首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wright's gene fixation index F and two single-locus effective selfing rates—the selfing rate at loci with fixed alleles, and the selfing rate at loci without fixed alleles—were estimated in five populations of Mimulus guttatus. These two effective selfing rates describe the inbreeding observed at a single locus when both uniparental and biparental inbreeding are practiced. Estimates were made using progeny arrays assayed for six allozyme loci and two morphological loci exhibiting dominance. The average of the two selfing rates computed for subpopulations (ca. 10 m diameter) ranged from 24% to 59%, with a mean of 37%. When computed for populations (ca. 1 km diameter), average selfing rates were about 10% higher. In four populations, the selfing rate at loci with fixed alleles was higher than the selfing rate at loci without fixed alleles. Thus, the covariance of selfing with parental gene fixation was positive. In one of the populations, estimates for individual plants sampled along a transect gave positive correlations for selfing rates and for gene-fixation indices between adjacent plants. A highly positive correlation between selfing rate and gene fixation of individual plants was also observed. In another population, the covariance of selfing with gene fixation was higher for a locus causing leaf spots than for allozyme loci. This covariance is partially caused by 1) variation in homozygosity among neighborhoods and 2) biparental inbreeding within neighborhoods. The consequences of this covariance are discussed.  相似文献   

2.
Although many studies confirm long-term small isolated populations (e.g. island endemics) commonly sustain low neutral genetic variation as a result of genetic drift, it is less clear how selection on adaptive or detrimental genes interplay with random forces. We investigated sequence variation at two major histocompatibility complex (Mhc) class II loci on a porpoise endemic to the upper Gulf of California, México (Phocoena sinus, or vaquita). Its unique declining population is estimated around 500 individuals. Single-strand conformation polymorphism analysis revealed one putative functional allele fixed at the locus DQB (n = 25). At the DRB locus, we found two presumed functional alleles (n = 29), differing by a single nonsynonymous nucleotide substitution that could increase the stability at the dimer interface of alphabeta-heterodimers on heterozygous individuals. Identical trans-specific DQB1 and DRB1 alleles were identified between P. sinus and its closest relative, the Burmeister's porpoise (Phocoena spinipinnis). Comparison with studies on four island endemic mammals suggests fixation of one allele, due to genetic drift, commonly occurs at the DQA or DQB loci (effectively neutral). Similarly, deleterious alleles of small effect are also effectively neutral and can become fixed; a high frequency of anatomical malformations on vaquita gave empirical support to this prediction. In contrast, retention of low but functional polymorphism at the DRB locus was consistent with higher selection intensity. These observations indicated natural selection could maintain (and likely also purge) some crucial alleles even in the face of strong and prolonged genetic drift and inbreeding, suggesting long-term small populations should display low inbreeding depression. Low levels of Mhc variation warn about a high susceptibility to novel pathogens and diseases in vaquita.  相似文献   

3.
The equilibrium level of inbreeding depression in populations with different selfing rates is studied for models with symmetrical or asymmetrical heterozygous advantage at several loci with partial linkage. As for the case of a single locus, the inbreeding depression caused by loci with heterozygous advantage can be higher for partially selfing populations than for complete outcrossing. The spread of modifier alleles at another locus that affects the selfing rate is studied. The stability of outcrossing populations to invasion by alleles that give increased selfing is found to depend on levels of inbreeding depression being greater than one-half, in accordance with earlier models that assumed a fixed level of inbreeding depression. However, in partially selfing populations the spread of such alleles can be checked by smaller levels of inbreeding depression than one-half, so that they do not always spread to fixation. This is interpreted as being due to associations between the genotypes at the modifier locus and the selected loci, together with increasing inbreeding depression as selfing increases, and does not occur if the inbreeding depression is due to mutation-selection balance.  相似文献   

4.
This study examined the genetic diversity in 20 rice landrace populations from parts of traditional farming areas of the Indian Himalayas using 11 mapped simple sequence repeats (SSR) loci. Twenty‐four individuals sampled from each of the 20 landraces (480 individuals), which were collected from farmers from Northwest to Northeast Himalaya, showed that all landraces showed within population variation and none were homogeneous. The number of polymorphic loci in a landrace population ranged from 5 to 11. A total of 71 alleles were recorded of which 58 were common and 13 were rare. Of the 71 alleles, 46 were common to both Northwest and Northeast regions, whereas 9 were unique to the former and 16 were unique to the latter. The mean number of alleles per locus was 6.45 and for landrace populations from Northwest and Northeast regions were 5.0 and 5.64, respectively. Population differentiation, as shown by a high FST value (0.61), was greater for Northeast populations. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram classified the populations into three major clusters: cluster I comprised seven populations from the Northwest region, cluster II comprised seven populations from the Northeast region and cluster III comprised populations from both regions. Investigating the population genetic structure can help monitor change in diversity over time and space, and also help devise a rational plan for management of crop landraces on‐farm under farmer management.  相似文献   

5.
J Wang  W G Hill 《Genetics》1999,153(3):1475-1489
Transition matrices for selfing and full-sib mating were derived to investigate the effect of selection against deleterious mutations on the process of inbreeding at a linked neutral locus. Selection was allowed to act within lines only (selection type I) or equally within and between lines (type II). For selfing lines under selection type I, inbreeding is always retarded, the retardation being determined by the recombination fraction between the neutral and selected loci and the inbreeding depression from the selected locus, irrespective of the selection coefficient (s) and dominance coefficient (h) of the mutant allele. For selfing under selection type II or full-sib mating under both selection types, inbreeding is delayed by weak selection (small s and sh), due to the associative overdominance created at the neutral locus, and accelerated by strong selection, due to the elevated differential contributions between alternative alleles at the neutral locus within individuals and between lines (for selection type II). For multiple fitness loci under selection, stochastic simulations were run for populations with selfing, full-sib mating, and random mating, using empirical estimates of mutation parameters and inbreeding load in Drosophila. The simulations results are in general compatible with empirical observations.  相似文献   

6.
Self-incompatibility (SI) is a widespread mechanism that prevents inbreeding in flowering plants. In many species, SI is controlled by a single locus (the S locus) where numerous alleles are maintained by negative frequency-dependent selection. Inbreeding depression, the decline in fitness of selfed individuals compared to outcrossed ones, is an essential factor in the evolution of SI systems. Conversely, breeding systems influence levels of inbreeding depression. Little is known about the joint effect of SI and drift on inbreeding depression. Here we studied, using a two-locus model, the effect of SI (frequency-dependent selection) on a locus subject to recurrent deleterious mutations causing inbreeding depression. Simulations were performed to assess the effect of population size and linkage between the two loci on the level of inbreeding depression and genetic load. We show that the sheltering of deleterious alleles linked to the S locus strengthens inbreeding depression in small populations. We discuss the implications of our results for the evolution of SI systems.  相似文献   

7.
Using a stochastic model of a finite population in which there is mutation to partially recessive detrimental alleles at many loci, we study the effects of population size and linkage between the loci on the population mean fitness and inbreeding depression values. Although linkage between the selected loci decreases the amount of inbreeding depression, neither population size nor recombination rate have strong effects on these quantities, unless extremely small values are assumed. We also investigate how partial linkage between the loci that determine fitness affects the invasion of populations by alleles at a modifier locus that controls the selfing rate. In most of the cases studied, the direction of selection on modifiers was consistent with that found in our previous deterministic calculations. However, there was some evidence that linkage between the modifier locus and the selected loci makes outcrossing less likely to evolve; more losses of alleles promoting outcrossing occurred in runs with linkage than in runs with free recombination. We also studied the fate of neutral alleles introduced into populations carrying detrimental mutations. The times to loss of neutral alleles introduced at low frequency were shorter than those predicted for alleles in the absence of selected loci, taking into account the reduction of the effective population size due to inbreeding. Previous studies have been confined to outbreeding populations, and to alleles at frequencies close to one-half, and have found an effect in the opposite direction. It therefore appears that associations between neutral and selected loci may produce effects that differ according to the initial frequencies of the neutral alleles.  相似文献   

8.
The genetic diversity of 116 barley accessions, representing five Chinese eco-geographic populations, was studied using simple sequence repeat (SSR) markers. The 21 SSR loci revealed 128 alleles with an average of 6.1 alleles per locus. The highest values of proportion of polymorphic loci (P) and gene diversity index (He) were obtained in the Northern (P = 1.00; He = 0.60) and the Yangtze River reaches and Southern populations (P = 1.00; He = 0.59). The lowest values were in the populations of the Yellow River reaches (P = 0.86; He = 0.44). The highest average number of alleles per locus (4.52) and number of unique alleles (7) were found in the Qinghai–Tibet plateau population. Cluster analysis revealed that together with the row type, strong eco-geographic variables influenced the classification. Associations of SSR and eco-geographic values were established for 11 SSR loci. Four to six markers were found to discriminate among geographic groups, which may serve as tools for diagnosis of the eco-geographic populations and provide evidence for the adaptive nature of SSR markers.  相似文献   

9.
Enzyme electrophoresis was used to estimate genetic diversity and population structure in natural and cultivatedOenanthe javanica (Blume) DC. In the six natural populations, 8 of the 22 loci showed polymorphisms. Cultivated populations had fewer alleles per locus (1.84 vs. 1.91), fewer effective alleles per locus (1.47 vs. 1.52), a lower percentage of polymorphic loci (42.3 vs. 50.0), and lower diversity (0.210 vs. 0.228) than did natural populations. These parameters of genetic diversity indicate that the cultivated populations are genetically depauperate relative to their presumptive progenitor, and that the domestication process has partly eroded the level of genetic variation of this species. Nevertheless, the diversity of this species has higher-than-average values compared with other species having similar life-history traits. We propose that the mix-mating system; perennial, high gene flow; and large population sizes are possible factors contributing to this high diversity, which seemed to increase with distance from the coastlines.  相似文献   

10.
BACKGROUND AND AIMS: Landrace populations represent an important intra-crop reservoir of biodiversity and source of novel gene alleles for use in breeding programmes. Here the aim was to measure the diversity of a wheat landrace, 'Barbela', from the north of Portugal. METHODS: DNA was extracted from 59 accessions of Barbela collected across its geographical range. Diversity was measured by microsatellite length polymorphisms using 27 primer pairs amplifying 34 polymorphic microsatellite loci. KEY RESULTS: High levels of polymorphism were found, with an average polymorphism information content of 0.52; an average of 4.77 alleles (range 2-11) were present at each locus, and half of these loci showed an additional allele in the reference variety 'Chinese Spring'. CONCLUSIONS: 'Barbela' is maintained from seeds collected by farmers, but it maintains high allelic variation, and no groupings of accessions were detected when analysed by geographical region, farm or climate, indicating that the wheat landrace is a homogeneous entity. The diversity within the farmer-maintained landrace demonstrates the importance of characterization and maintenance of landrace collections before valuable genetic combinations are lost as uniform commercial crops are introduced.  相似文献   

11.
《新西兰生态学杂志》2011,35(3):220-228
Genetic variation in two translocated populations of North Island saddleback (Philesturnus rufusater) on Kapiti Island and at Zealandia was investigated using five microsatellite loci and compared with the source populations in the Hauraki Gulf. Although the absolute number of alleles in the two populations was low (3 alleles per locus), both populations carried all the alleles found in their immediate source populations, but lacked one rare allele found in only one individual from the original remnant population on Hen Island. Overall heterozygosity was high and inbreeding coefficients were low. Population viability analyses showed that these populations will likely reach carrying capacity by the middle of this decade, and genetic simulations predicted that they should retain between 90% (Kapiti) and 95% (Zealandia) of the heterozygosity of their sources. The difference between the two populations is most likely due to the prolonged post-translocation bottleneck on Kapiti when rats were still present on the island. While our results suggest that additional top-up translocations would be unnecessary and unwarranted at this time, further work on potentially selected loci or inbreeding depression could justify this decision to be revisited.  相似文献   

12.
The discovery of unbranched, monocephalic natural variants was pivotal for the domestication of sunflower (Helianthus annuus L.). The branching locus (B), one of several loci apparently targeted by aboriginal selection for monocephaly, pleiotropically affects plant, seed and capitula morphology and, when segregating, confounds the discovery of favorable alleles for seed yield and other traits. The present study was undertaken to gain deeper insights into the genetics of branching and seed traits affected by branching. We produced an unbranched hybrid testcross recombinant inbred line (TC-RIL) population by crossing branched (bb) and unbranched (BB) RILs to an unbranched (BB) tester. The elimination of branching concomitantly eliminated a cluster of B-linked seed trait quantitative trait loci (QTL) identified by RIL per se testing. We identified a seed oil content QTL linked in repulsion and a 100-seed weight QTL linked in coupling to the B locus and additional unlinked QTL, previously masked by B-locus pleiotropy. Genomic segments flanking the B locus harbor multiple loci for domestication and post-domestication traits, the effects of which are masked by B-locus pleiotropy in populations segregating for branching and can only be disentangled by genetic analyses in unbranched populations. QTL analyses of NILs carrying wild B alleles substantiated the pleiotropic effects of the B locus. The effect of the B locus on branching was masked by the effects of wild alleles at independent branching loci in hybrids between monocephalic domesticated lines and polycephalic wild ecotypes; hence, the B locus appears to be necessary, but not sufficient, for monocephaly in domesticated sunflower.  相似文献   

13.
Variability at eight microsatellite loci was examined in five populations of chum salmon Oncorhynchus keta Walbaum from Sakhalin hatcheries. The population of Kalinino hatchery had the lowest heterozygosity and the lowest average number of alleles per locus. The populations examined exhibited significant differentiation, θST = 0.026 on average per locus. The maximum genetic differences were found between the populations of the Kalinino and the Ado-Tymovo hatcheries; the latter differs from the remaining populations also by the highest number and high frequencies of specific alleles. The genetic features of the Taranai hatchery population, observed at microsatellite loci, reflect its “mixed” origin.  相似文献   

14.
Variability at eight microsatellite loci was examined in five populations of chum salmon Oncorhynchus keta Walbaum from Sakhalin hatcheries. The population of Kalinino hatchery had the lowest heterozygosity and the lowest average number of alleles per locus. The populations examined exhibited significant differentiation, theta ST = 0.026 on average per locus. The maximum genetic differences were found between the populations of the Kalinino and the Ado-Tymovo hatcheries; the latter differs from the remaining populations also by the highest number and high frequencies of specific alleles. The genetic features of the Taranai hatchery population, observed at microsatellite loci, reflect its "mixed" origin.  相似文献   

15.
Maize (Zea mays L.) harbours significant genetic diversity not only in its centre of origin (Mexico) but also in several countries worldwide, including India, in the form of landraces. In this study, DNA fingerprinting of 48 landrace accessions from diverse regions of India was undertaken using 42 fluorescent dye-labeled Simple Sequence Repeat (SSR) markers, followed by allele resolution using DNA sequencer and analysis of molecular diversity within and among these landraces. The study revealed a large number of alleles (550), with high mean number of alleles per locus (13.1), and Polymorphism Information Content (PIC) of 0.60, reflecting the level of diversity in the landrace accessions. Besides identification of 174 unique alleles in 44 accessions, six highly frequent SSR alleles were detected at six loci (phi014, phi090, phi112, umc1367, phi062 and umc1266) with individual frequencies greater than 0.75, indicating that chromosomal regions harboring these SSR alleles are not selectively neutral. F statistics revealed very high genetic differentiation, population subdivision and varying levels of inbreeding in the landraces. Analysis of Molecular Variance showed that 63 % of the total variation in the accessions could be attributed to within-population diversity, and 37 % represented between population diversity. Cluster analysis of SSR data using Nei’s genetic distance and UPGMA revealed considerable genetic diversity in these populations, although no clear separation of accessions was observed based on their geographic origin.  相似文献   

16.
If, because of genetic erosion, the level of homozygosity in small populations is high, additional selfing will result in small reductions of fitness. In addition, in small populations with a long inbreeding history selection may have purged the population of its genetic load. Therefore, a positive relationship between population size (or level of genetic variation) and level of additional inbreeding depression, here referred to as inbreeding load, may be expected. In a previous study on the rare and threatened perennial Salvia pratensis, a positive correlation between population size and level of allozyme variation has been demonstrated. In the present study, the inbreeding load in six populations of varying size and allozyme variation was investigated. In the greenhouse, significant inbreeding load in mean seed weight, proportion of germination, plant size, regenerative capacity, and survival was demonstrated. In a field experiment with the two largest and the two smallest populations, survival of selfed progeny was 16% to 63% lower than survival of outcrossed progeny. In addition, survival of outcrossed progeny was, with the exception of the largest population, lower (16% to 37%) than of hybrid progeny, resulting from crosses between populations. Effects on plant size were qualitatively similar to the effects on survival, but these effects were variable in time because of differential survival of larger individuals. In all populations the total inbreeding load, that is, the effects on size and survival multiplicated, increased in time. It was demonstrated that inbreeding load in different characters may be independent. At no time and for no character was inbreeding load or the heterosis effect correlated to the mean number of alleles per locus, indicating that allozyme variation is not representative for variation at fitness loci in these populations. Combined with results of previous investigations, these results suggest that the small populations are in an early phase of the genetic erosion process. In this phase, allozyme variation, which is supposed to be (nearly) neutral, has been affected by genetic erosion but the selectively nonneutral variation is only slightly affected. These results stress the need for detailed information about the inbreeding history of small populations. The relative performance of selfed progeny was lowest in all populations, in the greenhouse as well as in the field, and inbreeding depression could still influence the extinction probabilities of the small populations.  相似文献   

17.
The joint effects of parental gene fixation and consanguinity of mates upon the fitness of matings was examined in Mimulus guttatus. Plants from four populations were crossed at five levels of genetic relatedness, and five viability characters were scored in progeny. Parental gene fixation at 12 polymorphic allozyme loci was partitioned into local, subpopulation, and population components. A model is proposed wherein parental gene fixation influences distance-dependent crossing success. At a fixed locus, inbreeding is favored if natural selection caused allele fixation, or is disfavored if gene fixation was random. The distance between mates required to eliminate gene fixation depends upon patch size of fixation. When selective fixation and patch size differ among loci, an optimal crossing distance is possible. In M. guttatus, progeny viability generally decreased with greater relatedness between mates, but this decrease was often heterogeneous among populations. The highest pollen viability and the lowest seed set were found at an intermediate relatedness between mates. To determine whether parental gene fixation influences these crossing patterns, a type of mutational-load analysis was performed. Progeny fitness was regressed on parent F and fitness estimated at F = 1. This was done for each component of F, for a) crosses that maintain gene fixation and b) crosses that eliminate gene fixation. A multiplicative, composite measure of fitness indicates that, in M. guttatus, genes fixed during local or population differentiation favor outbreeding, while genes fixed during subpopulation differentiation favor inbreeding. This predicts that random mating within subpopulations confers highest progeny fitness, exclusive of between-population matings. However, predictions did not fit the observed patterns of crossing success very well, perhaps because gene fixation was relatively low or was not adequately measured at loci influencing fitness.  相似文献   

18.
Huang SW  Yu HT 《Genetica》2003,119(2):201-218
Major histocompatibility complex (MHC) genes are the most polymorphic loci known for vertebrates. Here we employed five microsatellite loci closely linked to the MHC region in an attempt to study the amount of genetic variation in 19 populations of the southeast Asian house mouse (Mus musculus castaneus) in Taiwan. The overall polymorphism at the five loci was high (He = 0.713), and the level of polymorphism varied from locus to locus. Furthermore, in order to investigate if selection is operating on MHC genes in natural mouse populations, we compared the extent and pattern of genetic variation for the MHC-linked microsatellite loci (the MHC loci) with those for the microsatellite loci located outside the MHC region (the non-MHC loci). The number of alleles and the logarithm of variance in repeat number were significantly higher for the MHC loci than for the non-MHC loci, presumably reflecting linkage to a locus under balancing selection. Although three statistical tests used do not provide support for selection, their lack of support may be due to low statistical power of the tests, to weakness of selection, or to a profound effect of genetic drift reducing the signature of balancing selection. Our results also suggested that the populations in the central and the southwestern regions of Taiwan might be one part of a metapopulation structure.  相似文献   

19.
Mao Y  Chang H  Yang Z  Zhang L  Xu M  Sun W  Chang G  Song G 《Biochemical genetics》2007,45(3-4):195-209
Levels of genetic differentiation, gene flow, and genetic structure of three indigenous cattle populations (Luxi, Bohai, and Minnan) and two reference cattle populations (Chinese Holstein and Qinhai yak) in China were estimated using the information from 12 microsatellites, and 141 microsatellite alleles were identified. The mean number of alleles per locus ranged from 2.9005 in yak to 4.9722 in Holstein. The observed heterozygosity ranged from 0.5325 (yak) to 0.7719 (Holstein); 29 private alleles were detected. The global heterozygote deficit across all populations amounted to 58.5% (p < 0.001). The overall significant (p < 0.001) deficit of heterozygotes because of inbreeding within breeds amounted to 43.2%. The five cattle populations were highly differentiated (F st = 26.9%, p < 0.001) at all loci. The heterozygote deficit within the population was highest in Luxi cattle and lowest in yak. The average number of effective migrants exchanged per generation was highest (1.149) between Luxi and Holstein, and lowest (0.509) between Luxi and yak. With the application of prior population information, cluster analysis achieved posterior probabilities from 91% to 98% of correctly assigning individuals to populations. Combining the information of cluster analysis, gene flow, and Structure analysis, the five cattle populations belong to three genetic clusters, a taurine (Luxi and Chinese Holstein), a zebu (Bohai and Minnan), and a yak cluster. This indicates that Bohai black is closer to Bos indicus than Luxi cattle. The evolution and development of three indigenous cattle populations are discussed.  相似文献   

20.
采用微卫星标记研究天然封闭型水体肖四海内鳜放流群体与野生群体的遗传差异,试图从分子水平探讨人工增殖放流群体与野生群体遗传结构的差异。结果表明:鳜两个群体在10对微卫星座位共发现有50个等位基因。其中,放流群体发现有22个等位基因,野生群体发现37个等位基因;通过He和PIC统计发现,野生群体遗传多样性明显高于放流增殖鳜,野生鳜群体表现出更丰富的遗传多样性;由杂合度检验可以看出,两个群体都呈现杂合过剩现象,经哈代-温伯格平衡检验,显示两个群体均显著偏离哈代-温伯格平衡(P0.001),属于连锁不平衡群体;群体间的FST检验,可以看出群体间的FST高于0.25,反映遗传变异主要存在于群体间,而不是群体内部,这充分反映近交及瓶颈效应会引起养殖群体遗传结构的改变,从而导致群体间的遗传分化。    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号