首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of glutamate dehydrogenase, asparagine synthetase, and total glutamine synthetase in the organs of the white lupine (Lupinus albus L.) plants were measured during plant growth and development. In addition, the dynamics of free amino acids and amides in plant organs was followed. It was shown that the change in the nutrition type was important for controlling enzyme activities in the organs examined and, consequently, for directing the pathway of ammonium nitrogen assimilation. As long as the plants remained heterotrophic, glutamine-dependent asparagine synthetase of cotyledons and glutamine synthetase of leaves apparently played a major role in the assimilation of ammonium nitrogen. In symbiotrophic plants, root nodules became an exclusive site of asparagine synthesis, and the role of leaf glutamine synthetase increased. Unlike glutamine synthetase and asparagine synthetase, glutamate dehydrogenase activity was present in all organs examined and was less dependent on the nutrition type. This was also indicated by a weak correlation of glutamate dehydrogenase activity with the dynamics of free amino acid and amide content in these organs. It is supposed that glutamine synthetase plays a leading role in both the primary assimilation of ammonium, produced during symbiotic fixation of molecular nitrogen in root nodules, and in its secondary assimilation in cotyledons and leaves. On the other hand, secondary nitrogen assimilation in the axial organs occurs via an alternative glutamate dehydrogenase pathway.  相似文献   

2.
不同耐盐性水稻幼苗根氨同化酶对盐胁迫的反应   总被引:3,自引:0,他引:3  
在盐胁迫下,检测了耐盐性不同的水稻(Oryza sativa L.)品种根部氨同化酶及其相关参数的变化。结果表明,根的可溶性蛋白、谷氨酰胺合成酶(GS)及依赖于NADH的谷氨酸合酶(NADH-GOGAT)活性在高盐浓度下不同程度地降低,其影响大小依次为早花二号(盐敏感品种)、金珠一号(正常栽培品种)、津稻779(耐盐品种),与其耐盐性相一致。在盐胁迫条件下,在耐盐性较高的水稻品种中, GS和GOGAT活性比盐敏感品种高,NH4 浓度维持在较低的水平。Native-PAGE和活性染色结果表明,GSrb更容易受到外界环境的影响。在高浓度盐的胁迫下,早花二号、金珠一号的依赖于NADH的谷氨酸脱氢酶(NADH-GDH)活性都有较显著的升高,津稻779却无明显的变化,这和NH4 含量的变化相一致。盐不同程度地导致可溶性糖(TSS)在金珠一号和津稻779根部积累,而在早花2号的根部,可溶性糖的水平则随盐浓度的不同而表现出不同的变化。在所检测的品种中,脯氨酸的含量均有不同程度的升高,但在高盐浓度下,盐敏感品种的含量较低。这些结果提示,不同的水稻品种对盐胁迫的敏感程度与该品种GS以及GOGAT活性的高低有关。  相似文献   

3.
不同耐盐性水稻幼苗根氨同化酶对盐胁迫的反应   总被引:1,自引:0,他引:1  
在盐胁迫下,检测了耐盐性不同的水稻(Oryza sativa L.)品种根部氨同化酶及其相关参数的变化.结果表明,根的可溶性蛋白、谷氨酰胺合成酶(GS)及依赖于NADH的谷氨酸合酶(NADH-GOGAT)活性在高盐浓度下不同程度地降低,其影响大小依次为早花二号(盐敏感品种)、金珠一号(正常栽培品种)、津稻779(耐盐品种),与其耐盐性相一致.在盐胁迫条件下,在耐盐性较高的水稻品种中,GS和GOGAT活性比盐敏感品种高,NH4 浓度维持在较低的水平.Native-PAGE和活性染色结果表明,GSrb更容易受到外界环境的影响.在高浓度盐的胁迫下,早花二号、金珠一号的依赖于NADH的谷氨酸脱氢酶(AADH-GDH)活性都有较显著的升高,津稻779却无明显的变化,这和NH4 含量的变化相一致.盐不同程度地导致可溶性糖(TSS)在金珠一号和津稻779根部积累,而在早花2号的根部,可溶性糖的水平则随盐浓度的不同而表现出不同的变化.在所检测的品种中,脯氨酸的含量均有不同程度的升高,但在高盐浓度下,盐敏感品种的含量较低.这些结果提示,不同的水稻品种对盐胁迫的敏感程度与该品种GS以及GOGAT活性的高低有关.  相似文献   

4.
The activities of enzymes involved in ammonia metabolism ferredoxin-dependent glutamate synthase (Fd-GOGAT), glutamine synthetase (GS) and glutamate dehydrogenase (GDH), the rates of photosynthetic oxygen evolution, dark respiration, and the activity of RuBP carboxylase (RuBPC) were determined in alfalfa (Medicago sativa L.) leaves taken from the apex (apical leaves), from the second to the fourth internode (mature leaves) and from the bottom of the canopy (basal leaves). Photosynthetic rate and the activities of RuBPC, GS and Fd-GOGAT showed their maximum in the mature leaves. The respiration rate together with amino acid and ammonium contents decreased with leaf age, whereas the opposite was true for GDH activity. Basal leaves still maintained substantial levels of chlorophylls, GS and Fd-GOGAT activities and oxygen evolution rate, thus suggesting that photosynthesis has some role in the reassimilation of the nitrogen liberated during protein degradation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The maize (Zea mays L.) plants inoculated by N2-fixing bacterium Azospirillum showed increased activity of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) in root cells free extracts over uninoculated control plants. Maximum differences in NADH-GDH activity were observed during the second and third weeks after sowing. The specific activity of GS showed a greater increase at the end of the assay. The percentage of nitrogen in leaves, root and foliage length, total fresh mass and nitrogenase activity were higher in inoculated plants than in the control ones.  相似文献   

6.
Application of NaCl (electrical conductivity 4.0 mS cm–1) resulted in about 52, 50 and 55 % reduction in total nitrogen contents in mung bean [Vigna radiata (L.) Wilczek] leaf, root and nodule, respectively. In nodule, nitrogenase activity was reduced by about 84 % under stress as compared with the control set. Glutamine synthetase activity was reduced by about 31, 16 and 23 %, glutamate oxoglutarate aminotransferase activity was reduced by 78, 57 and 42 % and glutamate dehydrogenase activity was reduced by 9, 8 and 42 % in leaf, root and nodule, respectively, under salt stress. The pretreatment with indole-3-acetic acid, gibberellic acid and kinetin, each ranging from 0.1 to 10 µM, in restoring the metabolic alterations imposed by NaCl salinity was investigated in mung bean. The three phytohormones used were able to overcome to variable extents the adverse effects of stress imposed by NaCl solution.  相似文献   

7.
环境因子对豆科共生固氮影响的研究进展   总被引:22,自引:0,他引:22  
慈恩  高明 《西北植物学报》2005,25(6):1269-1274
环境因子的限制一直是豆科植物一根瘤菌共生固氮体系没有在农业生产中充分发挥作用的重要原因之一。目前,研究涉及的环境因子主要行水分、矿质营养元素、温度、重金属、钠盐、CO2、土壤类型以及pH等。水分胁迫会导致豆科植物根瘤减少和固氮效率低下;矿质元素方面,除氮磷钾外,微量死素对固氮影响也很明显;不适的温度会对豆科植物的结瘤固氮产生一定的限制;重金属能从不同方面直接和间接地影响共生同氮,寻找适合作尾矿先锋植物的豆科植物是当前的一个研究热点。本文除详细阐述了这方面开展的研究以外,还浅析了这方而研究目前国内外存在的一些主要问题和发展趋势。  相似文献   

8.
Activities of ammonium assimilating enzymes glutamate dehydrogenase (GDH), glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) as well as the amino acid content were higher in nodules compared to roots. Their activities increased at 40 and 60 d after sowing, with a peak at 90 d, a time of maximum nitrogenase activity. The GS/GOGAT ratio had a positive correlation with the amino acid content in nodules. Higher activities of AST than ALT may be due to lower glutamine and higher asparagine content in xylem. The data indicated that glutamine synthetase and glutamate synthase function as the main route for the assimilation of fixed N, while NADH-dependent glutamate dehydrogenase may function at higher NH4 + concentration in young and senescing nodules. Enzyme activities in lentil roots reflected a capacity to assimilate N for making the amino acids they may need for both growth and export to upper parts of the plant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
10.
Quantitative and qualitative characteristics of pigment composition and gas exchange were studied in chlorophyll mutants of pea, Pisum sativum L.: chlorotica 2004 and 2014. The mutant 2004 had light-green color, whereas the mutant 2014 has yellow-green leaves and stems; they contained about 80 and 50% of chlorophyll, respectively, compared to the initial line. cv. Torsdag. Leaves of the mutant 2004 had significantly lower carotene content and accumulated more lutein and violaxanthin. In the mutant 2014, the contents of chlorophyll and all carotenoids were reduced almost proportionally. The quantum efficiency of photosynthesis was by 29–30% lower in the mutants, and it was 1.5–2 times higher in F1 hybrids, as compared to control plants. Our data allow us to conclude that the impairment of photosynthesis in the mutant 2014 is caused by the changed mesostructure of leaves, whereas in the mutant 2004, it may be caused by an impairment of photosystem reaction centers.  相似文献   

11.
Glutamate dehydrogenase (GDH, EC 1.4.1.2–4) and glutamine synthetase (GS, EC 6.3.1.2) activities as well as protein content and dry matter in developing kernels of winter Triticale were determined. The relatively low level of GS activity compared to high level of NAD(P)H-dependent GDH activity during intensive filling of grains with storage compounds may indicate the participation of GDH in reductive amination of 2-oxoglutarate. The amination activity of this enzyme in all grain development phases exceeded the deaminating activity several fold. Moreover, the dynamics in the change of NAD(P)H-GDH and NAD(P)+-GDH activities were analysed in various tissues of the developing grains. The high amination activity of the enzyme in the seed coat, where the intensive protein synthesis occurs would also be an indication of the anabolic function of this enzyme.  相似文献   

12.
Evidence is presented which shows that NH3 assimilation in Chlamydomonas occurs exclusively via the glutamate synthase cycle in illuminated and darkened cells and those in which the internal level of NH3 is elevated. This result indicates that glutamate dehydrogenase probably plays a catabolic rather than anabolic role in the N nutrition of the alga. Glutamine synthetase and glutamate dehydrogenase were characterized and their kinetic properties shown to be consistent with these proposals. It is suggested that reversible activity modulations of glutamine synthetase regulate the operation of the glutamate synthase cycle in the light but the availability of reductant and ATP limits its activity in darkened cells. The possible involvement of the two glutamate synthase enzymes in both light and dark assimilation is discussed.  相似文献   

13.
In the wild-type of Corynebacterium glutamicum, the specific activity of glutamate dehydrogenase (GDH) remained constant at 1.3 U (mg protein)–1 when raising the ammonia (NH4) concentration in the growth medium from 1 to 90 mM. In contrast, the glutamine synthetase (GS) and glutamate synthase (GOGAT) activities decreased from 1.1 U (mg protein)–1 and 42 mU (mg protein)–1, respectively, to less than 10 % of these values at NH4 concentrations > 10 mM suggesting that under these conditions the GDH reaction is the primary NH4 assimilation pathway. Consistent with this suggestion, a GDH-deficient C. glutamicum mutant showed slower growth at NH4 concentrations 10 mM and, in contrast to the wild-type, did not grow in the presence of the GS inhibitor methionine sulfoximine. © Rapid Science Ltd. 1998  相似文献   

14.
Activity of key nitrogen assimilating enzymes was studied in developing grains of high-lysine opaque sorghum P-721 and normal sorghum CSV-5. The higher percentage of protein in opaque sorghum was mainly due to lower starch content since protein per grain was less than in CSV-5. During grain development, albufn and globulin decreased while prolafne and glutelin increased. Prolafne content in CSV-5 was higher than in opaque sorghum. Average nitrate reductase activity in flag and long leaf were similar in both the varieties. The nitrate reductase activity decreased during grain development. Glutamate dehydrogenase activity was higher during early development and lower at later stages in opaque sorghum than in CSV-5. Glutamate oxaloacetate transaminase activity was higher and glutamine synthetase lower in opaque sorghum than in CSV-5 grains during development. Glutamate synthase activity was higher in opaque sorghum up to day 20 and lower thereafter than in CSV-5. It is suggested that reduced activities of glutamine synthetase as well as glutamate synthase in opaque sorghum as compared to CSV-5 during later stages of development may restrict protein accumulation in the former.  相似文献   

15.
16.
Mouse astroglial cells were grown during the last week of culture in either glutamine-free or glutamine-containing medium. The addition of cortisol to the glutamine-containing medium resulted in a doubling of astroglial glutamine synthetase (GS) activity. Withdrawal of glutamine from the medium resulted in a 50% elevation of GS and addition of cortisol to such a medium resulted in a further increase in GS which was not additive to glutamine withdrawal. Both in glutamine-free and glutamine-containing medium, the addition of glutamate resulted in a depression of both basal and cortisol induced GS activity. The simultaneous addition of ammonia plus glutamate to the culture medium ameliorated the glutamate mediated depressive effects on cortisol induced but not basal GS activity. Glutamine withdrawal from the culture medium resulted in an astroglial protein deficit. The addition of ammonia to the medium considerably reduced this deficit and the addition of glutamate completely eliminated this protein deficit.  相似文献   

17.
The effect of five Azotobacter chroococcum strains and nitrogen content in nutrient media on callus growth of two Beta vulgaris L. cultivars were investigated, as well as the activity of nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in inoculated callus tissue. On medium with full nitrogen content (1 N) the inoculation with A. chroococcum strain A2 resulted in the highest calli mass, while strains A8 and A14 maximally increased NR activity. On media with 1/8 N the highest effect on calli growth, GS and GDH activity had the strain A8. The strain A2/1 significantly increased callus proliferation on medium without N. Asymbiotic association between sugar beet calli and Azotobacter depended on genotype/strain interaction and was realised in presence of different nitrogen levels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Seasonal changes in glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), and glutamate dehydrogenase (EC 1.4.1.3) were measured in both senescing leaf and bark tissues of ‘Golden Delicious’ apple trees (Malus domestica Borkh.). From the measured enzyme activities we attempted to estimate the in vivo catalytic potentials of the enzymes with special reference to nitrogen mobilization and conservation of senescing apple trees. The cumulative glutamine synthetase activity of leaf tissue was about three times higher than that of bark. The estimated catalytic potential of leaf glutamine synthetase was 800-fold higher than the actual protein nitrogen loss of senescing leaves. The cumulative glutamate synthase activity of bark was about six times higher than that of leaf. The estimated catalytic potential of bark glutamate synthase was 160-times higher than the actual protein nitrogen gain in that tissue. The cumulative glutamate dehydrogenase activities in leaf and bark tissue were approximately the same. However, the catalytic potential of leaf glutamate dehydrogenase was twice that of leaf glutamate synthase. It is thus concluded that the physiological role of glutamine synthetase in senescing leaf tissue is to furnish the amide(s) prior to mobilization of nitrogen to storage tissue. The higher activity of glutamate synthase in bark tissue could provide a mechanism to transform the imported amide nitrogen to amino nitrogen of glutamate for storage protein synthesis. The possible regulatory factors upon the activity of these enzymes in the tissues of senescing apple trees are discussed.  相似文献   

19.
The studies were performed on young triticale seedlings grown on a mineral medium containing 5 mM NO 3 as the nitrogen source, with the addition of 0.5 mM CdCl2. It was determined that cadmium ions accumulated mainly in the plant roots. Decreases in nitrate concentrations both in the roots and shoots of seedlings, as well as decreases in soluble protein contents with simultaneous increases in endopeptidase activity were also observed. Both in roots and shoots significant decreases in glutamic acid were noted. Toxic cadmium ion accumulation in seedlings significantly modified activity of primary nitrogen assimilating enzymes, i.e. glutamine synthetase (GS, EC 6.3.1.2) and glutamate dehydrogenase (GDH, EC 1.4.1.2). There was a significant decrease in GS activity both in roots and in shoots of the stressed plants, in comparison to plants grown without cadmium. In shoots of the control plants and plants subjected to stress two GS isoforms were discovered: cytoplasmatic (GS1) and chloroplastic (GS2). Substantial decreases in total glutamine synthetase activity in green parts of seedlings, occurring under stress conditions, result from dramatic decrease in GS2 activity (by 60 % in relation to the control plants); despite simultaneous increases in the cytoplasmatic isoform (GS1) activity by approx. 96 %. Cadmium ions accumulating in roots and shoots of seedlings not only increased GDH activity, but also modified its coenzymatic specificity.  相似文献   

20.
The activities of glutamine synthetase (EC 6.3.1.2), glutamate dehydrogenase (EC 1.4.1.2), aspartate aminotransferase (EC 2.6.1.1), alanine aminotransferase (EC 2.6.1.2) and soluble protein content in the developing endosperm and embryo of normal (Oh-43) and mutant (Oh-4302) maize were investigated. Maize inbred lines were grown under field conditions and all plants were self-pollinated. Ears for experiments were harvested over the period of 15 lo 45 days after pollination. After pollination kernel capacity for soluble protein synthesis is located mainly in the endosperm. This progressively decreases and about 40 days after pollination soluble protein synthesis is taken over by the embryo. Comparative data on the activity of the investigated enzymes in the embryo and endosperm indicate that the capacity for synthesis of glutamine and glutamate predominates in the embryo tissue, whereas transamination processes at the initial stages of the embryo development are less intensive than their counterparts in the endosperm. The roles of embryo and endosperm subsequently interchange. Biosynthetic processes of soluble precursors for protein synthesis in the embryo and endosperm of the developing kernel are mutually coordinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号