首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expected outcome of weed control in natural systems is that the decline of a dominant weed will result in an increase in diversity of the plant community but this has seldom been tested. Here we evaluate the response of the plant community following the decline of diffuse knapweed (Centaurea diffusa) in six different pastures at White Lake, BC, Canada over five years. This period followed the establishment, spread and high levels of attack by the introduced European weevil, Larinus minutus, as part of a biological control program. Knapweed declined immediately before and during the study period, but, contrary to expectations, the species richness and diversity of the rangeland plant community did not increase. The absolute cover of native and introduced forbs and grasses increased following knapweed decline, but only the introduced grasses showed a consistent increase in cover relative to the other life-forms. However, unlike in other studies, the native plants dominated the study site. We conclude that the changes in plant communities following successful biological control are variable among programs and that the impact of replacement species must be evaluated in assessing the success of ecological restoration programs that use biological control to manage an undesirable weed.  相似文献   

2.
The accidental introduction of the spiralling whitefly, Aleurodicus dispersus Russell (Homoptera: Aleyrodidae) to Seychelles in late 2003 is exploited during early 2005 to study interactions between A. dispersus, native and exotic host plants and their associated arthropod fauna. The numbers of A. dispersus egg spirals and pupae, predator and herbivore taxa were recorded for eight related native/exotic pairs of host plants found on Mahé, the largest island in Seychelles. Our data revealed no significant difference in herbivore density (excluding A. dispersus) between related native and exotic plants, which suggests that the exotic plants do not benefit from ‘enemy release’. There were also no differences in predator density, or combined species richness between native and exotic plants. Together these data suggest that ‘biotic resistance’ to invasion is also unlikely. Despite the apparent lack of differences in community structure significantly fewer A. dispersus egg spirals and pupae were found on the native plants than on the exotic plants. Additional data on A. dispersus density were collected on Cousin Island, a managed nature reserve in which exotic plants are carefully controlled. Significantly higher densities of A. dispersus were observed on Mahé, where exotic plants are abundant, than on Cousin. These data suggest that the rapid invasion of Seychelles by A. dispersus may largely be due to the high proportion of plant species that are both exotic and hosts of A. dispersus; no support was found for either the ‘enemy release’ or the ‘biotic resistance’ hypotheses.  相似文献   

3.
The potential of the leaf beetle Charidotis auroguttata as a biocontrol agent for cat’s claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed in Australia, and risk to non-target plants was evaluated under quarantine conditions. In no-choice tests, C. auroguttata adults and larvae fed on many plant species across different families, but egg to adult development occurred only on the target weed. However, when neonate larvae from the target weed were transferred onto Myoporum boninense australe (Myoporaceae), a non-target native plant, 11.7% completed development, as compared to 95% of larvae that completed development on the target weed. Larval development on this non-target species also took twice as long as on the target weed. No larvae completed development on other test plants. In choice tests, leaf area consumption by adults and larvae was significantly more on the target weed than on other plants, and oviposition occurred only on the target weed. In the no-choice demography trials, adults laid eggs from the second week after emergence on the target weed, with an average of 0.286 eggs/female/day, resulting in an 18-fold increase in the adult population over 16 weeks. On My. boninense australe adult survival remained high, but oviposition commenced only from the 10th week after emergence with an average of 0.023 eggs/female/day, and none of the eggs developed into adults. In the choice demography trials, oviposition on the target weed was evident from the fourth week onwards, while on the non-target plant oviposition commenced only from the 14th week. Only 10% of total adults and 11.3% of total eggs were found on the non-target plant, and none of these eggs developed into adults. Although the biocontrol agent can ‘spill-over’ from the target weed to the non-target native plant and cause adult feeding damage, the non-target plant could not sustain a viable insect population on its own. This agent was not approved for field release in Australia due to perceived risk to non-target species.  相似文献   

4.
The biology of islands differs from that of large land masses in having less complex ecosystems. Introduced exotic weeds are often a major threat to fragile island ecosystems because of their expansion into habitats previously occupied by endemic species. San Clemente Island, 120 km off the California coastline, is an example of this process in which numerous exotic weed species have been introduced and some are endangering the native flora. Crown rust of oats caused by Puccinia coronata f.sp. avenae was investigated as a potential biocontrol agent against two wild oat species, Avena barbata and Avena fatua, introduced on San Clemente Island. Epidemiology and virulence of this rust were studied. The island was surveyed from 1995 to 1998 for occurrence of P. coronata on wild oats. Wild oats were found sprouting in the northern part of the island shortly after autumn rainfall and subsequently covered the main grasslands of the island. The rust also appeared first on the northern part of the island and progressively spread south. However, disease severities in the south were considerably lower than those in the north. Diverse virulence types, although related to Californian and Mexican forms, were detected among the isolates. The potential use of P. coronata as an augmentative biocontrol agent for wild oat species on San Clemente Island is discussed.  相似文献   

5.
Aim To document changes in the floristic composition and vegetation structure of Carnac Island during a period of 40 years. This paper presents a synthesis of all available floristic and vegetational information. Location Carnac Island is 8 km offshore from Fremantle, south‐west Western Australia. Methods Comparison of lists of plant species for 1951, 1958/9, 1966/7, 1975/6 and 1995–6. Comparison of vegetation, based on structural and floristic elements, for 1951, 1965, 1972, 1984 and 1995. Results Floristic composition (both native and exotic species) changed most dramatically in the period 1975/6–1995/6, with a 37% reduction in number of plant species. The number of annual and perennial native species present in 1995/6 was most similar to that in 1951. The most remarkable change in the flora has been the increase in annual exotic species since 1951. Immigration and extinction rates were greatest in the periods 1951–58/9 and 1958/9–1966/7, respectively. Vegetation structure has also altered, involving a reduction in height of dominant species from 3–4 m to 1 m as Acacia rostellifera and Olearia axillaris have declined in distribution. The weed species Mesembryanthemum crystallinum (first recorded 1975) and Malva parviflora (1958) now dominate the vegetation of half the island. Main conclusions Five factors are considered to have contributed to botanical change: nesting seabird populations, eradication of the rabbit in 1969, drought, increased saltload from occasional cyclones in summer or autumn, and competition from increasing dominance of several weed species. Several of these factors have operated in opposing ways with respect to plant species richness and vegetation cover. Experimental studies are required to determine the strength of these interactions. Two weed species, Zantedeschia aethiopica (first recorded 1966) and Lycium ferocissimum (1992) have the potential to dominate the vegetation of the island.  相似文献   

6.
Several isolates of the fungus Phoma macrostoma demonstrated bioherbicidal activity against dandelion seedlings when applied to soil. Weed control ranged from 36 to 100% depending on the isolates and the doses applied. Using microbiological and molecular genetic techniques, the ability of these isolates to colonize target, and nontarget plants and to disperse and persist in soil were determined. PCR primers highly specific to the biocontrol isolates of P. macrostoma, were used to detect the isolates at rates of application between 4 and 1000 g/m2. Based on the results from representative isolates tested, it was concluded that P. macrostoma colonized root tissues of both resistant and susceptible crop species and a susceptible weed species grown in treated soil, and the frequency of fungal isolation declined with time. It was occasionally detected on untreated plant tissues, which may have resulted from either natural occurrences on seed, or contamination of soil. The biocontrol fungus appeared to have limited mobility in the soil since it was not often detected away from the area where it was placed. It persisted in the soil at detectable levels for up to 4 months, but then its presence declined with time. One year post application, P. macrostoma was either not present or significantly reduced in both soil and plant samples depending on the year of sampling. The results suggested that the isolates of P. macrostoma used for biological weed control would have minimal environmental impact due to its ubiquitous nature, limited mobility, and weak persistence over seasons.  相似文献   

7.
The safety of biological control is a contentious issue. We suggest that constructing and analyzing food webs may be a valuable addition to standard biological control research techniques, as they offer a means of assessing the post-release safety of control agents. Using preliminary data to demonstrate the value of food webs in biocontrol programs, we quantified the extent to which a key agent has infiltrated natural communities in Australia and, potentially, impacted on non-target species. Using these data, we also demonstrate how food webs can be used to generate testable hypotheses regarding indirect interactions between introduced agents and non-target species. We developed food webs in communities invaded to varying degrees by an exotic weed, bitou bush, Chrysanthemoides monilifera ssp. rotundata, and a key biocontrol agent for this weed in Australia, the tephritid fly, Mesoclanis polana. Three food webs were constructed during springtime showing the interactions between plants, seed-feeding insects and their parasitoids. One food web was constructed in a plot of native Australian vegetation that was free of bitou bush (‘bitou-free’), another in a plot of Australian vegetation surrounded by an invasion of bitou bush (‘bitou-threatened’) and a third from a plot infested with a monoculture of bitou bush (‘bitou-infested’). The bitou-free web contained 36 species, the bitou-threatened plot 9 species and the bitou-infested web contained 6 species. One native Australian herbivore attacked the seeds of bitou bush. M. polana, a seed-feeding fly, was heavily attacked by native parasitoids, these being more abundant than the parasitoids feeding on the native seed feeders. A surprising result is that none of the three species of native parasitoids reared from M. polana were reared from any of the native herbivores. The food webs revealed how a highly host-specific biocontrol agent, such as M. polana has the potential to change community structure by increasing the abundance of native parasitoids. The webs also suggest that indirect interactions between M. polana and native non-target species are possible, these been mediated by shared parasitoids. The experiments necessary to determine the presence of these interactions are outlined.  相似文献   

8.
Efforts to suppress an invasive weed are often undertaken with the goal of facilitating the recovery of a diverse native plant community. In some cases, however, reduction in the abundance of the target weed results in an increase in other exotic weeds. Mile‐a‐minute weed (Persicaria perfoliata (L.) H. Gross (Polygonaceae)) is an annual vine from Asia that has invaded the eastern United States, where it can form dense monocultures. The host‐specific Asian weevil Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) was first released in the United States in 2004 as part of a classical biological control program. At three sites invaded by mile‐a‐minute weed, biological control was integrated with pre‐emergent herbicide use and two densities of native plantings. After 2 years, native plant cover differed significantly and was greater than 80% in the plots with plantings and pre‐emergent herbicide but less than 30% in the planting treatments without herbicide. Where mile‐a‐minute cover decreased at the two sites with the greatest pressure from exotic plants, plots were dominated by another exotic weed, Microstegium vimineum (Trin.) A. Camus, Japanese stiltgrass. The combination of biocontrol, pre‐emergent herbicide, and revegetation with native plants suppressed mile‐a‐minute weed, prevented invasion by Japanese stiltgrass, and increased the abundance of native plants. The selection of the management strategies used to control mile‐a‐minute weed determined the extent of recovery of the native plant community.  相似文献   

9.
Predation upon lady beetle (Coleoptera: Coccinellidae) eggs in the field is most often instances of egg cannibalism by larvae or adults while the majority of the remaining predation events upon coccinellid eggs is done by other species of Coccinellidae. Thus the recent introduction and establishment of Harmonia axyridis in the US could negatively affect native species of Coccinellidae via egg predation. However, little is known regarding the suitability of interspecific coccinellid eggs as a food source for larval development. In this study, it was found that native first or third instar Coleomegilla maculata and Olla v-nigrum larvae were incapable of surviving to the adult stage when provided solely exotic H. axyridis eggs. In stark contrast, H. axyridis larvae survived equally well when cannibalizing eggs or eating eggs of either native species. When C. maculata and O. v-nigrum were grouped as ‘native’ and compared with the exotic H. axyridis, more native eggs were attacked than exotic eggs and a higher percentage of eggs was attacked by H. axyridis larvae. Native and exotic larvae attacked a similar percentage of native eggs but native larvae attacked significantly fewer exotic eggs than did exotic larvae. These data suggest that H. axyridis may prey upon the eggs of these native species, when encountered in the field, compared with the likelihood of the native species preying upon H. axyridis eggs. Therefore, eggs of the native species C. maculata and O. v-nigrum will continue to be subjected to cannibalism and also to possible predation by other native species and the exotic H. axyridis.  相似文献   

10.
Two experiments (winter and summer) were conducted in outdoor tanks using addition-series methods to evaluate the impact of specialized feeding by two biological control agents,Hydrellia pakistanaeDeonier andBagous hydrillaeO'Brien, on competitive interactions between hydrilla [Hydrilla verticillata(L.f.) Royle] and vallisneria (Vallisneria americanaMichx). Competitive abilities of each plant species were determined using the reciprocal-yield model of mean plant weight. In the absence of the biocontrol agents, intraspecific competition from hydrilla on itself was 8.3 times stronger than interspecific competition from vallisneria.Hydrellia pakistanaeinterfered with hydrilla canopy formation by removing as much as 80% of the plant biomass in the top 30 cm of the water column. Damage byH. pakistanaealso caused a 43% reduction in hydrilla tuber production during the winter experiment. Similarly,B. hydrillaecaused up to a 48% reduction in hydrilla plant weight in the summer experiment. Neither insect species damaged vallisneria. As a result, there were significant shifts in the competitive balance between hydrilla and vallisneria due to selective insect feedings. In the presence ofH. pakistanae, hydrilla intraspecific competition was nearly equal to interspecific competition from vallisneria, indicating that hydrilla had lost its competitive edge over vallisneria.Bagous hydrillaealso produced similar, but smaller, shifts in the relative competitive abilities of hydrilla and vallisneria. These results indicate that biological control agents can disrupt the competitive balance between plant species in favor of native species, thus adding another element to the weed biological control strategies.  相似文献   

11.
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Non‐native crested wheatgrasses (Agropyron cristatum and A. desertorum) were used historically within the Great Basin for the purpose of competing with weed species and increasing livestock forage. These species continue to be used in some areas, especially after wildfires occurring in low elevation/precipitation, formerly Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis)/herbaceous communities. Seeding native species in these sites is often unsuccessful, and lack of establishment results in invasion and site dominance by exotic annuals. However, crested wheatgrass often forms dense monocultures that interfere competitively with the establishment of desirable native vegetation and do not provide the plant structure and habitat diversity for wildlife species equivalent to native‐dominated sagebrush plant communities. During a 5‐year study, we conducted trials to evaluate chemical and mechanical methods for reducing crested wheatgrass and the effectiveness of seeding native species into these sites after crested wheatgrass suppression. We determined that discing treatments were ineffective in reducing crested wheatgrass cover and even increased crested wheatgrass density in some cases. Glyphosate treatments initially reduced crested wheatgrass cover, but weeds increased in many treated plots and seeded species diminished over time as crested wheatgrass recovered. We concluded that, although increases in native species could possibly be obtained by repeating crested wheatgrass control treatments, reducing crested wheatgrass opens a window for invasion by exotic weed species.  相似文献   

13.
Alligatorweed, (Alternanthera philoxeroides (Mart.) Griseb.), an aquatic and wetland plant native to South America, is an aggressive weed in many parts of the world. Its ability to compete with other native plants and to impede waterways has made it a serious threat to aquatic ecosystems. Although biological control with insects has been fairly successful in aquatic habitats, there is a need for additional agents to manage the weed in upland sites. Accordingly, in a survey in Brazil in 1997 a fungus, Nimbya (=Alternaria) alternantherae (Holcomb and Antonopoulus) Simmons and Alcorn, was discovered and confirmed to be highly damaging to alligatorweed. Studies were conducted to determine the potential of this fungus for controlling this weed. Several isolates from Brazil, USA, and Puerto Rico were compared and no differences in virulence were observed, although a lower dew requirement was demonstrated for the Brazilian isolates. Conidia were more effective than mycelial suspension, and inoculum concentrations of 1×105 and 1×106 conidia per ml provided significant levels of control of the weed in greenhouse and field experiments, respectively. In a host-range study, N. alternantherae infected 6 plant species from a total of 42 species belonging to 23 families. N. alternantherae has the potential to be an effective mycoherbicide for alligatorweed.  相似文献   

14.

Aim

Studies investigating the determinants of plant invasions rarely examine multiple factors and often only focus on the role played by native plant species richness. By contrast, we explored how vegetation structure, landscape features and climate shape non-native plant invasions across New Zealand in mānuka and kānuka shrublands.

Location

New Zealand.

Method

We based our analysis on 247 permanent 20 × 20-m plots distributed across New Zealand surveyed between 2009 and 2014. We calculated native plant species richness and cumulative cover at ground, understorey and canopy tiers. We examined non-native species richness and mean species ground cover in relation to vegetation structure (native richness and cumulative cover), landscape features (proportion of adjacent anthropogenic land cover, distance to nearest road or river) and climate. We used generalized additive models (GAM) to assess which variables had greatest importance in determining non-native richness and mean ground cover and whether these variables had a similar effect on native species in the ground tier.

Results

A positive relationship between native and non-native plant species richness was not due to their similar responses to the variables examined in this study. Higher native canopy richness resulted in lower non-native richness and mean ground cover, whereas higher native ground richness was associated with higher native canopy richness. Non-native richness and mean ground cover increased with the proportion of adjacent anthropogenic land cover, whereas for native richness and mean ground cover, this relationship was negative. Non-native richness increased in drier areas, while native richness was more influenced by temperature.

Main Conclusions

Adjacent anthropogenic land cover seems to not only facilitate non-native species arrival by being a source of propagules but also aids their establishment as a result of fragmentation. Our results highlight the importance of examining both cover and richness in different vegetation tiers to better understand non-native plant invasions.  相似文献   

15.
Conservation strategies of forested landscapes must consider biodiversity of the included site types, i.e. timber-quality forests and associated non-timber-quality stands. The objectives were to characterize forest overstory structure in timber-quality versus associated non-timber-quality stands; and to compare their understory communities. Six forest types were sampled in Nothofagus forests of Tierra del Fuego (Argentina): two timber-quality N. pumilio forests, and four associated non-timber-quality stands (edge, N. antarctica, wetlands and streamside forests). Overstory structure and understory vegetation (species richness, frequencies, cover and biomass) were characterized during spring and summer seasons. Analysis of variance and multivariates were carried out. Overstory structure differed across the site types, with higher tree size, canopy closure and tree volume in timber-quality stands. Fifty-one understory plant species were observed, but understory variables varied with site types, especially wetlands (highest native and exotic richness, cover and biomass, and 25% of exclusive species). Site types were grouped in three: N. antarctica stands, streamside stands and the other N. pumilio forests according to multivariate analysis. Forty three percent of plants were distributed in all site types, and all timber-quality forest understory species were present in some associated non-timber-quality stands. Timber-quality N. pumilio forests have a marginal value for understory conservation compared to associated non-timber-quality stands, because these last include all the plants observed in timber-quality forests and also possess many exclusive species. Therefore, protection of associated non-timber-quality stands during forest management planning could increase understory conservation at landscape level, and these could be better reserves of understory diversity than retentions of timber-quality stands.  相似文献   

16.
Native snakeweeds, especially Gutierrezia sarothrae (Pursh) Britton and Rusby and Gutierrezia microcephala (DC.) A. Gray, are among the most widespread and damaging weeds of rangelands in the western United States and northern Mexico. The genus long ago spread to southern South America, where further speciation occurred. We have found several species of insects in Argentina that damage other species of snakeweeds there and are possible candidates for biological control in North America. The first of these, the root-boring weevil, Heilipodus ventralis (Hustache), was tested in Argentina and then sent to the USDA-ARS Insect Quarantine Facility at Temple, Texas, for host specificity testing on North American plants. We tested H. ventralis on 40 species of the family Asteraceae, in 19 tests of five types, using 686 adults and 365 larvae. Host specificity increased from adult feeding, to ovipositional selection, to larval development. At Temple, adults fed mostly on 6 species of the closely related genera Grindelia, Gutierrezia, and Gymnosperma, but with substantial feeding on four other genera of the two preferred subtribes Solidagininae and Machaerantherinae and on Baccharis in the tribe Baccharidinae, with lesser feeding on the subtribe Asterinae, all in the tribe Astereae, and on 1 species in the tribe Anthemideae. Females oviposited primarily on the same 6 species but very little on plants outside the 2 preferred subtribes. Larvae developed only on 9 of the 29 U.S. plant species tested, 6 within the two preferred subtribes and on Brickellia and Aster in other tribes. Only 5 species of three genera appear to be potential true hosts of H. ventralis in North America, on which all stages of the life cycle, adult feeding, oviposition, and larval development, can take place; these are Gymnosperma glutinosum (Spreng.) Less., Gutierrezia grandis Blake, Gut. microcephala, Gut. sarothrae, and Grindelia lanceolata Nutt. None of these genera contain species of economic or notable ecological value; the few rare species appear to be protected by habitat isolation from attack by H. ventralis. H. ventralis, therefore, appears sufficiently host specific for field release in North America. This is the first introduced biocontrol agent to be approved for release in a continental area to control a native weed.  相似文献   

17.
The biota of herbivorous arthropods and pathogenic microorganisms associated with Rosa rugosa in its native and exotic ranges is reviewed. This is done as an initial step towards the identification of potential agents for biological control of this plant species invasive in Europe and North America. It is shown that more insect (but apparently not fungal) species attack R. rugosa in its native range than in its exotic range, and that most of the specialized insect and fungal enemies are confined to its native range. Among the close relatives of R. rugosa in its exotic ranges are many native species, as well as economically important crop plants. Few organisms appear to be narrowly specialized to R. rugosa, but true host specificity can only be identified through experimental testing. Based on the literature, the most promising candidates for biocontrol seem to be the aphids Myzus japonensis and Amphorophora amurensis, the leaf hopper Empoasca ussurica, the tortricid moth Notocelia longispina, the cynipid gall-wasp Diplolepis fukudae, and the rust fungi Phragmidium rosae-rugosae and P. yezoense. A screening programme is suggested, investigating the impact of these organisms on R. rugosa performance, their host specificity and the risk of undesired indirect effects in the ecosystem where agents are released. In addition, demographic studies of the target plant should be integrated to provide guidance for the stage in the life cycle most sensitive to control and, thus, enable selection of the most efficient and safe biocontrol agents.  相似文献   

18.
Hydrellia balciunasi Bock, a native of Australia, was evaluated in quarantine in Florida, USA, for its potential as a biocontrol agent of the submersed aquatic weed,Hydrilla verticillata (L.f) Royle. Larvae are leafminers. Mean total development time at 27°C was 22.8 days. Mean duration of the egg stage was 3.0 days, larval was 11.5 days, and puparial was 8.3 days. Mean fecundity was 35.5 eggs. Mean female longevity was 19.7 days, and mean male longevity was 15.6 days. The sex ratio was 1.1∶1 (male: female). Fourteen plant species closely related to hydrilla in 4 families plus rice were tested in no-choice larval development tests and an additional 27 plant species in 16 families were tested in multi-choice tests. Larvae mined in 2 test plant species,Potamogeton pusillus L. andP. crispus L., but developed (1%) only on the introduced weedP. crispus L. Females oviposited on most test plants. Permission to release this fly in the United States was received from federal and state (Florida) officials, and it was released from quarantine on 24 May 1989.   相似文献   

19.
Glasshouse trials were performed to investigate the control of the parasitic weed Striga hermonthica by Fusarium nygamai and the performance of the host plant sorghum (Sorghum bicolor) using different inoculum substrates and inoculum amounts of the fungus. Optimal constant and alternating temperatures for the growth of the fungus were 25°C and 30/20°C, respectively. Striga incidence was decreased up to 100% when the fungus was incorporated into the soil preplanting. Emerged Striga plants at different stages of growth up to the flowering stage were killed by the fungus when the fungus was applied postemergent. In root-chamber trials none of the Striga seeds germinated when 10 ml inoculum suspension of 8 × 106 spores/ml of F. nygamai was applied on seeds of the parasitic weed sprinkled on the surface of filter paper. F. nygamai has potential as a bioherbicide for Striga control. Further studies regarding its performance under field conditions and its safety to the environment and humans should be assessed.  相似文献   

20.
A strain of Ulocladium botrytis isolated from diseased Orobanche crenata shoots caused disease on the parasitic weed in pathogenicity tests. The potential of the fungus to be developed as a mycoherbicide for Orobanche spp. was further investigated. Although the fungus significantly decreased O. crenata germination in vitro by 80%, it did not generally lead to a decreased number of O. crenata shoots or tubercles in inoculated root chambers or pots. However, the number of diseased or dead tubercles and underground shoots was significantly increased compared to the noninoculated treatments. Postemergence inoculation of O. crenata shoots with a conidial suspension resulted in the death of almost all inoculated plants 14 days after application under greenhouse conditions. In preliminary host-range studies, the pathogen caused disease on Orobanche cumana on sunflower whereas on Orobanche aegyptiaca shoots parasitizing tomato only minimal disease symptoms could be detected after postemergence inoculation. Based on the results of our investigations, we conclude that Ulocladium botrytis has only a limited potential to be used as a biocontrol agent against Orobanche spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号