首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective enzymatic hydrolysis, lipid compositional analyses, and fluorescence studies have been carried out on acetylcholine receptor (AChR)-rich membranes from Torpedinidae to investigate the topology of sphingomyelin (SM) in the native membrane and its relationship with the AChR protein. Controlled sphingomyelinase hydrolysis of native membranes showed that SM is predominantly (approximately 60%) localized in the outer half of the lipid bilayer. Differences were also observed in the distribution of SM fatty acid molecular species in the two bilayer leaflets. A fluorescent SM derivative ( N-[10-(1-pyrenyl)decanoyl]sphingomyelin; Py-SM) was used to study protein-lipid interactions in the AChR-rich membrane and in affinity-purified Torpedo AChR reconstituted in liposomes made from Torpedo electrocyte lipid extracts. The efficiency of F?rster resonance energy transfer (FRET) from the protein to the pyrenyl-labeled lipid as a function of acceptor surface density was used to estimate distances and topography of the SM derivative relative to the protein. The dynamics of the lipid acyl chains were explored by measuring the thermal dependence of Py-SM excimer formation, sensitive to the fluidity of the membrane. Differences were observed in the concentration dependence of excimer/monomer pyrenyl fluorescence when measured by direct excitation of the probe as against under FRET conditions, indicating differences in the intermolecular collisional frequency of the fluorophores between bulk and protein-vicinal lipid environments, respectively. Py-SM exhibited a moderate selectivity for the protein-vicinal lipid domain, with a calculated relative affinity K(r) approximately 0.55. Upon sphingomyelinase digestion of the membrane, FRET efficiency increased by about 50%, indicating that the resulting pyrenyl-ceramide species have higher affinity for the protein than the parental SM derivative.  相似文献   

2.
T M Fong  M G McNamee 《Biochemistry》1986,25(4):830-840
Protein-lipid interactions were studied by using Torpedo californica acetylcholine receptor (AChR) as a model system by reconstituting purified AChR into membranes containing various synthetic lipids and native lipids. AChR function was determined by measuring two activities at 4 degrees C: (1) low to high agonist affinity-state transition of AChR in the presence of an agonist (carbamylcholine) in either membrane fragments or sealed vesicles and (2) ion-gating activity of AChR-containing vesicles in response to carbamylcholine. Sixteen samples were examined, each containing different lipid compositions including phosphatidylcholine, cholesterol, phosphatidic acid, phosphatidylethanolamine, asolectin, neutral lipid depleted asolectin, native lipids, and cholesterol-depleted native lipids. Phosphatidylcholines with different configurations of fatty acyl chains were used. The dynamic structures of these membranes were probed by incorporating spin-labeled fatty acid into AChR-containing vesicles and measuring the order parameters. It was found that both aspects of AChR function were highly dependent on the lipid environment even though carbamylcholine binding itself was not affected. An appropriate membrane fluidity was necessarily required to allow the interconversion between the low and high affinity states of AChR. An optimal fluidity hypothesis is proposed to account for the conformational transition properties of membrane proteins. In addition, the conformational change was only a necessary, but not sufficient, condition for the AChR-mediated ion flux activity. Among membranes in which AChR manifested the affinity-state transition, only those containing both cholesterol and negatively charged phospholipids (such as phosphatidic acid) retained the ion-gating activity.  相似文献   

3.
The effects of cholesterol on the ion-channel function of the Torpedo acetylcholine receptor (nAChR) and the novel lipid-exposed gain in function alpha C418W mutation have been investigated in Xenopus laevis oocytes. We found conditions to increase the cholesterol/phospholipid (C/P) molar ratio on the plasma membrane of Xenopus oocytes from 0.5 to 0.87, without significant physical damage or change in morphology to the oocytes. In addition, we developed conditions to deplete endogenous cholesterol from oocytes using a methyl-beta-cyclodextrin incubation procedure without causing membrane instability of the cells. Methyl-beta-cyclodextrin was also used to examine the reversibility of the inhibitory effect of cholesterol on AChR function. Depletion of 43% of endogenous cholesterol from oocytes (C/P = 0.3) did not show any significant change in macroscopic response of the wild type, whereas in the alpha C418W mutant the same cholesterol depletion caused a dramatic gain-in-function response of this lipid-exposed mutation in addition to the increased response caused by the mutation itself. Increasing the C/P ratio to 0.87 caused an inhibition of the macroscopic response of the Torpedo wild type of about 52%, whereas the alpha C418W mutation showed an 81% inhibition compared with the responses of control oocytes. The wild type receptor did not recover from this inhibition when the excess cholesterol was depleted to near normal C/P ratios; however, the alpha C418W mutant displayed 63% of the original current, which indicates that the inhibition of this lipid-exposed mutant was significantly reversed. The ability of the alpha C418W mutation to recover from the inhibition caused by cholesterol enrichment suggests that the interaction of cholesterol with this lipid-exposed mutation is significantly different from that of the wild type. The present data demonstrate that a single lipid-exposed position in the AChR could alter the modulatory effect of cholesterol on AChR function.  相似文献   

4.
Two high-affinity mAbs were prepared against Torpedo dystrophin, an electric organ protein that is closely similar to human dystrophin, the gene product of the Duchenne muscular dystrophy locus. The antibodies were used to localize dystrophin relative to acetylcholine receptors (AChR) in electric organ and in skeletal muscle, and to show identity between Torpedo dystrophin and the previously described 270/300-kD Torpedo postsynaptic protein. Dystrophin was found in both AChR-rich and AChR-poor regions of the innervated face of the electroplaque. Immunogold experiments showed that AChR and dystrophin were closely intermingled in the AChR domains. In contrast, dystrophin appeared to be absent from many or all AChR-rich domains of the rat neuromuscular junction and of AChR clusters in cultured muscle (Xenopus laevis). It was present, however, in the immediately surrounding membrane (deep regions of the junctional folds, membrane domains interdigitating with and surrounding AChR domains within clusters). These results suggest that dystrophin may have a role in organization of AChR in electric tissue. Dystrophin is not, however, an obligatory component of AChR domains in muscle and, at the neuromuscular junction, its roles may be more related to organization of the junctional folds.  相似文献   

5.
The phosphorylation of phosphoinositides in the acetylcholine receptor (AChR)-rich membranes from the electroplax of the electric fish Narke japonica has been examined. When the AChR-rich membranes were incubated with [gamma-32P]ATP, 32P was incorporated into only two inositol phospholipids, i.e., tri- and diphosphoinositide (TPI and DPI). Even after the alkali treatment of the membrane, AChR-rich membranes still showed a considerable DPI kinase activity upon addition of exogenous DPI. It is likely that the 32P-incorporation into these lipids was realized by the membrane-bound DPI kinase and phosphatidyl inositol (PI) kinase. Such a membrane-bound DPI kinase was activated by Ca2+ (greater than 10(-6) M), whereas the PI kinase appeared to be inhibited by Ca2+. The effect of Ca2+ on the DPI phosphorylation was further enhanced by the addition of ubiquitous Ca2+-dependent regulator protein calmodulin. Calmodulin antagonists such as chlorpromazine (CPZ), trifluoperazine (TFP), and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibited the phosphorylation of DPI in the AChR-rich membranes. It is suggested that the small pool of TPI in the plasma membrane is replenished by such Ca2+- and calmodulin-dependent DPI kinase responding to the change in the intracellular Ca2+ level.  相似文献   

6.
In Torpedo marmorata electroplaque, an extrinsic membrane protein of apparent mass 43,000 daltons colocalizes with the cytoplasmic face of the nicotinic acetylcholine receptor (AChR) in approximately 1:1 stoichiometry. We show that this 43K protein can be phosphorylated in vitro by endogenous protein kinases present in AChR-rich membranes. The extent of 43K protein phosphorylation exceeds that of the subunits of the AChR, well-established substrates for enzymatic phosphorylation. We demonstrate that significant 43K phosphoprotein exists in vivo. The kinetics of phosphate incorporation mediated by endogenous kinases differed significantly from those of the AChR subunits, suggesting that different phosphorylation cascades are involved. Use of specific inhibitors of a variety of protein kinases indicated that endogenous cAMP-dependent protein kinase catalyzes phosphorylation of the 43K protein in vitro. All of the phosphate incorporated into 43K protein was accounted for by phosphoserine (0.65 mol/mol of 43K protein). Potential structural and functional consequences of 43K protein phosphorylation are discussed.  相似文献   

7.
T J Andreasen  M G McNamee 《Biochemistry》1980,19(20):4719-4726
The characteristics of fatty acid inhibition of acetylcholine receptor function were examined in membrane vesicles prepared from Torpedo californica electroplax. Inhibition of the carbamylcholine-induced increase in sodium ion permeability was correlated with the bulk melting point of exogenously incorporated fatty acids. Above its melting temperature, a fatty acid could inhibit the large increase in cation permeability normally elicited by agonist binding to receptor. Below its melting temperature, a fatty acid was ineffective. None of the fatty acids altered any of the ligand binding properties of the receptor. Inhibitory fatty acids did not induce changes in membrane fluidity, as determined by electron paramagnetic resonance using spin-labeled fatty acids. The spin-labeled fatty acids also acted as inhibitors, and the extent of inhibition depended largely on the position of the nitroxide group along the fatty acid chain. Addition of noninhibitory fatty acid to the vesicle membranes did not protect the receptor from inhibition by spin-labeled fatty acids. The effects of free fatty acids on acetylcholine receptor function are attributed to the disruptions of protein-lipid interactions.  相似文献   

8.
Microviscosity parameters and protein mobility in biological membranes.   总被引:33,自引:0,他引:33  
A fluorescence polarization technique with 1,6-diphenyl 1,3,5-hexatriene as a probe were employed to determine the microviscosity, n, in liposomes and biological membranes of different cholesterol to phospholipid mol ratio. From the temperature profile of n the flow activation energy, deltaE, and the unit flow volume, V, were derived. The increase of cholesterol/phospholipid ratio in liposomes is followed by a marked increase in n and a decrease in both deltaE and V. Liposomes of the same phospholipid composition as human erythrocyte membranes display in the extreme cases of cholesterol/phospholipid ratios 0 and 1.4 the values of n(25 degrees C) = 1.8 and 9.1 P, and deltaE = 15.0 and 6.5 kcal/mol, respectively. For most membranes studied the fluorescence polarization characteristics and the corresponding n values are similar to those obtained with these liposomes when the cholesterol/phospholipid level of the liposomes and the membranes were the same. However, unlike in liposomes deltaE of all membranes is in the narrow range of 6.5-8.5 kcal/mol, regardless of its cholesterol/phospholipid level. It is plausible that this is a general characteristic of biological membranes which originates from the vertical movement of membrane proteins to an equilibrium position which maintains constant deltaE and V values. This type of movement should affect the interrelation between lipid fluidity and protein mobility. Lipid microviscosity and the degree of rotational mobility of concanavalin A receptor sites in cell membranes were therefore determined. The examined cells were normal and malignant fibroblasts, as an example of cells that form solid tumours in vivo, and normal and malignant lymphocytes, as an example of cells that form ascites tumours in vivo. In both cell systems, opposite correlations between the lipid fluidity and the mobility of concanavalin A receptors were observed. In the fibroblasts the malignant cells possess a lower lipid fluidity but a higher receptor mobility, whereas in the lymphocytes the malignant cells possess a higher lipid fluidity but a lower receptor mobility. Thus, in these cell systems the degree of rotational mobility of concanavalin A receptors increases upon decreasing the lipid fluidity and decreases upon increasing the fluidity of the lipid core. This dynamic feature is in line with the above proposal according to which the concanavalin A receptor sites become more exposed to the aqueous surrounding upon increasing the microviscosity of the lipid layer and vice versa.  相似文献   

9.
The spectral properties of the fluorescent probe laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) were exploited to learn about the physical state of the lipids in the nicotinic acetylcholine receptor (AChR)-rich membrane and compare them with those in reconstituted liposomes prepared from lipids extracted from the native membrane and those formed with synthetic phosphatidylcholines. In all cases redshifts of 50 to 60 nm were observed as a function of temperature in the spectral emission maximum of laurdan embedded in these membranes. The so-called generalized polarization of laurdan exhibited high values (0.6 at 5 degrees C) in AChR-rich membranes, diminishing by approximately 85% as temperature increased, but no phase transitions with a clear Tm were observed. A still unexploited property of laurdan, namely its ability to act as a fluorescence energy transfer acceptor from tryptophan emission, has been used to measure properties of the protein-vicinal lipid. Energy transfer from the protein in the AChR-rich membrane to laurdan molecules could be observed upon excitation at 290 nm. The efficiency of this process was approximately 55% for 1 microM laurdan. A minimum donor-acceptor distance r of 14 +/- 1 A could be calculated considering a distance 0 < H < 10 A for the separation of the planes containing donor and acceptor molecules, respectively. This value of r corresponds closely to the diameter of the first-shell protein-associated lipid. A value of approximately 1 was calculated for Kr, the apparent dissociation constant of laurdan, indicating no preferential affinity for the protein-associated probe, i.e., random distribution in the membrane. From the spectral characteristics of laurdan in the native AChR-rich membrane, differences in the structural and dynamic properties of water penetration in the protein-vicinal and bulk bilayer lipid regions can be deduced. We conclude that 1) the physical state of the bulk lipid in the native AChR-rich membrane is similar to that of the total lipids reconstituted in liposomes, exhibiting a decreasing polarity and an increased solvent dipolar relaxation at the hydrophilic/hydrophobic interface upon increasing the temperature; 2) the wavelength dependence of laurdan generalized polarization spectra indicates the presence of a single, ordered (from the point of view of molecular axis rotation)-liquid (from the point of view of lateral diffusion) lipid phase in the native AChR membrane; 3) laurdan molecules within energy transfer distance of the protein sense protein-associated lipid, which differs structurally and dynamically from the bulk bilayer lipid in terms of polarity and molecular motion and is associated with a lower degree of water penetration.  相似文献   

10.
We have used antibodies to clathrin light chains in immunocytochemical studies of acetylcholine receptor (AChR) clusters of cultured rat myotubes. Immunofluorescence and ultrastructural experiments show that clathrin is present in coated pits and in large plaques of coated membrane. Coated membrane plaques are spatially and structurally distinct from AChR-rich membrane domains and the bundles of microfilaments that are also present in AChR clusters. Clusters contain a relatively constant amount of clathrin light chain protein, which is not dependent on the amount of AChR. Clathrin plaques remain after AChR domains are disrupted by azide, or after microfilament bundles are destabilized by cytochalasin D. Extraction of myotubes with saponin removes clathrin without disrupting AChR domains. Thus, clathrin plaques, microfilament bundles, and AChR-rich domains are independently stabilized.  相似文献   

11.
Large-scale purification of acetylcholinesterase-rich and acetylcholine receptor-rich membrane fragments from Torpedo californica electroplax is described. Electron microscopy studies reveal structural differences in the two types of particles and the results are discussed in terms of structural aspects of the postsynaptic cleft. Polyacrylamide gel electrophoresis of receptor-rich fragments reveals that the fragments contain the same polypeptide components observed in receptor preparations purified from the same electroplax membranes, indicating that purified Torpedo receptor is not composed of species degraded by proteolysis. Results obtained from fluorescence studies of a cholinergic analog allow conclusions to be reached regarding species differences in electroplax acetylcholine receptor preparations.  相似文献   

12.
Novel effects of cholesterol (Chol) on nicotinic acetylcholine receptor (AChR) cell-surface stability, internalization and function are reported. AChRs are shown to occur in the form of submicron-sized (240-280 nm) domains that remain stable at the cell-surface membrane of CHO-K1/A5 cells over a period of hours. Acute (30 min, 37 degrees C) exposure to methyl-beta-cyclodextrin (CDx), commonly used as a diagnostic tool of endocytic mechanisms, is shown here to enhance AChR internalization kinetics in the receptor-expressing clonal cell line. This treatment drastically reduced ( approximately 50%) the number of receptor domains by accelerating the rate of endocytosis (t(1/2) decreased from 1.5-0.5 h). In addition, Chol depletion produced ion channel gain-of-function of the remaining cell-surface AChR, whereas Chol enrichment had the opposite effect. Fluorescence measurements under conditions of direct excitation of the probe Laurdan and of F?rster-type resonance energy transfer (FRET) using the intrinsic protein fluorescence as donor both indicated an increase in membrane fluidity in the bulk membrane and in the immediate environment of the AChR protein upon Chol depletion. Homeostatic control of Chol content at the plasmalemma may thus modulate cell-surface organization and stability of receptor domains, and fine tune receptor channel function to temporarily compensate for acute AChR loss from the cell surface.  相似文献   

13.
Incubation of human erythrocytes for 1–2 h at 37°C in a suspension of dipalmitoylphosphatidylcholine (DPPC) liposomes results in a phospholipid enrichment of erythrocyte membranes by 45–55% and a depletion of cholesterol by 19–24%. The enrichment by DPPC was time and concentration dependent. By contrast, dioleoylphosphatidylcholine (DOPC) liposomes were less effective in enriching the membranes with phospholipid and in depleting the membranes of cholesterol. Concomitantly, the DDT-induced efflux of K+ was reduced in the case of DPPC-enriched erythrocytes but enhanced in DOPC-enriched erythrocytes. These results suggest that DDT partitions more readily into the unsaturated than the saturated phospholipids of the erythrocyte membrane. It is concluded that the extent to which DDT affects the flux of K+ across the membrane is dependent on the fluidity of the lipid phase. We also report here a rapid method for cholesterol depletion of red blood cells in comparison to previously reported methods.  相似文献   

14.
The distribution of nicotinic acetylcholine receptor (AChR) clusters at the cell membrane was studied in CHO-K1/A5 cells using fluorescence microscopy. Di-4-ANEPPDHQ, a fluorescent probe that differentiates between liquid-ordered (Lo) and liquid-disordered (Ld) phases in model membranes, was used in combination with monoclonal anti-AChR antibody labeling of live cells, which induces AChR clustering. The so-called generalized polarization (GP) of di-4-ANEPPDHQ was measured in regions of the cell-surface membrane associated with or devoid of antibody-induced AChR clusters, respectively. AChR clusters were almost equally distributed between Lo and Ld domains, independently of receptor surface levels and agonist (carbamoylcholine and nicotine) or antagonist (α-bungarotoxin) binding. Cholesterol depletion diminished the cell membrane mean di-4-ANEPPDHQ GP and the number of AChR clusters associated with Ld membrane domains increased concomitantly. Depolymerization of the filamentous actin cytoskeleton by Latrunculin A had the opposite effect, with more AChR clusters associated with Lo domains. AChR internalized via small vesicles having lower GP and lower cholesterol content than the surface membrane. Upon cholesterol depletion, only 12% of the AChR-containing vesicles costained with the fluorescent cholesterol analog fPEG-cholesterol, i.e., AChR endocytosis was essentially dissociated from that of cholesterol. In conclusion, the distribution of AChR submicron-sized clusters at the cell membrane appears to be regulated by cholesterol content and cytoskeleton integrity.  相似文献   

15.
Assembly of nicotinic acetylcholine receptor (AChR) subunits was investigated using mouse fibroblast cell lines stably expressing either Torpedo (All-11) or mouse (AM-4) alpha, beta, gamma, and delta AChR subunits. Both cell lines produce fully functional cell surface AChRs. We find that two independent treatments, lower temperature and increased intracellular cAMP can increase AChR expression by increasing the efficiency of subunit assembly. Previously, we showed that the rate of degradation of individual subunits was decreased as the temperature was lowered and that Torpedo AChR expression was acutely temperature sensitive, requiring temperatures lower than 37 degrees C. We find that Torpedo AChR assembly efficiency increases 56-fold as the temperature is decreased from 37 to 20 degrees C. To determine how much of this is a temperature effect on degradation, mouse AChR assembly efficiencies were determined and found to be only approximately fourfold more efficient at 20 than at 37 degrees C. With reduced temperatures, we can achieve assembly efficiencies of Torpedo AChR in fibroblasts of 20-35%. Mouse AChR in muscle cells is also approximately 30% and we obtain approximately 30% assembly efficiency of mouse AChR in fibroblasts (with reduced temperatures, this value approaches 100%). Forskolin, an agent which increases intracellular cAMP levels, increased subunit assembly efficiencies twofold with a corresponding increase in cell surface AChR. Pulse-chase experiments and immunofluorescence microscopy indicate that oligomer assembly occurs in the ER and that AChR oligomers remain in the ER until released to the cell surface. Once released, AChRs move rapidly through the Golgi membrane to the plasma membrane. Forskolin does not alter the intracellular distribution of AChR. Our results indicate that cell surface expression of AChR can be regulated at the level of subunit assembly and suggest a mechanism for the cAMP-induced increase in AChR expression.  相似文献   

16.
The distribution of nicotinic acetylcholine receptor (AChR) clusters at the cell membrane was studied in CHO-K1/A5 cells using fluorescence microscopy. Di-4-ANEPPDHQ, a fluorescent probe that differentiates between liquid-ordered (Lo) and liquid-disordered (Ld) phases in model membranes, was used in combination with monoclonal anti-AChR antibody labeling of live cells, which induces AChR clustering. The so-called generalized polarization (GP) of di-4-ANEPPDHQ was measured in regions of the cell-surface membrane associated with or devoid of antibody-induced AChR clusters, respectively. AChR clusters were almost equally distributed between Lo and Ld domains, independently of receptor surface levels and agonist (carbamoylcholine and nicotine) or antagonist (α-bungarotoxin) binding. Cholesterol depletion diminished the cell membrane mean di-4-ANEPPDHQ GP and the number of AChR clusters associated with Ld membrane domains increased concomitantly. Depolymerization of the filamentous actin cytoskeleton by Latrunculin A had the opposite effect, with more AChR clusters associated with Lo domains. AChR internalized via small vesicles having lower GP and lower cholesterol content than the surface membrane. Upon cholesterol depletion, only 12% of the AChR-containing vesicles costained with the fluorescent cholesterol analog fPEG-cholesterol, i.e., AChR endocytosis was essentially dissociated from that of cholesterol. In conclusion, the distribution of AChR submicron-sized clusters at the cell membrane appears to be regulated by cholesterol content and cytoskeleton integrity.  相似文献   

17.
An improved procedure for isolation and purification of acetylcholine receptor from Torpedo californica electroplax membranes is described. The purified material contains the neurotransmitter recognition site and a second binding subsite which complexes inorganic cations and bis-quaternary cholinergic analogs. In addition to the transmitter recognition site the isolated macromolecule contains the molecular features necessary for ion-translocation during postsynaptic depolarization, since a chemically excitable membrane can be formed from purified acetylcholine receptor and Torpedo phospholipids.  相似文献   

18.
The interactions between a series of spin-labeled local anesthetic analogues and the nicotinic acetylcholine receptor (AChR) have been investigated by means of electron spin resonance (ESR) and fluorescence spectroscopy. The paramagnetic local anesthetic analogues quenched the intrinsic tryptophan fluorescence of AChR-rich membranes in an agonist-dependent manner, demonstrating a direct interaction with the AChR. The quenching efficiency was greater for the benzocaine than for the thioprocaine analogue. The protein was found to restrict directly the molecular motion of the spin-labeled analogues, as seen by the appearance of a highly anisotropic component in the ESR spectrum. The relative affinity of the population of local anesthetic probes which interacts directly with the integral protein of the AChR-rich membranes was calculated on the basis of relative association constants, Kr, determined by ESR. By comparison with the relative association constant for spin-labeled phospholipid, Kro, it was possible to differentiate between local anesthetic analogues interacting with high (Kr/Kro greater than 2), intermediate (Kr/Kro = 1.6-1.9), and low (Kr/Kro less than or equal to 1.3) specificity and to calculate the fraction of protein-associated probe in each case. Differences were observed in the presence of agonist (0.1 mM carbamylcholine) with some, but not all, of the spin-labeled derivatives. The role of the protonatable diethylammonium group in the specificity of the interaction of the procaine and thioprocaine analogues was investigated. Only in the uncharged form, or in the charged form at high ionic strength, was there a preferential association of these two local anesthetic analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The regulation of the phosphorylation of the acetylcholine receptor in electroplax membranes from Torpedo californica and of purified acetylcholine receptor was investigated. The phosphorylation of the membrane-bound acetylcholine receptor was not stimulated by Ca2+/calmodulin, nor was it inhibited by EGTA, but it was stimulated by the catalytic subunit of cAMP-dependent protein kinase, and was blocked by the protein inhibitor of cAMP-dependent protein kinase. Purified acetylcholine receptor was not phosphorylated by Ca2+/calmodulin-dependent protein kinase activity in electroplax membranes, nor by partially purified Ca2+/calmodulin-dependent protein kinases from soluble or particulate fractions from the electroplax. Of the four acetylcholine receptor subunits, termed α, β, γ and δ, only the γ- and δ-subunits were phosphorylated by the cAMP-dependent protein kinase (+cAMP), or by its purified catalytic subunits.  相似文献   

20.
The nicotinic acetylcholine receptor from Discopyge tschudii electroplax was purified by affinity chromatography on Affi-Gel 401 using bromoacetylcholine as the ligand. Its specific activity was about 4000 pmol 125I-alpha-bungarotoxin/mg protein. SDS-polyacrylamide gel electrophoresis revealed four bands of apparent molecular weights: 41,200, 49,500, 60,000 and 66,300. The amino acid composition of each individual subunit was determined. Native membranes, rich in nicotinic receptor exhibited carbamylcholine-catalysed cation transport (blocked by curare and desensitized by prior incubation with the cholinergic agonist). The functional activity of the purified material could be reconstituted into soybean lecithin liposomes. Our data show that the Discopyge tschudii nicotinic receptor is similar to that from Torpedo californica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号