首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrical phenomena in nerve; squid giant axon   总被引:4,自引:4,他引:0  
The action of a number of agents, which may be classified as "stabilizers" and "unstabilizers" on the electrical oscillations and after-potentials in the squid giant axon has been examined. The effects on the spike, "positive overshoot," and "potassium potential" were also observed, but where possible concentrations were employed which left these phenomena unaltered. Veratrine augmented the oscillations and the negative after-potential, particularly with repetitive stimulation. Yohimbine caused a small long lasting positive after-potential and depressed the oscillations, effects also enhanced with repetitive activity. Cocaine and procaine suppressed the oscillations and the negative after-potential but DDT was completely inert. An elevation in the medium calcium depressed the oscillations and the naturally occurring negative after-potential; negative after-potentials induced with veratrine were increased by calcium. A decrease in the potassium augmented the oscillations and the negative after-potential. A hypothesis is presented in which these effects are interpreted in terms of potassium concentration at the fiber surface as regulated by a labile permeability and metabolism. This is discussed in relation to the available evidence for these factors. It is a pleasure to acknowledge the author's indebtedness to Dr. D. E. S. Brown, Director, and to his staff at the Bermuda Biological Station for Research for the cooperation and special facilities provided during the initiation of this work. Dr. T. Baylor of Princeton University very kindly provided the camera and film used in Bermuda.  相似文献   

2.
Electrical phenomena in nerve; crab nerve   总被引:4,自引:4,他引:0  
The resting and action potentials of the leg nerves of the spider crab are reduced by procaine, cocaine, iodoacetate, KCl, and veratrine. The first three agents depress the sensitivity of the resting potential to anoxia, while the last can be shown to augment it. Glucose sustains activity and the polarized state in the absence of oxygen, an effect blocked by iodoacetate; corresponding concentrations of lactate and pyruvate are inert under most experimental conditions. DDT and veratrine both induce repetitive activity following an impulse, but only the latter does so with a marked increase in negative after-potential. The negative after-potential induced by veratrine is decreased by KCl relatively more than the spike or the resting potential. Elevation of the calcium content of the medium increases this after-potential. Neither ion appreciably alters the time constant of repolarization. The recovery is more rapid than that obtained following prolonged activity of both veratrinized and unveratrinized nerves. Repolarization following a tetanus is accelerated by an increase in the volume of solution in contact with the fibers; associated with this is an augmentation of the positive after-potential which normally follows a bout of activity. Yohimbine induces a positive after-potential following individual spikes which is depressed by an elevation of the potassium or calcium content of the medium. These observations are discussed from the standpoint of the available evidence for the involvement of potassium at the surface of the fibers as regulated by a labile permeability and metabolism. The potassium liberated by the action potential, calculated from the polarization changes, agrees closely with an available analytical figure; less direct observations are also found to be consistent with this view.  相似文献   

3.
Veratridine influences membrane-potential changes arising both from the action potential and from the application of external cholinergic agonists in the isolated monocellular electroplax preparation. The action potential shows a long depolarizing after-potential in the presence of veratridine. The effects of various pharmacological agents and of external ion changes on this after-potential are similar to those reported for other nerve and muscle fibers and are consistent with the view that veratridine acts chiefly to increase the Na+ conductance.Membrane depolarizations by cholinergic agonists are inhibited by veratridine at pH 7 but strikingly amplified at pH 9. The former effect appears to involve interaction with the cholinergic receptor at the surface of the membrane, while the latter potentiation parallels the increase in the spike after-potential at pH 9 and presumably arises from a Na+ conductance increase.Veratridine appears to interact with the component involved in the Na+ conductance in the interior membrane phase. The possible localization of this component in both the conducting and synaptic membrane is discussed.  相似文献   

4.
Depolarizations applied to voltage-clamped cells bathed in the normal solution disclose an initial inward current followed by a delayed outward current. The maximum slope conductance for the peak initial current is about 30 times the leak conductance, but the maximum slope conductance for the delayed current is only about 10 times the leak conductance. During depolarizations for as long as 30 sec, the outward current does not maintain a steady level, but declines first exponentially with a time constant of about 6 msec; it then tends to increase for the next few seconds; finally, it declines slowly with a half-time of about 5 sec. Concomitant with the changes of the outward current, the membrane conductance changes, although virtually no change in electromotive force occurs. Thus, the changes in the membrane conductance represent two phases of K inactivation, one rapidly developing, the other slowly occurring, and a phase of K reactivation, which is interposed between the two inactivations. In isosmotic KCl solution after a conditioning hyperpolarization there occurs an increase in K permeability upon depolarization. When the depolarizations are maintained, the increase of K permeability undergoes changes similar to those observed in the normal medium. The significance of the K inactivation is discussed in relation to the after-potential of the nerve cells.  相似文献   

5.
The potential difference across the protoplasm of impaled cells of Halicystis is not affected by increase of oxygen tension in equilibrium with the sea water, nor with decrease down to about 1/10 its tension in the air (2 per cent O2 in N2). When bubbling of 2 per cent O2 is stopped, the P.D. drifts downward, to be restored on stirring the sea water, or rebubbling the gas. Bubbling 0.2 per cent O2 causes the P.D. to drop to 20 mv. or less; 1.1 per cent O2 to about 50 mv. Restoration of 2 per cent or higher O2 causes recovery to 70 or 80 mv. often with a preliminary cusp which decreases the P.D. before it rises. Perfusion of aerated sea water through the vacuole is just as effective in restoring the P.D. as external aeration, indicating that the direction of the oxygen gradient is not significant. Low O2 tension also inhibits the reversed, negative P.D. produced by adding NH4Cl to sea water, 0.2 per cent O2 bringing this P.D. back to the same low positive values found without ammonia. Restoration of 2 per cent O2 or air, restores this latent negativity. At slightly below the threshold for ammonia reversal, low O2 may induce a temporary negativity when first bubbled, and a negative cusp may occur on aeration before positive P.D. is regained. This may be due to a decreased consumption of ammonia, or to intermediate pH changes. The locus of the P.D. alteration was tested by applying increased KCl concentrations to the cell exterior; the large cusps produced in aerated solutions become greatly decreased when the P.D. has fallen in 0.2 per cent O2. This indicates that the originally high relative mobility or concentration of K+ ion has approached that of Na+ in the external protoplasmic surface under reduced O2 tension. Results obtained with sulfate sea water indicate that Na+ mobility approaches that of SO4 in 0.2 per cent O2. P.D. measurements alone cannot tell whether this is due to an increase of the slower ion or a decrease of the faster ion. A decrease of all ionic permeability is indicated, however, by a greatly increased effective resistance to direct current during low O2. Low resistance is regained on aeration. The resistance increase resembles that produced by weak acids, cresol, etc. Acids or other substances produced in anaerobiosis may be responsible for the alteration. Or a deficiency of some surface constituent may develop. In addition to the surface changes there may be alterations in gradients of inorganic or organic ions within the protoplasm, but there is at present no evidence on this point. The surface changes are probably sufficient to account for the phenomena.  相似文献   

6.
The mechanisms by which low [K(+)](o) induces spontaneous activity was studied in sheep Purkinje fibers. Purkinje strands were superfused in vitro and membrane potentials were recorded by means of a microelectrode technique. The results show that low [K(+)](o) increases the slope and amplitude of early diastolic depolarization, sharpens the transition between early and late diastolic depolarizations, induces an after-potential and large pre-potentials through a negative shift of an oscillatory zone. Pre-potentials occur progressively sooner during diastole and merge with the after-potential to induce uninterrupted spontaneous discharge. During recovery, when the rate slows, after- and pre-potentials separate once more, the slower discharge decreasing the after-potentials but not the pre-potentials. Low [K(+)](o) has little effect on the plateau, but markedly slows phase 3 repolarization and may altogether prevent it. At depolarized levels, voltage oscillations, slow responses, sinusoidal fluctuations or quiescence may be present depending on voltage. During the recovery, a train of either sub-threshold oscillations or spontaneous action potentials appear towards the end of phase 3 repolarization. The cessation of the action potentials unmasks large sub-threshold oscillations, that occur in the oscillatory zone. Drive, high [Ca(2+)](o) and norepinephrine increase slope and amplitude of early diastolic depolarization as low [K(+)](o) does. In low [K(+)](o), Cs(+) prevents spontaneous discharge at polarized levels, but not the decrease in resting potential nor the onset of slow responses at depolarized levels. Cs(+) blocks the train of oscillations and of action potentials occurring during recovery. We conclude that low [K(+)](o) steepens early diastolic depolarization and increases its amplitude through an after-potential that results from an increased Ca(2+) load; allows the attainment of the threshold through Cs(+)-sensitive voltage oscillations which develop when the oscillatory zone is entered either by diastolic depolarization or by phase 3 repolarization; and causes voltage oscillations also at depolarized levels, but through a Cs(+)-insensitive different mechanism.  相似文献   

7.
Using the patch-clamp technique, we observed profound oscillations of the whole-vacuole outward current across the tonoplast of Mesembryanthemum crystallinum L. (common ice plant). These current oscillations showed a clear voltage dependence and appeared at membrane potentials more positive than 90–100 mV. This paper describes the oscillations in terms of two separate mechanisms. First, the Mesembryanthemum vacuolar membrane shows a negative slope conductance at membrane potentials more positive than 100–120 mV. The fact that the oscillations and the negative slope conductance show a similar threshold potential suggests that (part of) the same mechanism is involved in both phenomena. The second mechanism involved is the voltage drop across the series resistance. As a result, the potential actually experienced by the vacuolar membrane deviates from the command potential defined by the patch-clamp amplifier. This deviation depends in an Ohmic manner on the current magnitude. We suggest that the interplay of the negative slope conductance and the voltage drop across the series resistance can cause a positive feedback which is responsible for the current oscillations. Received: 30 April 1999/Revised: 9 September  相似文献   

8.
Itracellular injections of Mg into cat spinal motoneurones have a depolarizing action, associated with a fall in input conductance, and depression of the postspike hyperpolarizing after-potential (a.h.p.) as well as its underlying conductance increase. There is also an increase in excitability, sometimes leading to outright discharge, and a change in the current-firing relation: the normal primary range is largely abolished and the firing appears to have the characteristics of the normal secondary range. Intracellular effects of Mg are thus mainly opposite to those of Ca, possibly owing to competition at sites where Ca activates K channels. Intracellular injections of Mn also tend to depress the a.h.p. but have relatively little effect on resting potential and conductance, or action potentials. Co also depresses the a.h.p. but has a more pronounced depolarizing action, and produces particularly strong depression of action potentials. By contrast intracellular Sr tends to raise the membrane conductance and has a mild hyperpolarizing effect. During the injection of Sr, a.h.p's are depressed but this is followed by a rebound of increased a.h.p. amplitude and conductance. Unlike the other divalent cations tested, Sr strongly depressed excitatory postsynaptic potentials. In most respects Sr appears to behave like Ca.  相似文献   

9.
Limulus ventral photoreceptors contain calcium stores sensitive to release by D-myo-inositol 1,4,5 trisphosphate (InsP3) and a calcium-activated conductance that depolarizes the cell. Mechanisms that terminate the response to InsP3 were investigated using nonmetabolizable DL-myo-inositol 1,4,5 trisphosphorothioate (InsPS3). An injection of 1 mM InsPS3 into a photoreceptor's light-sensitive lobe caused an initial elevation of cytosolic free calcium ion concentration (Cai) and a depolarization lasting only 1-2 s. A period of densensitization followed, during which injections of InsPS3 were ineffective. As sensitivity recovered, oscillations of membrane potential began, continuing for many minutes with a frequency of 0.07-0.3 Hz. The activity of InsPS3 probably results from the D-stereoisomer, since L-InsP3 was much less effective than InsP3. Injections of 1 mM InsP3 caused an initial depolarization and a period of densensitization similar to that caused by 1 mM InsPS3, but no sustained oscillations of membrane potential. The initial response to InsPS3 or InsP3 may therefore be terminated by densensitization, rather than by metabolism. Metabolism of InsP3 may prevent oscillations of membrane potential after sensitivity has recovered. The InsPS3-induced oscillations of membrane potential accompanied oscillations of Cai and were abolished by injection of ethyleneglycol-bis (beta-aminoethyl ether)-N,N'-tetraacetic acid. Removal of extracellular calcium reduced the frequency of oscillation but not its amplitude. Under voltage clamp, oscillations of inward current were observed. These results indicate that periodic bursts of calcium release underly the oscillations of membrane potential. After each burst, the sensitivity of the cell to injected InsP3 was greatly reduced, recovering during the interburst interval. The oscillations may, therefore, result in part from a periodic variation in sensitivity to a constant concentration of InsPS3. Prior injection of calcium inhibited depolarization by InsPS3, suggesting that feedback inhibition of InsPS3-induced calcium release by elevated Cai may mediate desensitization between bursts and after injections of InsPS3.  相似文献   

10.
The influence of a tonic GABA-ergic current on the processes of network synchronization was examined using a computer model of the neural network with shunting GABA-ergic synapses and tonic excitation that initiated spiking. The tonic inhibitory current was characterized by two parameters, the reversal potential and the conductance introduced. We found that tonic current with a reversal potential more negative than the threshold for spike generation reduces the network spiking frequency and synchronization. A monotonic decrease in the network synchronization with augmentation of the tonic current conductance was shown. We also found that a particular range of tonic current conductance leads to a bistable character of the network dynamics. Depending on the initial conditions of the network examined, spontaneous synchronous oscillations similar to epileptiform activity could appear.  相似文献   

11.
The kinetics of the increase in conductance in the outer mitochondrial membrane induced by patch-clamping at various negative potentials (pipette inside negative) are reported. The changes are biphasic, a rapid increase is followed by a slowly developing larger change. The results can be predicted by a model in which an initial activation of channels is followed by their assembly into highly conducting channels. The model suggests that five to seven activated subunits form each high-conductance channel.  相似文献   

12.
In adults and seven- to eight-year-old children, event-related potentials (ERPs) were analyzed during quiet observation and detailed paired comparison of visual stimuli. In both age groups, we showed the differences in the initial stages (component N1) of sensory analysis in these situations. In adults, an increase in the negativity during the initial stages of analysis was observed in the caudal and central areas of the cortex during presentation of standard and test stimuli. In the frontal areas of the cortex, an increase in the negative potential was observed only in ERPs induced by the test stimulus. In children, an increase in the negativity at the initial phases of analysis of stimuli in the situation of working memory, as compared to quiet observation, was confined to the caudal areas of the cortex. Differential curves that characterize analysis of standard and test stimuli showed age-related differences in the initial and late phases of information processing under the conditions of working memory. In adults, the differential curves that characterize analysis of the standard stimulus were represented by negative phases, and the curves related to the test stimulus, by positive phases. In children, late phases of analysis of the standard and test stimuli had smaller differences as compared to adults: the late positive wave was predominant in the responses to both standard and test stimulus in the caudal areas of the cortex. In the frontal areas, there was no considerable increase in the amplitude of the late positive wave in response to the test stimulus. This fact, together with the absence of enhancement of initial negativity in the frontal areas, which reflects analysis of the test stimulus, indicates that the prefrontal cortex plays a smaller role in the comparison of the memory trace with the current information in seven- to eight-year-old children. The data obtained suggest that the central executive of working memory is not sufficiently mature in children aged seven to eight years.  相似文献   

13.
Measurements were made of the kinetics and steady-state properties of the sodium conductance changes in the giant axon of the crab Carcinus maenas. The conductance measurements were made in the presence of small concentrations of tetrodotoxin and as much electrical compensation as possible in order to minimize errors caused by the series resistance. After an initial delay of 10-150 microsec, the conductance increase during depolarizing voltage clamp pulses followed the Hodgkin-Huxley kinetics. Values of the time constant for the activation of the sodium conductance lay on a bell-shaped curve with a maximum under 180 microsec at -40 mV (at 18 degrees C). Values of the time constant for the inactivation of the sodium conductance were also fitted using a bell-shaped curve with a maximum under 7 msec at -70 mV. The effects of membrane potential on the fraction of Na channels available for activation studied using double pulse protocols suggest that hyperpolarizing potentials more negative than -100 mV lock a fraction of the Na channels in a closed conformation.  相似文献   

14.
The sucrose-gap method introduced by Stämpfli provides a means for the application of a voltage clamp to the lobster giant axon, which responds to a variety of different experimental procedures in ways quite similar to those reported for the squid axon and frog node. This is particularly true for the behavior of the peak initial current. However, the steady state current shows some differences. It has a variable slope conductance less than that of the peak initial current. The magnitude of the steady state slope conductance is related to the length of the repolarization phase of the action potential, which does not have an undershoot in the lobster. The steady state outward current is maintained for as long as 100 msec.; this is in contrast to a decline of about 50 per cent in the squid axon. Lowering the external calcium concentration produces shifts in the current-voltage relations qualitatively similar to those obtained from the squid axon. On the basis of the data available, there is no reason to doubt that the Hodgkin and Huxley analysis for the squid giant axon in sea water can be applied to the lobster giant axon.  相似文献   

15.
A Peres  R Zippel  E Sturani 《FEBS letters》1988,241(1-2):164-168
Application of fetal calf serum to quiescent human fibroblasts produces an immediate (3-20 s delay) increase in membrane conductance which lasts about 20-30 s. This conductance is strongly outwardly-rectifying and has a reversal potential between -45 and -10 mV. The conductance increase may also be induced by application of the Ca2+ ionophore A23187 while it does not occur when intracellular K+ is replaced by Cs+. It is concluded that this early effect of serum is due to the opening of Ca2+-activated channels. This permeability change will alter the membrane potential and thus possibly interact with other voltage-sensitive processes induced by serum growth factors.  相似文献   

16.
1. The experiments on frog tadpoles show that with 0.15, 0.37, and 0.55 per cent ether solutions there is a decrease in CO2 output. The effect is reversible. With these concentrations the breathing movements and body movements remained normal during the experiment. In 3.65 and 7.3 per cent ether there is a decrease of respiration followed by an increase which in turn is followed by a decrease. The increase may reach about three times the normal rate. The increase in the CO2 output is accompanied by the peeling of the skin. The effect is irreversible. 2. Experiments on an aquatic insect, Dineutes assimilis Aube, show that in 7.3 per cent ether there is a decrease followed by an increase which in turn is followed by a decrease. There is no apparent disintegration of structures in the organism accompanying the increase. The effect is irreversible. 3. The experiments on frog eggs with 7.3 per cent ether show a result similar to that found in aquatic insects. 4. Experiments on Fundulus embryos show that with 0.73 per cent ether there is a reversible decrease in the rate of CO2 production. In 3.65 per cent ether there is a temporary decrease followed by an increase, after which the rate begins to fall off. In 7.3 per cent ether there is an immediate increase amounting to 307 per cent which is followed by a decrease. The increase in the 3.65 and 7.3 per cent ether is accompanied by irreversible changes leading to death. The decrease found in 0.73 per cent ether is not sufficient to cause narcosis, as is shown by experiments on which the same decrease is produced by lowering the temperature. 5. These experiments show that narcosis is not due to asphyxia. The action of anesthetics is due to some other cause than the effect on respiration. There is a difference between the animals studied and the plants described in this series of articles, since in animals the increase in the CO2 output is accompanied by irreversible changes leading to death, while this is not necessarily the case in plants. The reversible (narcotic) action of ether on the animals studied was accompanied by a decrease in the carbon dioxide output; in plants this is not ordinarily the case. These facts are of considerable interest, but their interpretation must be left to future investigation.  相似文献   

17.
I. R. Cowan 《Planta》1972,106(3):185-219
Summary Measurements of transpiration, leaf water content, and flux of water in a cotton plant exhibiting sustained oscillations, in stomatal conductance are presented, and a model of the mechanism causing this behaviour is developed. The dynamic elements, of the model are capacitors—representing the change of water content with water potential in mesophyll, subsidiary and guard cells—interconnected by resistances representing flow paths in the plant. Increase of water potential in guard cells causes an increase in stomatal conductance. Increase of water potential in the subsidiary cells has the opposite effect and provides the positive feed-back which can cause stomatal conductance to oscillate. The oscillations are shown to have many of the characteristics of free-running oscillations in real plants. The behaviour of the model has been examined, using an analogue computer, with constraints and perturbations representing some of those which could be applied to real plants in physiological experiments. Aspects of behaviour which have been simulated are (a) opening and closing of stomata under the influence of changes in illumination, (b) transient responses due to step changes in potential transpiration, root permeability and potential of water surrounding the roots, (c) the influence of these factors on the occurrence and shape of spontaneous oscillations, and (d) modulation of sustained oscillations due to a circadian rhythm in the permeability of roots.  相似文献   

18.
The fertilization potential in Phallusia mammillata consisted of an initial rapid depolarization. This initial sperm-triggered depolarization was followed by a phase of membrane depolarization which was of either long or short duration, depending on the eggs. When of long duration, the phase of membrane depolarization was divided into two periods: the first one began with a plateau (Em = +20.2 +/- 1.1 mV; duration = 1.7 +/- 0.14 min) which was followed by a series of membrane potential oscillations (n = 3.1 +/- 0.25) lasting 2.4 +/- 0.2 min. The second period also began as a plateau (Em = approximately 0 mV; duration = 3.40 +/- 0.20 min) which was followed by a series of oscillations (n = 11.5 +/- 0.5) lasting 11.8 +/- 0.6 min, followed by a membrane repolarization. The second series of oscillations often continued rising from the resting potential value. In the eggs displaying a short duration of membrane depolarization, the second period of depolarization was shortened (lasting only 3.5 +/- 0.5 min) since it lacked the second plateau. In addition it displayed a smaller number of oscillations (n = 4.7 +/- 0.6). As a consequence of this shortening, the membrane repolarized sooner. After repolarization, the membrane displayed several potential oscillations that started from the repolarization level. Regardless of the length of the depolarized plateau phases, the total number of membrane oscillations and the time period during which they occurred were constant. Eggs displaying a long depolarization phase had 15.9 +/- 0.6 oscillations in a 19.5 +/- 0.6 min interval, while eggs having a short depolarization phase had 16.0 +/- 0.8 oscillations in a 18.1 +/- 0.3 min interval. The time period during which the potential oscillations occurred corresponded remarkably well with the time of the meiotic divisions: the formation of the first polar body was detected about 80 sec after the end of the first series of oscillations; the second polar body was extruded about 85 sec after the last membrane oscillation occurred.  相似文献   

19.
Colistin interactions with the mammalian urothelium   总被引:4,自引:0,他引:4  
Here we describe the effect of colistin on the barrier function of the mammalian urinary bladder epithelium. Addition of colistin to the mucosal solution of the rabbit urinary bladder epithelium (urothelium) resulted in an increase in the transepithelial conductance. The magnitude of the increase in transepithelial conductance was dependent on the membrane voltage, concentration of colistin, and presence of divalent cations in the bath solution. The initial site of action of colistin was at the apical membrane. Colistin increased the membrane conductance only when the apical membrane potential was cell interior negative. The more negative the membrane potential, the larger the conductance increase. The concentration dependence of the conductance increase saturated, suggesting a membrane binding site. Divalent cations decreased the magnitude of the conductance increase. This divalent cation action occurred at two sites: one in competition with colistin for a membrane binding site, and the other by rapidly blocking the induced conductance. At short exposure times, the increase in conductance was reversed by either removing colistin from the bath or changing the voltage so that the apical membrane was cell interior positive. At long exposure times, the increase was only partially reversible by voltage or removal from the bath. This finding suggests that at long exposure times, there is a toxic effect of colistin on the urothelium. bladder epithelium; epithelial transport; tight junctions; antibiotics; cationic proteins  相似文献   

20.
The effect of tetraethylammonium (TEA) bromide on the neurally and iontophoretically evoked endplate current (EPC) of frog sartorius muscle was investigated using voltage-clamp and noise analysis techniques, and its binding to the acetylcholine (ACh) receptor ionic channel complex was determined on the electric organ of Torpedo ocellata. TEA (250-500 microM) produced an initial enhancement followed by a slow decline in the amplitude of the endplate potential and EPC, but caused only depression in the amplitude of the miniature endplate potential and current. In normal ringer's solution, the EPC current-voltage relationship was approximately linear, and the decay phase varied exponentially with membrane potential. Upon addition of 50-100 microM TEA, the current-voltage relationship became markedly nonlinear at hyperpolarized command potentials, and with 250-2000 microM TEA, there was an initial linear segment, an intermediate nonlinear segment, and a region of negative conductance. The onset of nonlinearity was dose-dependent, undergoing a 50 mV shift for a 10-fold increase in TEA concentration. The EPC decay phase was shortened by TEA at hyperpolarized but not depolarized potentials, and remained a single expotential function of time at all concentrations and membrane potentials examined. These actions of TEA were found to be independent of the sequence of polarizations, the length of the conditioning pulse, and the level of the initial holding potential. TEA shifted the power spectrum of ACh noise to higher frequencies and produced a significant depression of single channel conductance. The shortening in the mean channel lifetime agreed closely with the decrease in the EPC decay time constant. At the concentrations tested, TEA did not alter the EPC reversal potential, nor the resting membrane potential, and had little effect on the action potential duration. TEA inhibited the binding of both [3H] ACh (Ki = 200 microM) and [3H]perhydrohistrionicotoxin (Ki = 280 microM) to receptor-rich membranes from the electric organ of Torpedo ocellata, and inhibited the carbamylcholine-activated 22Na+ efflux from these microsacs. It is suggested that TEA reacts with the nicotinic ACh-receptor as well as its ion channel; the voltage-dependent actions are associated with blockade of the ion channel. The results are compatible with a kinetic model in which TEA first binds to the closed conformation of the receptor-ionicchannel complex to produce a voltage-depdndent depression of endplate conductance and sudsequently to its open conformation, giving rise to the shortening in the EPC decay and mean channel lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号