首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
禽流感病毒血凝素疫苗在转基因马铃薯中的表达   总被引:20,自引:0,他引:20  
利用转基因马铃薯表达禽流感病毒血凝素疫苗,将含有禽流感病毒血凝素序列的表达载体导入农杆菌,再感染马铃薯的幼茎外植体。转化植株的再生及温室栽培,Western blot分析表明,83%的转化植株在其块茎组织中表达了重组血凝素,表达量占总蛋白量的0.03-0.04%,结果显示用马铃薯生产口服禽流感疫苗是可行的。  相似文献   

2.
In the preceding paper (Hearing, J., E. Hunter, L. Rodgers, M.-J. Gething, and J. Sambrook. 1989. J. Cell Biol. 108:339-353) we described the isolation and initial characterization of seven Chinese hamster ovary cell lines that are temperature conditional for the cell-surface expression of influenza virus hemagglutinin (HA) and other integral membrane glycoproteins. Two of these cell lines appeared to be defective for the synthesis and/or addition of mannose-rich oligosaccharide chains to nascent glycoproteins. In this paper we show that at both 32 and 39 degrees C in two mutant cell lines accumulate a truncated version, Man5GlcNAc2, of the normal lipid-linked precursor oligosaccharide, Glc3Man9GlcNAc2. This is possibly due to a defect in the synthesis of dolichol phosphate because in vitro assays indicate that the mutant cells are not deficient in mannosylphosphoryldolichol synthase at either temperature. A mixture of truncated and complete oligosaccharide chains was transferred to newly synthesized glycoproteins at both the permissive and restrictive temperatures. Both mutant cell lines exhibited altered sensitivity to cytotoxic plant lectins when grown at 32 degrees C, indicating that cellular glycoproteins bearing abnormal oligosaccharide chains were transported to the cell surface at the permissive temperature. Although glycosylation was defective at both 32 and 39 degrees C, the cell lines were temperature conditional for growth, suggesting that cellular glycoproteins were adversely affected by the glycosylation defect at the elevated temperature. The temperature-conditional expression of HA on the cell surface was shown to be due to impairment at 39 degrees C of the folding, trimerization, and stability of HA molecules containing truncated oligosaccharide chains.  相似文献   

3.
R H Edwards  W J Rutter  D Hanahan 《Cell》1989,58(1):161-170
Nerve growth factor (NGF) is implicated in the differentiation of neurons in both the central and peripheral nervous systems. As a new approach to its role in neuronal development, we have used transgenic mice to selectively overexpress NGF in an innervated peripheral tissue, the islets of the pancreas. In two lines of mice, directed expression of NGF in the beta cells elicits a dramatic increase in the innervation of the islets, but not the surrounding exocrine tissue, by one class of sympathetic neurons. In contrast, the innervation by sensory and parasympathetic neurons appears unchanged. The results indicate that expression of NGF by a target tissue during neuronal development selectively influences the characteristics of its innervation.  相似文献   

4.
Transgenic mice expressing an insulin-promoted H-ras hybrid gene in pancreatic beta cells developed beta-cell degeneration and diabetes. The disease was manifested in male mice by hyperglycemia, glycosuria, and reduced plasma insulin levels, which appeared around 5 months of age and led to premature death. Histological analyses revealed large holes within the islets of Langerhans and a reduced number of beta cells. The destruction of the islets was not associated with an obvious inflammatory activity. Ultrastructural analysis showed extensive engorgement in the endoplasmic reticulum of the residual beta cells from diabetic males. The females carrying the insulin-promoted ras gene did not manifest any of the physiological abnormalities observed in males and showed only minor histological and ultrastructural changes, even at much greater ages.  相似文献   

5.
Type 1 diabetes (T1D) is a disease caused by the destruction of the beta cells of the pancreas by activated T cells. Dendritic cells (DC) are the APC that initiate the T cell response that triggers T1D. However, DC also participate in T cell tolerance, and genetic engineering of DC to modulate T cell immunity is an area of active research. Galectin-1 (gal-1) is an endogenous lectin with regulatory effects on activated T cells including induction of apoptosis and down-regulation of the Th1 response, characteristics that make gal-1 an ideal transgene to transduce DC to treat T1D. We engineered bone marrow-derived DC to synthesize transgenic gal-1 (gal-1-DC) and tested their potential to prevent T1D through their regulatory effects on activated T cells. NOD-derived gal-1-DC triggered rapid apoptosis of diabetogenic BDC2.5 TCR-transgenic CD4+ T cells by TCR-dependent and -independent mechanisms. Intravenously administered gal-1-DC trafficked to pancreatic lymph nodes and spleen and delayed onset of diabetes and insulitis in the NODrag1(-/-) lymphocyte adoptive transfer model. The therapeutic effect of gal-1-DC was accompanied by increased percentage of apoptotic T cells and reduced number of IFN-gamma-secreting CD4+ T cells in pancreatic lymph nodes. Treatment with gal-1-DC inhibited proliferation and secretion of IFN-gamma of T cells in response to beta cell Ag. Unlike other DC-based approaches to modulate T cell immunity, the use of the regulatory properties of gal-1-DC on activated T cells might help to delete beta cell-reactive T cells at early stages of the disease when the diabetogenic T cells are already activated.  相似文献   

6.
Recombinant soluble trimeric influenza A virus hemagglutinins (HA) and tetrameric neuraminidases (NAs) have proven to be excellent tools to decipher biological properties. Receptor binding and sialic acid cleavage by recombinant proteins correlate satisfactorily compared to whole viruses. Expression of HA and NA can be achieved in a plethora of different laboratory hosts. For immunological and receptor interaction studies however, insect and mammalian cell expressed proteins are preferred due to the presence of N‐linked glycosylation and disulfide bond formation. Because mammalian‐cell expression is widely applied, an increased expression yield is an important goal. Here we report that using codon‐optimized genes and sfGFP fusions, the expression yield of HA can be significantly improved. sfGFP also significantly increased expression yields when fused to the N‐terminus of NA. In this study, a suite of different hemagglutinin and neuraminidase constructs are described, which can be valuable tools to study a wide array of different HAs, NAs and their mutants.  相似文献   

7.
Influenza A viruses encoding an altered viral NS1 protein have emerged as promising live attenuated vaccine platforms. A carboxy-terminal truncation in the NS1 protein compromises its interferon antagonism activity, making these viruses attenuated in the host yet still able to induce protection from challenge with wild-type viruses. However, specific viral protein expression by NS1-truncated viruses is known to be decreased in infected cells. In this report, we show that recombinant H5N1 and H1N1 influenza viruses encoding a truncated NS1 protein expressed lower levels of hemagglutinin (HA) protein in infected cells than did wild-type viruses. This reduction in HA protein expression correlated with a reduction in HA mRNA levels in infected cells. NS1 truncation affected the expression of HA protein but not that of the nucleoprotein (NP). This segment specificity was mapped to the terminal sequences of their specific viral RNAs. Since the HA protein is the major immunogenic component in influenza virus vaccines, we sought to restore its expression levels in NS1-truncated viruses in order to improve their vaccine efficacy. For this purpose, we generated an NS1-truncated recombinant influenza A/Puerto Rico/8/34 (rPR8) virus carrying the G3A C8U "superpromoter" mutations in the HA genomic RNA segment. This strategy retained the attenuation properties of the recombinant virus but enhanced the expression level of HA protein in infected cells. Finally, mice immunized with rPR8 viruses encoding a truncated NS1 protein and carrying the G3A C8U mutations in the HA segment demonstrated enhanced protection from wild-type virus challenge over that for mice vaccinated with an rPR8 virus encoding the truncated NS1 protein alone.  相似文献   

8.
Genetic and environmental factors are decisive in the etiology of type 1 diabetes. Viruses have been proposed as a triggering environmental event and some evidences have been reported: type I IFNs exist in the pancreata of diabetic patients and transgenic mice expressing these cytokines in beta cells develop diabetes. To determine the role of IFNbeta in diabetes, we studied transgenic mice expressing human IFNbeta in the beta cells. Autoimmune features were found: MHC class I islet hyperexpression, T and B cells infiltrating the islets and transfer of the disease by lymphocytes. Moreover, the expression of beta(2)-microglobulin, preproinsulin, and glucagon in the thymus was not altered by IFNbeta, thus suggesting that the disease is caused by a local effect of IFNbeta, strong enough to break the peripheral tolerance to beta cells. This is the first report of the generation of NOD (a model of spontaneous autoimmune diabetes) and nonobese-resistant (its homologous resistant) transgenic mice expressing a type I IFN in the islets: transgenic NOD and nonobese-resistant mice developed accelerated autoimmune diabetes with a high incidence of the disease. These results indicate that the antiviral cytokine IFNbeta breaks peripheral tolerance to beta cells, influences the insulitis progression and contributes to autoimmunity in diabetes and nondiabetes- prone mice.  相似文献   

9.
The factors that regulate pancreatic beta cell proliferation are not well defined. In order to explore the role of murine placental lactogen (PL)-I (mPL-I) in islet mass regulation in vivo, we developed transgenic mice in which mPL-I is targeted to the beta cell using the rat insulin II promoter. Rat insulin II-mPL-I mice displayed both fasting and postprandial hypoglycemia (71 and 105 mg/dl, respectively) as compared with normal mice (92 and 129 mg/dl; p < 0.00005 for both). Plasma insulin concentrations were inappropriately elevated, and insulin content in the pancreas was increased 2-fold. Glucose-stimulated insulin secretion by perifused islets was indistinguishable from controls at 7.5, 15, and 20 mm glucose. Beta cell proliferation rates were twice normal (p = 0. 0005). This hyperplasia, together with a 20% increase in beta cell size, resulted in a 2-fold increase in islet mass (p = 0.0005) and a 1.45-fold increase in islet number (p = 0.0012). In mice, murine PL-I is a potent islet mitogen, is capable of increasing islet mass, and is associated with hypoglycemia over the long term. It can be targeted to the beta cell using standard gene targeting techniques. Potential exists for beta cell engineering using this strategy.  相似文献   

10.
11.
The replicative properties of influenza virus hemagglutinin (HA) mutants with altered receptor binding characteristics were analyzed following intranasal inoculation of mice. Among the mutants examined was a virus containing a Y98F substitution at a conserved position in the receptor binding site that leads to a 20-fold reduction in binding. This mutant can replicate as well as wild-type (WT) virus in MDCK cells and in embryonated chicken eggs but is highly attenuated in mice, exhibiting titers in lungs more than 1,000-fold lower than those of the WT. The capacity of the Y98F mutant to induce antibody responses and the structural locations of HA reversion mutations are examined.  相似文献   

12.
Insulin-dependent diabetes is caused by the loss of insulin-producing beta cells in pancreatic islets. It has been proposed that aberrant expression of Class II Major Histocompatibility Complex (MHC) molecules on beta cells stimulates an autoimmune attack against beta cell antigens. To test this hypothesis, we generated transgenic mice that express Class II MHC molecules (E alpha d/E beta b, or I-Eb) on beta cells. Diabetes was found in 100% of transgenic progeny from three expressing transgenic mouse lines, but without evidence for lymphocytic infiltrates. Furthermore, T lymphocytes appeared to be tolerant to the transgene I-Eb molecule, despite the absence of expression of I-Eb in the thymus or any other lymphoid tissue. The results suggest that novel expression of Class II MHC molecules on nonlymphoid cells is by itself insufficient to initiate autoimmune responses against tissue-specific antigens.  相似文献   

13.
14.
15.
Immunogenic structure of the influenza virus hemagglutinin   总被引:133,自引:0,他引:133  
We chemically synthesized 20 peptides corresponding to 75% of the HA1 molecule of the influenza virus. Antibodies to the majority (18) of these peptides were capable of reacting with the hemagglutinin molecule. These 18 peptides are not confined to the known antigenic determinants of the hemagglutinin molecule, but rather are scattered throughout its three-dimensional structure. In contrast, antibody raised to intact hemagglutinin did not react with any of the 20 peptides. Taken together these results suggest that the immunogenicity of an intact protein molecule is not the sum of the immunogenicity of its pieces.  相似文献   

16.
血凝素(Hemagglutinin,HA)是流感病毒的主要表面抗原之一,诱导机体产生中和抗体,介导病毒囊膜与靶细胞膜融合,从而启动病毒对宿主细胞的感染过程。HA蛋白以前体形式合成,需经宿主蛋白酶水解为HA1、HA2两个亚单位,并以二硫键连接,病毒才获得感染性。研究表明宿主蛋白酶的分布与流感病毒感染后的致病力和组织嗜性有直接关系。潜在的裂解酶及其抑制因子的发现为流感的防治提供了新的思路,成为干预治疗的新潜在靶点。就当前国内外关于流感病毒血凝素的结构与功能、裂解机制及其应用的研究进展进行综述。  相似文献   

17.
Chen ZF  Li YB  Han JY  Wang J  Yin JJ  Li JB  Tian H 《Autophagy》2011,7(1):12-16
Autophagy is an intracellular catabolic system, which enables cells to capture cytoplasmic components for degradation within lysosomes. Autophagy is involved in development, differentiation and tissue remodeling in various organisms, and is also implicated in certain diseases. Recent studies demonstrate that autophagy is necessary to maintain architecture and function of pancreatic beta cells. Altered autophagy is also involved in pancreatic beta cell death. Whether autophagy plays a protective or harmful role in diabetes is still not clear. In this review, we will summarize the current knowledge about the role of autophagy in pancreatic beta cell and diabetes.  相似文献   

18.
We investigated the requirements of the carboxyterminal sequence for surface expression of the influenza viral hemagglutinin (HA). Deletions in the cloned hemagglutinin gene were introduced at locations upstream from and spanning into the region that codes for the hydrophobic carboxyl terminus. Primate cells infected with recombinants of the deleted HA gene and an SV40 vector were negative for surface immunofluorescence and failed to adsorb erythrocytes. Polypeptide analysis showed that the mutant hemagglutinins lacking the normal hydrophobic carboxy-terminal sequences were secreted into the medium. These data provide evidence that these sequences of the influenza hemagglutinin are responsible for accumulation at the cell surface. During infection with each deletion mutant, a truncated HA polypeptide was found intracellularly. Both intracellular and extracellular HAs were glycosylated, since a third species representing the unglycosylated mutant hemagglutinin was detected in the presence of tunicamycin. Interestingly, the secreted and intracellular mutant HA polypeptides differ from the surface HA in their sensitivity to endoglycosidase H, indicating that an alteration of glycosylation has occurred.  相似文献   

19.
20.
In mice, Mengovirus produces a fatal encephalitis. Plaque purification of the virus resulted in the isolation of a clone (Mengo- 2T ), which in addition to encephalitis caused diabetes. Microscopic examination of pancreases from infected mice revealed necrosis in the islets of Langerhans and infiltration of inflammatory cells. By immunofluorescence viral antigens were found in the islets, and radioimmunoassays demonstrated a substantial decrease in pancreatic immunoreactive insulin. Studies on susceptibility among inbred strains of mice showed that whereas the D variant of encephalomyocarditis virus caused diabetes only in SJL/J mice, Mengo- 2T caused diabetes in strains of mice resistant to encephalomyocarditis-induced diabetes (i.e., CBA/J, C3H/HeJ, CE/J, AKR/J, C57BL/6J). The ability of Mengo- 2T to induce diabetes in encephalomyocarditis-resistant mice was found to be due to the greater capacity of Mengo- 2T as compared to the D variant of encephalomyocarditis virus to replicate in and destroy the islets of these animals. Although Mengo- 2T and the D variant of encephalomyocarditis virus are antigenically indistinguishable by hyperimmune sera, our studies show that these viruses have different host ranges and tissue tropisms .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号