首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Upon encounter with bacterial products, immature dendritic cells (iDCs) release proinflammatory cytokines and develop into highly stimulatory mature DCs. In the present study, we show that human monocyte-derived DCs functionally express the CD47 Ag, a thrombospondin receptor. Intact or F(ab')2 of CD47 mAb suppress bacteria-induced production of IL-12, TNF-alpha, GM-CSF, and IL-6 by iDCs. 4N1K, a peptide derived from the CD47-binding site of thrombospondin, also inhibits cytokine release. The inhibition of IL-12 and TNF-alpha is IL-10-independent inasmuch as IL-10 production is down-modulated by CD47 mAb and blocking IL-10 mAb fails to restore cytokine levels. CD47 ligation counteracts the phenotypic and functional maturation of iDCs in that it prevents the up-regulation of costimulatory molecules, the loss of endocytic activity, and the acquisition of an increased capacity to stimulate T cell proliferation and IFN-gamma production. Interestingly, regardless of CD47 mAb treatment during DC maturation, mature DC restimulated by soluble CD40 ligand and IFN-gamma, to mimic DC/T interaction, produce less IL-12 and more IL-18 than iDCs. Finally, CD47 ligation on iDCs does not impair their capacity to phagocytose apoptotic cells. We conclude that following exposure to microorganisms, CD47 ligation may limit the intensity and duration of the inflammatory response by preventing inflammatory cytokine production by iDCs and favoring their maintenance in an immature state.  相似文献   

2.
CD47 on live cells actively engages signal-regulatory protein-alpha (SIRP-alpha) on phagocytes and delivers a negative signal that prevents their elimination. We evaluated the biological consequences of SIRP-alpha ligation on the dendritic cell (DC) response to maturation signals and the potential interplay with the IL-10/IL-10R inhibitory pathway. At first, CD47/SIRP-alpha allowed the generation of mature migratory DCs not producing IL-12, IFN-gamma-inducible protein-10, and CCL19. Rather, they secreted neutrophils attracting chemokine CXCL5 and IL-1beta, reflecting a partial block in functional DC maturation. Afterward, semimature DCs functionally regressed in an IL-10-independent fashion toward cells that retrieved the cardinal features of immature DCs: re-expression of CCR5, loss of DC-lysosome-associated membrane protein, high endocytosis, and impaired allostimulatory functions. The global gene expression profile of IL-10 and SIRP-alpha-ligated DC demonstrated two distinct molecular pathways. IL-10R and SIRP-alpha expression were reciprocally down-regulated by CD47 and IL-10, respectively. These results emphasize that the SIRP-alpha pathway might be part of the molecular machinery used by the DC to dampen or resolve an inflammatory response in an IL-10-independent manner.  相似文献   

3.
IFN-alpha is an important cytokine for the generation of a protective T cell-mediated immune response to viruses. In this study, we asked whether IFN-alpha can regulate the functional properties of dendritic cells (DCs). We show that monocytes cultured in the presence of GM-CSF and IFN-alpha can differentiate into DCs (IFN-alpha-derived DCs (IFN-DCs)). When compared with DCs generated in the presence of GM-CSF and IL-4 (IL-4-derived DCs), IFN-DCs exhibited a typical DC morphology and expressed, in addition to DC markers CD1a and blood DC Ag 4, a similar level of costimulatory and class II MHC molecules, but a significantly higher level of MHC class I molecules. After maturation with CD40 ligand, IFN-DCs up-regulated costimulatory, class I and II MHC molecules and expressed mature DC markers such as CD83 and DC-lysosome-associated membrane protein. IFN-DCs were endowed with potent functional activities. IFN-DCs secreted large amounts of the inflammatory cytokines IL-6, IL-10, TNF-alpha, IL-1beta, and IL-18, and promoted a Th1 response that was independent of IL-12p70 and IL-18, but substantially inhibited by IFN-alpha neutralization. Furthermore, immature IFN-DCs induced a potent autologous Ag-specific immune response, as evaluated by IFN-gamma secretion and expansion of CD8(+) T cells specific for CMV. Also, IFN-DCs expressed a large number of Toll-like receptors (TLRs), including acquisition of TLR7, which is classically found on the natural type I IFN-producing plasmacytoid DCs. Like plasmacytoid DCs, IFN-DCs could secrete IFN-alpha following viral stimulation or TLR7-specific stimulation. Taken together, these results illustrate the critical role of IFN-alpha at the early steps of immune response to pathogens or in autoimmune diseases.  相似文献   

4.
Anergy and suppression are cardinal features of CD4(+)CD25(+)Foxp3(+) T cells (T regulatory cells (Treg)) which have been shown to be tightly controlled by the maturation state of dendritic cells (DC). However, whether lymphoid organ DC subsets exhibit different capacities to control Treg is unclear. In this study, we have analyzed, in the rat, the role of splenic CD4(+) and CD4(-) conventional DC and plasmacytoid DC (pDC) in allogeneic Treg proliferation and suppression in vitro. As expected, in the absence of exogenous IL-2, Treg did not expand in response to immature DC. Upon TLR-induced maturation, all DC became potent stimulators of CD4(+)CD25(-) T cells, whereas only TLR7- or TLR9-matured pDC induced strong proliferation of CD4(+)CD25(+)Foxp3(+) T cells in the absence of exogenous IL-2. This capacity of pDC to reverse Treg anergy required cell contact and was partially CD86 dependent and IL-2 independent. In suppression assays, Treg strongly suppressed proliferation and IL-2 and IFN-gamma production by CD4(+)CD25(-) T cells induced by mature CD4(+) and CD4(-) DC. In contrast, upon stimulation by mature pDC, proliferating Treg suppressed IL-2 production by CD25(-) cells but not their proliferation or IFN-gamma production. Taken together, these results suggest that anergy and the suppressive function of Treg are differentially controlled by DC subsets.  相似文献   

5.
Apolipoprotein A-I (apoA-I), the major protein component of serum high-density lipoprotein, exhibits anti-inflammatory activity in atherosclerosis. In this study, we demonstrate that apoA-I inhibits DC differentiation and maturation. DC differentiated from monocytes in the presence of apoA-I showed a decreased expression of surface molecules such as CD1a, CD80, CD86, and HLA-DR. In addition, these DC exhibited decreased endocytic activity and weakened allogeneic T-cell activation. During DC differentiation in the presence of apoA-I, PGE(2) and IL-10, which are known to be DC differentiation inhibitors and/or modulators of DC function, were produced at remarkable rates, whereas IL-12 production in the cells after stimulation with CD40 mAb and IFN-gamma was significantly decreased in comparison with the control DC. T cells stimulated by apoA-I-pretreated DC produced significantly low levels of IFN-gamma, and apoA-I inhibited cross-talk between DC and NK cells, in terms of IL-12 and IFN-gamma production. Therefore, apoA-I appears to play an important role in modulating both innate immune response and inflammatory response. The novel inhibitory function of apoA-I on DC differentiation and function may facilitate the development of new therapeutic interventions in inflammatory diseases.  相似文献   

6.
Dendritic cells (DC) are important APCs that play a key role in the induction of an immune response. The signaling molecules that govern early events in DC activation are not well understood. We therefore investigated whether DC express carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1, also known as BGP or CD66a), a well-characterized signal-regulating cell-cell adhesion molecule that is expressed on granulocytes, monocytes, and activated T cells and B cells. We found that murine DC express in vitro as well as in vivo both major isoforms of CEACAM1, CEACAM1-L (having a long cytoplasmic domain with immunoreceptor tyrosine-based inhibitory motifs) and CEACAM1-S (having a short cytoplasmic domain lacking phosphorylatable tyrosine residues). Ligation of surface-expressed CEACAM1 on DC with the specific mAb AgB10 triggered release of the chemokines macrophage inflammatory protein 1alpha, macrophage inflammatory protein 2, and monocyte chemoattractant protein 1 and induced migration of granulocytes, monocytes, T cells, and immature DC. Furthermore, the surface expression of the costimulatory molecules CD40, CD54, CD80, and CD86 was increased, indicating that CEACAM1-induced signaling regulates early maturation and activation of dendritic cells. In addition, signaling via CEACAM1 induced release of the cytokines IL-6, IL-12 p40, and IL-12 p70 and facilitated priming of naive MHC II-restricted CD4(+) T cells with a Th1-like effector phenotype. Hence, our results show that CEACAM1 is a signal-transducing receptor that can regulate early maturation and activation of DC, thereby facilitating priming and polarization of T cell responses.  相似文献   

7.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

8.
Microglia subpopulations were studied in mouse experimental autoimmune encephalomyelitis and toxoplasmic encephalitis. CNS inflammation was associated with the proliferation of CD11b(+) brain cells that exhibited the dendritic cell (DC) marker CD11c. These cells constituted up to 30% of the total CD11b(+) brain cell population. In both diseases CD11c(+) brain cells displayed the surface phenotype of myeloid DC and resided at perivascular and intraparenchymatic inflammatory sites. By lacking prominent phagocytic organelles, CD11c(+) cells from inflamed brain proved distinct from other microglia, but strikingly resembled bone marrow-derived DC and thus were identified as DC. This brain DC population comprised cells strongly secreting IL-12p70, whereas coisolated CD11c(-) microglia/brain macrophages predominantly produced TNF-alpha, GM-CSF, and NO. In comparison, the DC were more potent stimulators of naive or allogeneic T cell proliferation. Both DC and CD11c(-) microglia/macrophages from inflamed brain primed naive T cells from DO11.10 TCR transgenic mice for production of Th1 cytokines IFN-gamma and IL-2. Resting microglia that had been purified from normal adult brain generated immature DC upon exposure to GM-CSF, while CD40 ligation triggered terminal maturation. Consistently, a functional maturation of brain DC was observed to occur following the onset of encephalitis. In conclusion, these findings indicate that in addition to inflammatory macrophage-like brain cells, intraparenchymatical DC exist in autoimmune and infectious encephalitis. These DC functionally mature upon disease onset and can differentiate from resident microglia. Their emergence, maturation, and prolonged activity within the brain might contribute to the chronicity of intracerebral Th1 responses.  相似文献   

9.
Activation of immature CD83- dendritic cells (DC) in peripheral tissues induces their maturation and migration to lymph nodes. Activated DC become potent stimulators of Th cells and efficient inducers of Th1- and Th2-type cytokine production. This study analyzes the ability of human monocyte-derived CD1a+ DC at different stages of IL-1 beta and TNF-alpha-induced maturation to produce the major Th1-driving factor IL-12. DC at the early stages of maturation (2 and 4 h) produced elevated amounts of IL-12 p70 during interaction with CD40 ligand-bearing Th cells or, after stimulation with the T cell-replacing factors, soluble CD40 ligand and IFN-gamma. The ability to produce IL-12 was strongly down-regulated at later time points, 12 h after the induction of DC maturation, and in fully mature CD83+ cells, at 48 h. In contrast, the ability of mature DC to produce IL-6 was preserved or even enhanced, indicating their intact responsiveness to CD40 triggering. A reduced IL-12-producing capacity of mature DC resulted mainly from their impaired responsiveness to IFN-gamma, a cofactor in CD40-induced IL-12 p70 production. This correlated with reduced expression of IFN-gamma R (CD119) by mature DC. In addition, while immature DC produced IL-12 and IL-6 after stimulation with LPS or Staphylococcus aureus Cowan I strain, mature DC became unresponsive to these bacterial stimuli. Together with the previously described ability of IL-10 and PGE2 to stably down-regulate the ability to produce IL-12 in maturing, but not in fully mature, DC, the current data indicate a general resistance of mature DC to IL-12-modulating factors.  相似文献   

10.
Freshly isolated hepatic dendritic cells (DC) are comparatively immature, relatively resistant to maturation, and can downmodulate effector T cell responses. Molecular mechanisms that underlie these properties are ill defined. DNAX-activating protein of 12 kDa (DAP12) is an ITAM-bearing transmembrane adaptor protein that integrates signals through several receptors, including triggering receptor expressed on myeloid cells-1, -2, and CD200R. Notably, DC propagated from DAP12-deficient mice exhibit enhanced maturation in response to TLR ligation. Given the constitutive exposure of liver DC to endotoxin draining from the gut, we hypothesized that DAP12 might regulate liver DC maturation. We show that DAP12 is expressed by freshly isolated liver, spleen, kidney, and lung myeloid DC. Moreover, inhibition of DAP12 expression by liver DC using small interfering RNA promotes their phenotypic and functional maturation, resulting in enhanced TNF-α, IL-6, and IL-12p70 production, reduced secretion of IL-10, and enhanced CD4(+) and CD8(+) T cell proliferation. Furthermore, DAP12 silencing correlates with decreased STAT3 phosphorylation in mature liver DC and with diminished expression of the IL-1R-associated kinase-M, a negative regulator of TLR signaling. These findings highlight a regulatory role for DAP12 in hepatic DC maturation, and suggest a mechanism whereby this function may be induced/maintained.  相似文献   

11.
Osteoclast Inhibitory Lectin-related Protein 2 (OCILRP2) is a typical type II transmembrane protein and belongs to C-type lectin-related protein family. It is preferentially expressed in dendritic cells (DC), B lymphocytes, and activated T lymphocytes. Upon binding to its ligand, OCILRP2 can promote CD28-mediated co-stimulation and enhance T cell activation. However, the role of OCILRP2 in DC development and activation is unclear. In this report, we present evidence that recombinant protein OCILRP2-Fc inhibits the generation and LPS-induced maturation of murine bone marrow-derived dendritic cells (BMDCs) by downregulating the expression of CD11c, MHC-II, and co-stimulators CD80 and CD86. OCILRP2-Fc also reduces the capacity of BMDCs to take up antigens, activates T cells, and secret inflammatory cytokines such as IL-6, IL-12, and TNF-α. Additionally, we show that OCILRP2-Fc may cause the aforementioned effects through inhibiting NF-κB activation. Therefore, OCILRP2 is a new regulator of DC maturation and differentiation following TLR4 activation.  相似文献   

12.
We studied how the interaction between human dendritic cells (DC) and Toxoplasma gondii influences the generation of cell-mediated immunity against the parasite. We demonstrate that viable, but not killed, tachyzoites of T. gondii altered the phenotype of immature DC. DC infected with viable parasites up-regulated the expression of CD40, CD80, CD86, and HLA-DR and down-regulated expression of CD115. These changes are indicative of DC activation induced by T. gondii. Viable and killed tachyzoites had contrasting effects on cytokine production. DC infected with viable T. gondii rather than DC that phagocytosed killed parasites induced secretion of high amounts of IFN-gamma by T cells from T. gondii-seronegative donors. IFN-gamma production in response to DC infected with viable parasites required CD28 and CD40 ligand (CD40L) signaling. In addition, this IFN-gamma response was dependent in part on IL-12 secretion. Production of IL-12 p70 occurred after interaction between T cells and DC infected with viable T. gondii, but not after incubation of T cells with DC plus killed tachyzoites. IL-12 synthesis was inhibited by blockade of CD40L signaling. IL-12-independent IFN-gamma production required CD80/CD86-CD28 interaction and, to a lesser extent, CD40-CD40L signaling. Taken together, T. gondii-induced activation of human DC is associated with T cell production of IFN-gamma through CD40-CD40L-dependent release of IL-12 and through CD80/CD86-CD28 and CD40-CD40L signaling that mediate IFN-gamma secretion even in the absence of bioactive IL-12.  相似文献   

13.
We recently reported that splenic dendritic cells (DC) in rats can be separated into CD4(+) and CD4(-) subsets and that the CD4(-) subset exhibited a natural cytotoxic activity in vitro against tumor cells. Moreover, a recent report suggests that CD4(-) DC could have tolerogenic properties in vivo. In this study, we have analyzed the phenotype and in vitro T cell stimulatory activity of freshly isolated splenic DC subsets. Unlike the CD4(-) subset, CD4(+) splenic DC expressed CD5, CD90, and signal regulatory protein alpha molecules. Both fresh CD4(-) and CD4(+) DC displayed an immature phenotype, although CD4(+) cells constitutively expressed moderate levels of CD80. The half-life of the CD4(-), but not CD4(+) DC in vitro was extremely short but cells could be rescued from death by CD40 ligand, IL-3, or GM-CSF. The CD4(-) DC produced large amounts of the proinflammatory cytokines IL-12 and TNF-alpha and induced Th1 responses in allogeneic CD4(+) T cells, whereas the CD4(+) DC produced low amounts of IL-12 and no TNF-alpha, but induced Th1 and Th2 responses. As compared with the CD4(+) DC that strongly stimulated the proliferation of purified CD8(+) T cells, the CD4(-) DC exhibited a poor CD8(+) T cell stimulatory capacity that was substantially increased by CD40 stimulation. Therefore, as previously shown in mice and humans, we have identified the existence of a high IL-12-producing DC subset in the rat that induces Th1 responses. The fact that both the CD4(+) and CD4(-) DC subsets produced low amounts of IFN-alpha upon viral infection suggests that they are not related to plasmacytoid DC.  相似文献   

14.
Mast cells and immature dendritic cells (DC) are in close contact in peripheral tissues. Upon activation, mast cells release histamine, a mediator involved in the immediate hypersensitivity reaction. We therefore tested whether histamine could affect human DC activation and maturation. Histamine induces CD86 expression on immature DC in a dose-dependent (significant at 10(-7) M) and transient manner (maximal after 24-h stimulation). Histamine also transiently up-regulates the expression of the costimulatory and accessory molecules, CD40, CD49d, CD54, CD80, and MHC class II. As a consequence, immature DC exposed for 24 h to histamine stimulate memory T cells more efficiently than untreated DC. In addition, histamine induces a potent production of IL-6, IL-8, monocyte chemoattractant protein 1, and macrophage-inflammatory protein 1alpha by immature DC and also up-regulates IL-1beta, RANTES, and macrophage-inflammatory protein 1beta but not TNF-alpha and IL-12 mRNA expression. Histamine activates immature DC through both the H1 and H2 receptors. However, histamine-treated DC do not have a phenotype of fully mature cells, as they do neither show significant changes in the expression of the chemokine receptors, CCR5, CCR7 and CXC chemokine receptor 4, nor expression of CD83 de novo. These data demonstrate that histamine activates immature DC and induces chemokine production, thereby suggesting that histamine, via stimulation of resident DC, may participate locally in T cell stimulation and in the late inflammatory reaction associated with allergic disorders.  相似文献   

15.
Dendritic cells (DC) not only stimulate T cells effectively but are also producers of cytokines that have important immune regulatory functions. In this study we have extended information on the functional differences between DC subpopulations to include differences in the production of the major immune-directing cytokines IL-12, IFN-alpha, and IFN-gamma. Splenic CD4(-)8(+) DC were identified as the major IL-12 producers in response to microbiological or T cell stimuli when compared with splenic CD4(-)8(-) or CD4(+)8(-) DC; however, all three subsets of DC showed similar IL-12 regulation and responded with increased IL-12 p70 production if IL-4 was present during stimulation. High level CD8 expression also correlated with extent of IL-12 production for DC isolated from thymus and lymph nodes. By using gene knockout mice we ruled out any role for CD8alpha itself, or of priming by T cells, on the superior IL-12-producing capacity of the CD8(+) DC. Additionally, CD8(+) DC were identified as the major producers of IFN-alpha compared with the two CD8(-) DC subsets, a finding that suggests similarity to the human plasmacytoid DC lineage. In contrast, the CD4(-)8(-) DC produced much more IFN-gamma than the CD4(-)8(+) or the CD4(+)8(-) DC under all conditions tested.  相似文献   

16.
CD40 ligand (CD40L) is a membrane-bound molecule expressed by activated T cells. CD40L potently induces dendritic cell (DC) maturation and IL-12p70 secretion and plays a critical role during T cell priming in the lymph nodes. IFN-gamma and IL-4 are required for CD40L-mediated cytokine secretion, suggesting that T cells are required for optimal CD40L activity. Because CD40L is rapidly up-regulated by non-T cells during inflammation, CD40 stimulation may also be important at the primary infection site. However, a role for T cells at the earliest stages of infection is unclear. The present study demonstrates that the innate immune cell-derived cytokine, IL-1beta, can increase CD40L-induced cytokine secretion by monocyte-derived DC, CD34(+)-derived DC, and peripheral blood DC independently of T cell-derived cytokines. Furthermore, IL-1beta is constitutively produced by monocyte-derived DC and monocytes, and is increased in response to intact Escherichia coli or CD40L, whereas neither CD34(+)-derived DC nor peripheral blood DC produce IL-1beta. Finally, DC activated with CD40L and IL-1beta induce higher levels of IFN-gamma secretion by T cells compared with DC activated with CD40L alone. Therefore, IL-1beta is the first non-T cell-derived cytokine identified that enhances CD40L-mediated activation of DC. The synergy between CD40L and IL-1beta highlights a potent, T cell-independent mechanism for DC activation during the earliest stages of inflammatory responses.  相似文献   

17.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

18.
Lymphocyte activation gene-3 (LAG-3) is an MHC class II ligand expressed on activated T and NK cells. A LAG-3Ig fusion protein has been used in mice as an adjuvant protein to induce antitumor responses and specific CD8 and CD4 Th1 responses to nominal Ags. In this work we report on the effect of LAG-3Ig on the maturation and activation of human monocyte-derived dendritic cells (DC). LAG-3Ig binds MHC class II molecules expressed in plasma membrane lipid rafts on immature human DC and induces rapid morphological changes, including the formation of dendritic projections. LAG-3Ig markedly up-regulates the expression of costimulatory molecules and the production of IL-12 and TNF-alpha. Consistent with this effect on DC maturation, LAG-3Ig disables DC in their capacity to capture soluble Ags. These events are associated with the acquisition of professional APC function, because LAG-3Ig increases the capacity of DC to stimulate the proliferation and IFN-gamma response by allogeneic T cells. These effects were not observed when using ligation of MHC class II by specific mAb. Class II-mediated signals induced by a natural ligand, LAG-3, lead to complete maturation of DC, which acquire the capacity to trigger naive T cells and drive polarized Th1 responses.  相似文献   

19.
Current immunological opinion holds that myeloid dendritic cell (mDC) precursors migrate from the blood to the tissues, where they differentiate into immature dermal- and Langerhans-type dendritic cells (DC). Tissue DC require appropriate signals from pathogens or inflammatory cytokines to mature and migrate to secondary lymphoid tissue. We show that purified blood mDC cultured in vitro with GM-CSF and IL-4, but in the absence of added exogenous maturation stimuli, rapidly differentiate into two maturational and phenotypically distinct populations. The major population resembles immature dermal DC, being positive for CD11b, CD1a, and DC-specific ICAM-3-grabbing nonintegrin. They express moderate levels of MHC class II and low levels of costimulatory molecules. The second population is CD11b(-/low) and lacks CD1a and DC-specific ICAM-3-grabbing nonintegrin but expresses high levels of MHC class II and costimulatory molecules. Expression of CCR7 on the CD11b(-/low) population and absence on the CD11b(+) cells further supports the view that these cells are mature and immature, respectively. Differentiation into mature and immature populations was not blocked by polymyxin B, an inhibitor of LPS. Neither population labeled for Langerin, E-cadherin, or CCR6 molecules expressed by Langerhans cells. Stimulation of 48-h cultured DC with LPS, CD40L, or poly(I:C) caused little increase in MHC or costimulatory molecule expression in the CD11b(-/low) DC but caused up-regulated expression in the CD11b(+) cells. In HIV-infected individuals, there was a marked decrease in the viability of cultured blood mDC, a failure to differentiate into the two populations described for normal donors, and an impaired ability to stimulate T cell proliferation.  相似文献   

20.
The 90-kDa heat shock protein (Hsp90) plays an important role in conformational regulation of cellular proteins and thereby cellular signaling and function. As Hsp90 is considered a key component of immune function and its inhibition has become an important target for cancer therapy, we here evaluated the role of Hsp90 in human dendritic cell (DC) phenotype and function. Hsp90 inhibition significantly decreased cell surface expression of costimulatory (CD40, CD80, CD86), maturation (CD83), and MHC (HLA-A, B, C and HLA-DP, DQ, DR) markers in immature DC and mature DC and was associated with down-regulation of both RNA and intracellular protein expression. Importantly, Hsp90 inhibition significantly inhibited DC function. It decreased Ag uptake, processing, and presentation by immature DC, leading to reduced T cell proliferation in response to tetanus toxoid as a recall Ag. It also decreased the ability of mature DC to present Ag to T cells and secrete IL-12 as well as induce IFN-gamma secretion by allogeneic T cells. These data therefore demonstrate that Hsp90-mediated protein folding is required for DC function and, conversely, Hsp90 inhibition disrupts the DC function of significant relevance in the setting of clinical trials evaluating novel Hsp90 inhibitor therapy in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号