediately downstream, was co-expressed in E. coli. This recombinant E. coli strain did not produce the processed mature Sp-SOD2 unlike S. coelicolor Müller. However, Sp-SOD2 was confirmed to be NiSOD in S. lividans TK24.  相似文献   

8.
FtsY is a signal recognition particle receptor in Escherichia coli that mediates the targeting of integral membrane proteins to translocons by interacting with both signal recognition particle (SRP)-nascent polypeptide-ribosome complexes and the cytoplasmic membrane. Genes encoding the N-terminal segments of Streptomyces lividans FtsY were fused to a gene encoding the E. coli FtsY NG domain (truncated versions of FtsY lacking the transient membrane-anchor domain at the N-terminus), introduced into a conditional ftsY-deletion mutant of E. coli, and expressed in trans to produce chimeric FtsY proteins. Under FtsY-depleted conditions, strains producing chimeric proteins including 34 N-terminal hydrophobic residues grew whereas strains producing chimeric proteins without these 34 residues did not. A strain producing the chimeric protein comprising the 34 residues and NG domain processed beta-lactamase, suggesting that the SRP-dependent membrane integration of leader peptidase was restored in this strain. These results suggest that the N-terminal hydrophobic segment of FtsY in this Gram-positive bacterium is responsible for its interaction with the cytoplasmic membrane.  相似文献   

9.
Both Enterococcus faecalis and Escherichia coli can undergo abrupt temperature transitions in nature. E. coli changes the composition of its phospholipid acyl chains in response to shifts growth temperature. This is mediated by a naturally temperature sensitive enzyme, FabF (3-ketoacyl-acyl carrier protein synthase II), that elongates the 16 carbon unsaturated acyl chain palmitoleate to the 18 carbon unsaturated acyl chain, cis-vaccenate. FabF is more active at low temperatures resulting in increased incorporation of cis-vaccenoyl acyl chains into the membrane phospholipids. This response to temperature is an intrinsic property of FabF and does not require increased synthesis of the enzyme. We report that the FabF of the very divergent bacterium, E. faecalis, has properties very similar to E. coli FabF and is responsible for changing E. faecalis membrane phospholipid acyl chain composition in response to temperature. Moreover, expression E. faecalis FabF in an E. colifabF strain restores temperature regulation to the E. coli strain.  相似文献   

10.
The chloroplast signal recognition particle (cpSRP) and its receptor (cpFtsY) function in thylakoid biogenesis to target integral membrane proteins to thylakoids. Unlike cytosolic SRP receptors in eukaryotes, cpFtsY partitions between thylakoid membranes and the soluble stroma. Based on sequence alignments, a membrane-binding motif identified in Escherichia coli FtsY appears to be conserved in cpFtsY, yet whether the proposed motif is responsible for the membrane-binding function of cpFtsY has yet to be shown experimentally. Our studies show that a small N-terminal region in cpFtsY stabilizes a membrane interaction critical to cpFtsY function in cpSRP-dependent protein targeting. This membrane-binding motif is both necessary and sufficient to direct cpFtsY and fused passenger proteins to thylakoids. Our results demonstrate that the cpFtsY membrane-binding motif may be functionally replaced by the corresponding region from E. coli, confirming that the membrane-binding motif is conserved among organellar and prokaryotic homologs. Furthermore, the capacity of cpFtsY for lipid binding correlates with liposome-induced GTP hydrolysis stimulation. Mutations that debilitate the membrane-binding motif in cpFtsY result in higher rates of GTP hydrolysis, suggesting that negative regulation is provided by the intact membrane-binding region in the absence of a bilayer. Furthermore, NMR and CD structural studies of the N-terminal region and the analogous region in the E. coli SRP receptor revealed a conformational change in secondary structure that takes place upon lipid binding. These studies suggest that the cpFtsY membrane-binding motif plays a critical role in the intramolecular communication that regulates cpSRP receptor functions at the membrane.Proper compartmentalization of proteins relies on the ability of protein localization pathways to transport proteins efficiently from their sites of synthesis to their sites of function. The signal recognition particle (SRP)2 and its receptor function in every kingdom of life to target proteins to the endoplasmic reticulum (eukaryotes), cytoplasmic membrane (prokaryotes), and thylakoid membrane (chloroplasts) (1). The targeting function of SRP relies on a conserved 54-kDa SRP subunit (SRP54; Ffh in Escherichia coli and cpSRP54 in chloroplasts) as well as a conserved SRP receptor (SRα; FtsY in E. coli and cpFtsY in chloroplasts). For cytosolic SRPs (SRP54 and Ffh), interactions with a substrate signal sequence and an SRP RNA moiety are prerequisite for interaction with the SRP receptor (SRα and FtsY) (2). GTP binding and hydrolysis by both SRP54 and SRα coordinate substrate release from SRP to the translocon and release of SRP from SRα. In chloroplasts, cpFtsY functions along with a unique SRP (cpSRP) to post-translationally target nuclear encoded proteins to thylakoid membranes (3). Light-harvesting chlorophyll a/b-binding proteins (LHCPs) imported into the chloroplast stroma are bound by cpSRP to form a soluble targeting complex, which directs the LHCP substrate to the thylakoid membrane translocon Alb3 (Albino3) in a GTP- and cpFtsY-dependent manner (14, 36). Although many general steps of SRP protein targeting seem largely conserved across evolutionary boundaries, the nature and dynamics of the receptor appear to have diverged.In eukaryotic systems, SRα is peripherally bound to the membrane through association with the integral membrane subunit SRβ. In contrast, no chloroplast or bacterial homolog of SRβ has been identified. cpFtsY and E. coli FtsY (EcFtsY) are found partitioned between the membrane and the stroma or cytosol, respectively. The membrane-binding capacity of EcFtsY serves to stimulate GTPase activity and appears critical in that only membrane-associated EcFtsY supports the release of nascent chains from SRP to the translocon (4, 5). However, the partitioning activity is not strictly required because EcFtsY tethered to the membrane is functional in vivo (37). Given the conserved nature of partitioning among bacterial and chloroplast SRP receptors, partitioning may play an, as of yet, unidentified role in protein targeting by SRP. Nevertheless, differences in lipid composition between bacterial and thylakoid membranes make it interesting to speculate that there are mechanistic differences in membrane partitioning.Like many prokaryotic FtsY homologs (e.g. Thermus aquaticus), cpFtsY lacks the N-terminal acidic domain (A domain) implicated in EcFtsY membrane binding (6). Although the highly conserved FtsY GTPase domain (NG domain) of EcFtsY (EcFtsYNG) fails to support protein targeting, the addition of the last A domain residue, Phe-196 of a conserved double-Phe motif (EcFtsYNG+1), restores protein targeting in vivo (7). In vitro studies also show that EcFtsYNG+1 retains the capacity to bind membranes and support integration of SRP-dependent substrates, although at significantly reduced levels compared with full-length EcFtsY (8). A resolved structure of EcFtsYNG+1 suggests that the amphipathic nature of the region containing Phe-196 plays a critical role in membrane association (9). Furthermore, it has been demonstrated that liposomes stimulate GTP hydrolysis rates of SRP with EcFtsYNG+1, but not with EcFtsYNG, supporting the idea that the A domain in its entirety is not strictly required.For cpFtsY, the necessity and functional role(s) of partitioning between a thylakoid-bound and a soluble phase, as well as the role of N-terminal residues in these functions, remain unknown. In addition, both the conformational state of membrane-bound cpFtsY and EcFtsY and the mechanism responsible for controlling membrane partitioning and altered GTPase activity remain unclear. Because of the gain of function exhibited by EcFtsYNG+1 and the conserved nature of the surrounding motif (9), it seems likely that this conserved region is necessary to support membrane binding and corresponding functions not only in EcFtsY but also in FtsY homologs.To examine the functional role of the N-terminal region of cpFtsY, we have utilized deletion and point mutants in assays that reconstitute cpFtsY activities, including the cpSRP-dependent integration of LHCP. Together, our data indicate that the conserved lipid-binding motif identified in bacterial FtsY homologs is present in cpFtsY and is both necessary and sufficient for thylakoid binding and critical for LHCP targeting.  相似文献   

11.
Streptomyces coelicolor, the model species for morphologically complex actinomycete bacteria, has unique characteristics such as morphological and physiological differentiation, which are controlled by various factors and several protein kinases. From the whole genomic sequence of S. coelicolor A3(2), 44 putative serine/threonine (Ser/Thr) protein kinases were identified, and the pkaF gene was chosen as the best-conserved protein for typical Ser/Thr protein kinases. pkaF encodes a 667-amino acid protein with a predicted N-terminal Ser/Thr kinase domain and four repeated C-terminal penicillin-binding domains and Ser/Thr kinase-associated (PASTA) domains. Based on PCR, a pkaF gene was cloned and heterologously expressed. PkaF expressed in Escherichia coli had the bigger molecular size than the expected value (75 kDa) and was further purified by Ni2+-NTA agarose affinity column chromatography to homogeneity. The purified PkaF was autophosphorylated through the transfer of the γ-phosphate group of ATP. The extent of phosphorylation was proportional to the amount of PkaF, and the phospho-PkaF was dephosphorylated by the addition of the cell lysate of S. coelicolor A3(2). Although no change was observed in the pkaF disruptant, overexpression of pkaF induced severe repression of morphogenesis and actinorhodin production, but not undecylprodigiosin production, implying that PkaF specifically regulates morphogenesis and actinorhodin production in S. coelicolor.  相似文献   

12.
Across evolution, the signal recognition particle pathway targets extra-cytoplasmic proteins to membranous translocation sites. Whereas the pathway has been extensively studied in Eukarya and Bacteria, little is known of this system in Archaea. In the following, membrane association of FtsY, the prokaryal signal recognition particle receptor, and SRP54, a central component of the signal recognition particle, was addressed in the halophilic archaea Haloferax volcanii. Purified H. volcanii FtsY, the FtsY C-terminal GTP-binding domain (NG domain) or SRP54, were combined separately or in different combinations with H. volcanii inverted membrane vesicles and examined by gradient floatation to differentiate between soluble and membrane-bound protein. Such studies revealed that both FtsY and the FtsY NG domain bound to H. volcanii vesicles in a manner unaffected by proteolytic pretreatment of the membranes, implying that in Archaea, FtsY association is mediated through the membrane lipids. Indeed, membrane association of FtsY was also detected in intact H. volcanii cells. The contribution of the NG domain to FtsY binding in halophilic archaea may be considerable, given the low number of basic charges found at the start of the N-terminal acidic domain of haloarchaeal FtsY proteins (the region of the protein thought to mediate FtsY-membrane association in Bacteria). Moreover, FtsY, but not the NG domain, was shown to mediate membrane association of H. volcanii SRP54, a protein that did not otherwise interact with the membrane.  相似文献   

13.
The mechanisms by which colicins, protein toxins produced by Escherichia coli, kill other E. coli, have become much better understood in recent years. Most colicins initially bind to an outer membrane protein receptor, and then search for a separate nearby outer membrane protein translocator that serves as a pathway into target cells. Many colicins use the outer membrane porin, OmpF, as that translocator, while using a different primary receptor. Colicin N is unique among known colicins in that only OmpF had been identified as being required for uptake of the colicin and it was presumed to somehow serve as both receptor and translocator. Genetic screens also identified a number of genes required for lipopolysaccharide (LPS) synthesis as uniquely required for killing by colicin N, but not by other colicins. Johnson et al. show that the receptor‐binding domain of colicin N binds to LPS, and does not require OmpF for that binding. LPS of a minimal length is required for binding, explaining the requirement for specific elements of the LPS biosynthetic pathway. For colicin N, the receptor‐binding domain does not recognize a protein, but rather the most abundant component of the outer membrane itself, LPS.  相似文献   

14.
Protein targeting by the bacterial signal recognition particle requires the specific interaction of the signal recognition particle (SRP)-ribosome-nascent chain complex with FtsY, the bacterial SRP receptor. Although FtsY in Escherichia coli lacks a transmembrane domain, the membrane-bound FtsY displays many features of an integral membrane protein. Our data reveal that it is the cooperative action of two lipid-binding helices that allows this unusually strong membrane contact. Helix I comprises the first 14 amino acids of FtsY and the second is located at the interface between the A- and the N-domain of FtsY. We show by site-directed cross-linking and binding assays that both helices bind to negatively charged phospholipids, with a preference for phosphatidyl glycerol. Despite the strong lipid binding, helix I does not seem to be completely inserted into the lipid phase, but appears to be oriented parallel with the membrane surface. The two helices together with the connecting linker constitute an independently folded domain, which maintains its lipid binding even in the absence of the conserved NG-core of FtsY. In summary, our data reveal that the two consecutive lipid-binding helices of FtsY can provide a membrane contact that does not differ significantly in stability from that provided by a transmembrane domain. This explains why the bacterial SRP receptor does not require an integral β-subunit for membrane binding.  相似文献   

15.
The mechanism of TonB dependent siderophore uptake through outer membrane transporters in Gram-negative bacteria is poorly understood. In an effort to expand our knowledge of the interaction between TonB and the outer membrane transporters, we have cloned and expressed the FepA cork domain (11–154) from Salmonella typhimurium and characterized its interaction with the periplasmic C-terminal domain of TonB (103–239) by isotope assisted FTIR and NMR spectroscopy. For comparison we also performed similar experiments using the FecA N-terminal domain (1–96) from Escherichia coli which includes the conserved TonB box. The FepA cork domain was completely unfolded in solution, as observed for the E. coli cork domain previously [Usher et al. (2001) Proc Natl Acad Sci USA 98, 10676–10681]. The FepA cork domain was found to bind to TonB, eliciting essentially the same chemical shift changes in TonB C-terminal domain as was observed in the presence of TonB box peptides. The FecA construct did not cause this same structural change in TonB. The binding of the FepA cork domain to TonB-CTD was found to decrease the amount of ordered secondary structure in TonB-CTD. It is likely that the FecA N-terminal domain interferes with TonB-CTD binding to the TonB box. Binding of the FepA cork domain induces a loss of secondary structure in TonB, possibly exposing TonB surface area for additional intermolecular interactions such as potential homodimerization or additional interactions with the barrel of the outer membrane transporter.  相似文献   

16.
In Escherichia coli (E. coli) the mechanosensitive channel of small conductance, MscS, gates in response to membrane tension created from acute external hypoosmotic shock, thus rescuing the bacterium from cell lysis. E. coli MscS is the most well studied member of the MscS superfamily of channels, whose members are found throughout the bacterial and plant kingdoms. Homology to the pore lining helix and upper vestibule domain of E. coli MscS is required for inclusion into the superfamily. Although highly conserved, in the second half of the pore lining helix (TM3B), E. coli MscS has five residues significantly different from other members of the superfamily. In superfamilies such as this, it remains unclear why variations within such a homologous region occur: is it tolerance of alternate residues, or does it define functional variance within the superfamily? Point mutations (S114I/T, L118F, A120S, L123F, F127E/K/T) and patch clamp electrophysiology were used to study the effect of changing these residues in E. coli MscS on sensitivity and gating. The data indicate that variation at these locations do not consistently lead to wildtype channel phenotypes, nor do they define large changes in mechanosensation, but often appear to effect changes in the E. coli MscS channel gating kinetics.  相似文献   

17.
Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading to the formation of high-value compounds. In the present study, we systematically maximize the heterologous expression of six different plant-derived CYP genes in Escherichia coli, using a workflow based on C-terminal fusions to the green fluorescent protein. The six genes can be over-expressed in both K- and B-type E. coli strains using standard growth media. Furthermore, sequences encoding a small synthetic peptide and a small bacterial membrane anchor markedly enhance the expression of all six genes. For one of the CYPs, the length of the linker region between the predicted N-terminal transmembrane segment and the soluble domain is modified, in order to verify the importance of this region for enzymatic activity. The work describes how membrane bound CYPs are optimally produced in E. coli and thus adds this plant multi-membered key enzyme family to the toolbox for bacterial cell factory design.  相似文献   

18.
This study reports the effects of exposure to increasing osmotic pressure on the viability and membrane structure of Escherichia coli. Changes in membrane structure after osmotic stress were investigated by electron transmission microscopy, measurement of the anisotropy of the membrane fluorescent probe DPH (1,6-diphenyl-1,3,5-hexatriene) inserted in E. coli, and Fourier infrared spectroscopy (FTIR). The results show that, above a critical osmotic pressure of 35 MPa, the viability of the bacterium is drastically reduced (2 log decrease in survivors). Electron micrographs revealed a severe contraction of the cytoplasm and the formation of membrane vesicles at 40 MPa. Changes in DPH anisotropy showed that osmotic dehydration to 40 MPa promoted a decrease in the membrane fluidity of integral cells of E. coli. FTIR measurements showed that at 10–40 MPa a transition from lamellar liquid crystal to lamellar gel among the phospholipids extracted from E. coli occurred. Bacterial death resulting from dehydration can be attributed to the conjunction between membrane deformation, caused by the volumetric contraction, and structural changes of the membrane lipids. The influence of the latter on the formation of membrane vesicles and on membrane permeabilization at lethal osmotic pressure is discussed, since vesiculation is hypothetically responsible for cell death.  相似文献   

19.
We identified and characterized the gene encoding a new eukaryotic-type protein kinase from Streptomyces coelicolor A3(2) M145. PkaD, consisting of 598 amino acid residues, contained the catalytic domain of eukaryotic protein kinases in the N-terminal region. A hydrophobicity plot indicated the presence of a putative transmembrane spanning sequence downstream of the catalytic domain, suggesting that PkaD is a transmembrane protein kinase. The recombinant PkaD was found to be phosphorylated at the threonine and tyrosine residues. In S. coelicolor A3(2), pkaD was transcribed as a monocistronic mRNA, and it was expressed constitutively throughout the life cycle. Disruption of chromosomal pkaD resulted in a significant loss of actinorhodin production. This result implies the involvement of pkaD in the regulation of secondary metabolism.  相似文献   

20.
Two Expressed Sequence Tagged (EST) clones were identified from the Arabidopsis database as encoding putative cytidine deaminases. Sequence analysis determined that the two clones overlapped and encoded a single cDNA. This cytidine deaminase corresponds to theArabidopsis thaliana gene,cda1. The deduced amino acid sequence was more closely related to prokaryotic cytidine deaminases than to eukaryotic enzymes. The cDNA shares 44% amino acid identity with theEscherichia coli cytidine deaminase but only 26 and 27% identity with human and yeast enzymes. A unique zinc-binding domain of the Ecoli enzyme forms the active site. A similar putative zinc-binding domain was identified in the Arabidopsis enzyme based upon primary sequence similarities. These similarities permitted us to model the active site of the Arabidopsis enzyme upon that of the Ecoli enzyme. In this model, the active site zinc is coordinated by His73, Cys103, Cys107, and an active site hydroxyl. Additional residues that participate in catalysis, Asn64, Glu66, Ala78, Glu79, and Pro102, are conserved between the Arabidopsis and Ecoli enzymes suggesting that the Arabidopsis enzyme has a catalytic mechanism similar to the Ecoli enzyme. The two overlapping ESTs were used to prepare a single, full-length clone corresponding to theA thaliana cda1 cDNA. This cDNA was subcloned into pProExHtb and expressed as a fusion protein with an N-terminal His6 tag. Following purification on a Ni-NTA-Agarose column, the protein was analyzed for its kinetic properties. The enzyme utilizes both cytidine (Km = 226 μand 2’-deoxycytidine (Km= 49 μM) as substrates. The enzyme was unable to deaminate cytosine, CMP or dCMP. journal Paper Number J-18324 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa Project No. 3340.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号