首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonance Raman enhancement of derivatives and intermediates of horseradish peroxidase in the near ultraviolet (N-band excitation) results in intensity and enhancement patterns that are different from those normally observed within the porphyrin Soret (B-band) and alpha-beta (Q-band) absorptions. In particular it allows the resolution of resonance Raman spectra of horseradish peroxidase compound I. The bands above 1300 cm-1 can be assigned to porphyrin vibrational modes that are characteristically shifted in frequency due to removal of an electron from the porphyrin ring. The resonance Raman frequency shifts follow normal mode compositions. Relative to resonance Raman spectra of compound II, the v4 frequency (primarily Ca-N) exhibits a 20 cm-1 downshift. The v2, v11, and v37 vibrational frequencies whose mode compositions are primarily porphyrin Cb-Cb, exhibit 10-20 cm-1 upshifts. The v3, v10, and v28 frequencies, whose mode compositions are primarily Ca-Cm, exhibit downshifts. The downshifts for v3 and v10 are small, 3-5 cm-1; however, the downshift for v28 is 14 cm-1. These frequency shifts are consistent with those of previously published resonance Raman studies of model compounds. In contrast to reports from other laboratories, the data presented here for horseradish peroxidase compound I can be attributed unambiguously to resonance Raman scattering from a porphyrin pi-cation radical.  相似文献   

2.
Resonance Raman spectra of the heme protein chloroperoxidase in its native and reduced forms and complexed with various small ions are obtained by using laser excitation in the Soret region (350-450 nm). Additionally, Raman spectra of horseradish peroxidase, cytochrome P-450cam, and cytochrome c, taken with Soret excitation, are presented and discussed. The data support previous findings that indicate a strong analogy between the active site environments of chloroperoxidase and cytochrome P-450cam. The Raman spectra of native chloroperoxidase are found to be sensitive to temperature and imply that a high leads to low spin transition of the heme iron atom takes place as the temperature is lowered. Unusual peak positions are also found for native and reduced chloroperoxidase and indicate a weakening of porphyrin ring bond strengths due to the presence of a strongly electron-donating axial ligand. Enormous selective enhancements of vibrational modes at 1360 and 674 cm-1 are also observed in some low-spin ferrous forms of the enzyme. These vibrational frequencies are assigned to primary normal modes of expansion of the prophyrin macrocycle upon electronic excitation.  相似文献   

3.
Resonance Raman data are reported for the redox-activated form of galactose oxidase from Dactylium dendroides. Excitation within the red (659 nm) and blue (457.9 nm) absorption bands leads to strong resonance enhancement of ligated tyrosine vibrational modes at 550, 1170, 1247, 1484, and 1595 cm-1. The ring mode frequencies are unusually low, indicating a decreased bond order in the ring. The spectra clearly differ in both frequencies and relative intensities from those characteristic of known aromatic pi-radicals. Enhancement of tyrosine ring modes on excitation within absorption bands previously associated with the presence of the radical in the active site suggests that the ligated tyrosine residue is present in the radical site and may stabilize this radical species through formation of a charge transfer complex. A dramatically different Raman spectrum is observed for the N3- adduct of galactose oxidase, exhibiting a single strong 1483 cm-1 feature. The intense visible-near IR absorption bands for galactose oxidase may derive from transitions within a charge transfer complex between an aromatic free radical and a tyrosine-copper complex.  相似文献   

4.
J F Madden  S H Han  L M Siegel  T G Spiro 《Biochemistry》1989,28(13):5471-5477
Resonance Raman (RR) spectra from the hemoprotein subunit of Escherichia coli sulfite reductase (SiR-HP) are examined in the low-frequency (200-500 cm-1) region where Fe-S stretching modes are expected. In spectra obtained with excitation in the siroheme Soret or Q bands, this region is dominated by siroheme modes. Modes assignable to the Fe4S4 cluster are selectively enhanced, however, with excitation at 488.0 or 457.9 nm. The assignments are confirmed by observation of the expected frequency shifts in SiR-HP extracted from E. coli grown on 34S-labeled sulfate. The mode frequencies and isotopic shifts resemble those seen in RR spectra of other Fe4S4 proteins and analogues, but the breathing mode of the cluster at 342 cm-1 is higher than that observed in the other species. Spectra of various ligand complexes of SiR-HP reveal only slight sensitivity of the cluster terminal ligand modes to the presence of exogenous heme ligands, at variance with a model of ligand binding in a bridged mode between heme and cluster. Close examination of RR spectra obtained with siroheme Soret-band excitation reveals additional 34S-sensitive features at 352 and 393 cm-1. These may be attributed to a bridging thiolate ligand.  相似文献   

5.
The Pr and Pfr forms of phytochrome in H2O and D2O have been studied by Fourier transform resonance Raman spectroscopy with near-infrared excitation (1064 nm). It is demonstrated that this technique is a powerful method for analyzing the chromophore structures of photosensitive pigments. The high spectral quality allows discussion of vibrational assignments based on an empirical approach using previously published data obtained from model compounds. The reduction in intensity of a high-frequency band assigned to the ring-C/D methine bridge vibration is an indication for the non-coplanarity of the ring D in Pfr. The high intensity of a C-H out-of-plane vibration also supports this hypothesis. In Pr, a broad peak at approximately 1100 cm-1 is assigned to an out-of-plane vibration of a strongly hydrogen-bonded pyrrole C=NH+ group. It is missing in Pfr, suggesting deprotonation of the corresponding ring during the transformation from Pr to Pfr.  相似文献   

6.
The resonance Raman spectra of the two affinity states of the CO-ligated monomeric insect hemoglobins, Chironomus thummi thummi (CTT) III ad IV, have been investigated. We have identified (via 54Fe/57Fe and 13C18O/12C16O isotope exchange) the Fe-N epsilon(His) stretching mode at approximately 317 cm-1. This stretching mode changes from 329 (pH 5.5) to 317 cm-1 (pH 9.5) reflecting the pH-induced t in equilibrium with r conformational transition. The Fe-CO stretching mode is also pH-sensitive changing from 483 (pH 5.2) to 485 cm-1 (pH 9.2) in 57Fe CTT III . 13C18O complex. However the C-O stretching mode is pH-insensitive. The nonallosteric monomeric insect hemoglobin CTT I does not exhibit a pH-dependence of these vibrational modes. pH-Induced effects were also observed for a vinyl bending mode at 379 cm-1 (pH 9.5) in CTT III deuterated at the beta-carbons of the vinyls in position 2 and 4. It shifts to 390 cm-1 at pH 5.5. The other vinyl vibration at 573 cm-1 exhibits intensity enhancement via through-space coupling with the Fe-C-O bending mode. Our resonance Raman data provide the first direct evidence that the trans-effect is operative as a trigger mechanism for ligand-binding in monomeric allosteric insect hemoglobins. In going from the low-affinity to the high-affinity state, the Fe-N epsilon(His) bond becomes weaker, whereas the Fe-CO bond becomes stronger.  相似文献   

7.
The molybdenum center of xanthine oxidase has been examined by resonance Raman spectroscopy. Making use of the long-wavelength absorption of the reduced molybdenum center in complex with violapterin (the product of enzymic action of lumazine), resonance Raman spectra were obtained using laser excitation at 676.4 nm. Several internal vibrational modes of violapterin were found to be resonance-enhanced, and a number of bands in the 250-1100 cm-1 range, presumably arising from vibrational modes of the molybdenum coordination sphere, were also observed. Upon substitution of 18O for 16O in the molybdenum coordination sphere, bands at 1469, 853, 517, 325, and 276 cm-1 exhibited shifts of 5-12 cm-1 to lower energy. By analogy to previous vibrational studies of Mo-O-Mo and Mo-O-R model compounds, the 853, 517, and 276 cm-1 frequencies were judged consistent with a labeled Mo-O-R linkage of the complexed violapterin. More importantly, the relatively small frequency shifts observed in these and other vibrations upon incorporation of 18O are very similar to those observed by others for 18O-labeled phenol and metal-phenolate complexes (Pinchas, S., Sadeh, D., and Samuel, D. (1965) J. Phys. Chem. 69, 2259-2264; Pyrz, W. J., Rue, L. A., Stern, L. J., and Que, L. J., Jr. (1985) J. Am. Chem. Soc. 107, 614-620) that model iron-tyrosinate proteins. The relatively small isotope-induced frequency shifts in multiple bands are thus interpreted as resulting from vibrational mixing of internal coordinates involving the oxygen atom with internal ring motions of the aromatic species. No oxygen isotope-sensitive bands were observed in the 900-1100 cm-1 region where Mo = O stretching modes typically occur. In agreement with the conclusions of previous workers (Davis, M.D., Olson, J. S., and Palmer, G. (1982) J. Biol. Chem. 257, 14730-14737) we interpret our results to indicate that the absorption band appearing upon complexation of violapterin with the molybdenum center of reduced xanthine oxidase is a molybdenum-to-violapterin charge-transfer band. These results, as well as several other lines of evidence, are consistent with direct coordination of violapterin to molybdenum in the charge-transfer complex via the 7-hydroxyl group (i.e. the hydroxyl group introduced into substrate by the enzyme). The Mo=O stretching mode of the complex is presumably not resonance enhanced because it is orthogonal to the charge-transfer electronic transition, suggesting that coordination of violapterin is cis to the oxo group.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Resonance Raman spectra are reported for catalases from bovine liver, the ascomycete fungus Aspergillus niger, and the bacterium Micrococcus luteus. The vibrational frequencies of the oxidation-, spin-, and coordination number-sensitive spectral bands are indicative of high spin pentacoordinate hemes in the resting ferric enzymes of each of these organisms. This result is in accord with the crystal structure of bovine catalase (Fita, I., and Rossmann, M.G. (1985) J. Mol. Biol. 185, 21-37). In contrast, the crystallographic study of catalase from the ascomycete Penicillium vitale (Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A.A., Grebenko, A. I., Borisov, V. V., Bartels, K. S., Fita, I., and Rossmann, M. G. (1986) J. Mol. Biol. 188, 49-61) showed electron density on the distal side of the heme which could imply the presence of a sixth ligand, possibly a water molecule. However, both of these crystallographic studies showed the proximal ligand in catalase to be a tyrosine. The present study confirms tyrosinate coordination in each of the three catalases from the appearance of selected resonance-enhanced tyrosine vibrational modes. The most characteristic band is the tyrosinate ring mode at approximately 1612 cm-1 which is maximally enhanced with 488.0 nm excitation. The appearance of tyrosinate modes at 1607 and 1245 cm-1 in the resonance Raman spectra of M. luteus cyano catalase serves to identify tyrosine as an axial ligand in bacterial as well as eukaryotic catalases. Unlike non-heme iron tyrosinate proteins, whose resonance Raman spectra are dominated by several intense bands diagnostic of tyrosine ligation, the heme-linked tyrosine modes are not easily distinguished from the large number of porphyrin vibrations.  相似文献   

9.
The resonance Raman (RR) spectra of the complexes of D-amino acid oxidase (DAO) with benzoate derivatives were measured. The RR spectra of complexes of DAO with benzoate derivatives excited at 514.5 nm are similar to one another and also similar to that of oxidized flavin. In the cases of DAO-o-NH2-benzoate and DAO-o-OH-benzoate complexes, however, the line at 568 or 565 cm-1, derived from the benzoate derivative, was intensified. In the case of DAO-o-NH2-benzoate complex, which has an intense charge-transfer absorption band, the resonance enhancement of the Raman lines at 1583 and 568 cm-1 in the RR spectrum excited at 632.8 nm is striking. The former line is known to involve the vibrational displacements of the N(5) and C(4a) atoms of isoalloxazine and the latter is considered to be derived from a ring deformation mode of o-NH2-benzoate. This suggests that the o-NH2-benzoate molecule lies along the N(5)-C(4a) bond and parallel to the flavin face. A Raman line derived from o-OH-benzoate in the RR spectrum of DAO-o-OH-benzoate complex excited at 514.5 nm was detected. This result supports the view that the complex has a charge-transfer band, as has been pointed out by Massey and Ganther. Also, the spectrum of quasi-DAO-o-OH-benzoate complex is identical with that of the complex of DAO, suggesting that the active sites of these two enzymes have similar structures.  相似文献   

10.
The haem-rotational disorder (insertion of haem into globin rotated about the alpha, gamma-meso axis by 180 degrees) has been investigated in the cyano-Met form of the monomeric allosteric insect haemoglobins, CTT III and CTT IV, by resonance Raman spectroscopy. The effect of haem disorder on the resonance Raman spectra has been observed in proto-IX, deutero-IX, and meso-IX CTTs. Most importantly, in the absence of overlapping vinyl vibrations, we have identified two Fe-C-N bending vibrations at 401 cm-1 and 422 cm-1 (pH 9.5) for 57Fe deutero-IX CTT IV ligated with 13C15N-, which are attributed to the two haem-rotational components. One Fe-C-N bending mode at 422 cm-1 shows a pH-induced shift to 424 cm-1 (pH 5.5) indicating the t----r conformational transition, whereas the other bending mode is pH-insensitive, representing a non-allosteric component. By replacing the unsymmetrical porphyrins with the "symmetrical" protoporphyrin-III we eliminate the haem disorder. Then, sharpening of the Fe-N epsilon(His) (at 313 cm-1) and Fe-CN (at 453 cm-1) stretching modes is observed and a single Fe-C-N bending mode (at 412 cm-1) appears. In cyano-Met proto-IX CTT III two vinyl bending vibrations at 412 cm-1 and 591 cm-1 assigned by deuteration of the vinyl groups also reflect the haem disorder. The 412 cm-1 vinyl vibration is intensity-enhanced via through-space coupling with one of the Fe-C-N bending modes (at 412 cm-1). In the cyano-Met form of proto-III CTT III this vinyl vibration is shifted to 430 cm-1 resulting in a dramatic drop in intensity. It is most likely that the specific vinyl-protein interaction at position 4 in one of the haem-rotational components is the origin of the coupling between the Fe-C-N and vinyl bending modes. The Fe-N epsilon(proximal His) and the Fe-CN stretching vibrations as well as the Fe-C-N bending vibration have been identified by 54Fe/57Fe and 13C15N/12C15N/13C14N/12C14N isotope exchange.  相似文献   

11.
Resonance Raman spectra of the ferrous CO complex of cytochrome P-450cam have been observed both in its camphor-bound and free states. Upon excitation at 457.9 nm, near the absorption maximum of the Soret band, the ferrous CO complex of the camphor-bound enzyme showed an anomalously intense Raman line at 481 cm-1 besides the strong Raman lines at 1366 and 674 cm-1 for the porphyrin vibrations. The Raman line at 481 cm-1 (of the 12C16O complex) shifted to 478 cm-1 upon the substitution by 13C16O and to 473 cm-1 by 12C18O without any detectable shift in porphyrin Raman lines. This shows that the line at 481 cm-1 is assignable to Fe-CO stretching vibration. By the excitation at 457.9 nm, a weak Raman line was also observed at 558 cm-1, which was assigned to the Fe-C-O bending vibration, because it was found to shift by -14 cm-1 on 13C16O substitution while only -3 cm-1 on 12C18O substitution. These stretching and bending vibrations of the Fe-CO bond were not detected with the excitation at 413.1 nm, though the porphyrin Raman lines at 1366 and 674 cm-1 were clearly observed. When the substrate, camphor, was removed from the enzyme, the Fe-CO stretching vibration was found to shift to 464 cm-1 from 481 cm-1, while no detectable changes were found in porphyrin Raman lines. This means that the bound substrate interacts predominantly with the Fe-CO portion of the enzyme molecule.  相似文献   

12.
Resonance Raman excitation profiles have been measured for the bovine visual pigment rhodopsin using excitation wavelengths ranging from 457.9 to 647.1 nm. A complete Franck-Condon analysis of the absorption spectrum and resonance Raman excitation profiles has been performed using an excited-state, time-dependent wavepacket propagation technique. This has enabled us to determine the change in geometry upon electronic excitation of rhodopsin's 11-cis-retinal protonated Schiff base chromophore along 25 normal coordinates. Intense low-frequency Raman lines are observed at 98, 135, 249, 336, and 461 cm-1 whose intensities provide quantitative, mode-specific information about the excited-state torsional deformations that lead to isomerization. The dominant contribution to the width of the absorption band in rhodopsin results from Franck-Condon progressions in the 1,549 cm-1 ethylenic normal mode. The lack of vibronic structure in the absorption spectrum is shown to be caused by extensive progressions in low-frequency torsional modes and a large homogeneous linewidth (170 cm-1 half-width) together with thermal population of low-frequency modes and inhomogeneous site distribution effects. The resonance Raman cross-sections of rhodopsin are unusually weak because the excited-state wavepacket moves rapidly (approximately 35 fs) and permanently away from the Franck-Condon geometry along skeletal stretching and torsional coordinates.  相似文献   

13.
As models for chlorophyll a (Chl a), methyl ester ClFe(III)pheophorbides (1, pheophorbide a; 2, mesopheophorbide a; and 3, mesopyropheophorbide a) were examined by Fourier transform infrared (FTIR) absorption and resonance Raman (RR) spectroscopy. The infrared (IR) chlorin band above 1600 cm-1, assigned as a Ca-Cm mode (Andersson et al. (1987) J. Am. Chem. Soc. 109, 2908-2916) is shown to be metal-sensitive and responsive to spin state and coordination number for dihydroporphyrins, as well as being diagnostic for the chlorin vs. porphyrin or bacteriochlorin macrocycle. Frequency variations for this metallochlorin IR band thus parallel those of the v10 RR mode of porphyrins in their predictive utility. Qy excitation SERRS spectra of Chl a were compared with Qy excitation RR spectra of 1 and methyl Ni(II)pyropheophorbide a. The data demonstrate that 5-coordinate ClFe(III)pheophorbides are better models for chlorophylls than are ruffled 4-coordinate Ni(II)pheophorbides. Major spectral differences between the three chlorophyll models are associated with the C-9 keto and/or C-10 carbomethoxy vibrational modes. The approx. 1700 cm-1 IR band was formerly assigned solely to v(C = O) of the C-9 keto group. However, this IR feature shifts down to approx. 1685 cm-1 and nearly doubles in intensity when the C-10 carbomethoxy is removed, as for 3. Similar frequency downshifts coupled with intensity increases in the IR are found in the literature on chlorophylls. RR spectra of pheophorbides having the C-10 carbomethoxy group (1 and 2) have bands at both approx. 1700 and approx. 1735 cm-1. However, the C-9 keto v(C = O) mode of pyrophorbins also downshifts to approx. 1685 cm-1, as in the IR spectra. The approx. 1735 cm-1 ester RR mode disappears in the case of pyrophorbins, and is never RR active for nonconjugated esters of porphyrins or chlorins. These data demonstrate an interaction between the C-10 and C-9 carbonyls of phorbins. They also indicate that phorbins tend toward conjugation of the C-10 ester. Biological examples of such conjugation effects have recently been reported, e.g., for the Chl a pi-cation radical (Heald et al. (1988) J. Phys. Chem. 92, 4820-4824). Because the phorbin E ring is the major structural feature distinguishing chlorophylls from non-photosynthetic systems, the participation of the C-10 ester in ring conjugation is suggestive of its biological importance.  相似文献   

14.
V Srajer  P M Champion 《Biochemistry》1991,30(30):7390-7402
We present the results of an extensive investigation of the optical line shapes of deoxymyoglobin (Mb), the ligand-bound form (MbCO), and the low-temperature photoproduct (Mb*). The thermal properties and the pH dependence of the Soret band and the near infrared band III (approximately 760 nm) are analyzed, taking into account the underlying vibrational properties of the absorption bands. The strong temperature dependence associated with the Soret band of MbCO and band III of Mb indicates significant coupling to low-frequency modes that may not be directly observed in the resonance Raman spectra. On the basis of analogous line-shape studies in a variety of heme systems, we assign the low-frequency coupling in MbCO to torsional motions of the CO molecule. The low-frequency mode coupled to band III (approximately 70 cm-1) is found to lie quite close to the value for the heme-doming motion (approximately 50 cm-1) calculated by using the kinetically determined value of the force constant (17 N/m). Significant inhomogeneous broadening in the Soret region of Mb and Mb* is found to be due to a "nonkinetic" coordinate that we associate with the orientation of the proximal histidine. A "kinetic" coordinate, associated with the equilibrium displacement of the iron atom from the porphyrin plane (a) is found to contribute to the inhomogeneous broadening of both the Soret band and band III. The relaxation of the heme as the system evolves from from Mb* to Mb is followed optically as a function of temperature, and a sharp transition temperature is found at 185 K. The blue shifts of the Soret band and band III as Mb* evolves to Mb are found to be nearly identical (delta v*ABS approximately 140 cm-1) and attributed to changes in the mean value of a between Mb* (a*0) and Mb (a0 = 0.45 A). A simple quadratic model for the coordinate coupling that simultaneously accounts for the observed shift, delta v*ABS, the low-temperature kinetics and the kinetic hole burning predicts a*0 = 0.2 +/- 0.05 A and EA = 16 +/- 2 kJ/mol for the room temperature Arrhenius barrier height at the heme. A simple quantitative method for the analysis of kinetic hole-burning experiments is also developed and applied to recent studies involving quaternary and subunit-specific hemoglobin structures.  相似文献   

15.
Vibrational spectroscopic data were collected on the salt [C5H6N]2[Cl3FeOFeCl3] . C5H5N, which has previously been structurally characterized by X-ray crystallography. The modes associated with the oxo bridge were identified by experiments on the 18O-containing species. Spectra for the mu-16O complex contain Raman bands at 870, 458, and 203 cm-1 that shift to 826, 440, and 198 cm-1 in the mu-18O complex. These are respectively assigned to the asymmetric, symmetric, and angle deformations of the bent Fe-O-Fe moiety. A normal mode vibration analysis based on a simple valence force field for the Fe-O-Fe portion of the molecule provides surprisingly good agreement with these experimental frequencies and their assignments. The vibrational data for this simple inorganic complex confirm the assignment of a resonance Raman band around 500 cm-1 in the oxygen-carrying protein hemerythrin and enzyme ribonucleotide reductase as the symmetric stretch of an oxo bridge between two iron(III) centers.  相似文献   

16.
A systematic study of the sugar pucker characteristic vibration modes as a function of its geometrical conformations, has been performed. The present investigation is based on the Wilson GF method and a non-redundant valence force field. The calculated results allow to assign the modes arising mainly from the sugar motions and present in quasi whole vibrational spectra related to the right or left-handed double-helices (i.e., 1050 cm-1, 960 cm-1 and 890 cm-1). Moreover, the conformation dependent modes as those at 860 cm-1 and around 810 cm-1 (A form) as well as the one located around 830 cm-1 (B form) are interpreted by the present investigation. The possibility of the interaction of the latter modes with the phosphate group motions along the DNA double-helical chains are also discussed.  相似文献   

17.
Resonance Raman spectra of native bovine liver ferri-catalase have been obtained in the 200-1800 cm-1 region. Excitation at a series of wavelengths ranging from 406.7 to 514.5 nm has been used and gives rise to distinct sets of resonance Raman bands. Excitation within the Soret and Q-bands of the heme group produces the expected set of polarized and nonpolarized porphyrin modes, respectively. The frequencies of the porphyrin skeletal stretching bands in the 1450-1700 cm-1 region indicate that catalase contains only five-coordinate, high-spin heme groups. In addition to the porphyrin modes, bovine liver catalase exhibits bands near 1612 and 1520 cm-1 that are attributable to ring vibrations of the proximal tyrosinate that are enhanced via resonance with a proximal tyrosinate----Fe(III) change transfer transition centered near 490 nm. Similar bands have been observed in mutant hemoglobins that have tyrosinate axial ligands and in other Fe(III)-tyrosinate proteins. No resonance Raman bands have been observed that can be attributed to degraded hemes. The spectra are relatively insensitive to pH over the range of 5-10, and the same spectra are observed for catalase samples that do and do not contain tightly bound NADPH. Resonance Raman spectra of the fluoride complex exhibit porphyrin skeletal stretching modes that show it to be six coordinate, high spin, while the cyanide complex is six coordinate, low spin. Both the azide and thiocyanate complexes, however, are spin-state mixtures with the high-spin form predominant.  相似文献   

18.
Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These vibrational data can be primarily interpreted in terms of the degree of twisting of the C14-C15 retinal bond. Such twisting may be accompanied by changes in the adjacent protein. Other smaller, but nonetheless clear, spectral changes indicate that alterations along the retinal polyene chain also occur. The changes in the retinal structure are preliminary to the deprotonation of the Schiff base nitrogen during the formation of M-412. The time constant for the ps/ns K-590 transformation is estimated from the amplitude change of four vibrational bands in the HOOP region to be 40-70 ns.  相似文献   

19.
The resonance Raman spectra of cytochrome c oxidase in protonated buffer compared to that in deuterated buffer indicate that water molecules are near the heme of cytochrome a. Differences in widths of the heme line at 1610 cm-1, after short exposure to D2O, and, additionally, of the heme line at 1625 cm-1, after long exposure, can be accounted for by changes in resonance vibrational energy transfer between modes of cytochrome a2+ and the bending mode of water molecules in the heme pocket. On the basis of the assignment of these modes, we place one water molecule near the vinyl group and one water molecule near the formyl group of the cytochrome a heme. These water molecules may play several possible functional roles.  相似文献   

20.
J S Vincent  I W Levin 《Biochemistry》1988,27(9):3438-3446
The vibrational Raman spectra of both pure L-alpha-dipalmitoylphosphatidylcholine (DPPC) liposomes and DPPC multilayers reconstituted with ferricytochrome c under varying conditions of pH and ionic strength are reported as a function of temperature. Total integrated band intensities and relative peak height intensity ratios, two spectral scattering parameters used to determine bilayer disorder, are invariant to changes in pH and ionic strength but exhibit a sensitivity to the bilayer concentration of the ferricytochrome c. Protein concentrations were estimated by comparing the 1636 cm-1 resonance Raman line of known ferricytochrome c solutions to intensity values for the reconstituted multilayer samples. Temperature-dependent profiles of the 3100-2800 cm-1 C-H stretching, 1150-1000 cm-1 C-C stretching, 1440 cm-1 CH2 deformation, and 1295 cm-1 CH2 twisting mode regions characteristic of acyl chain vibrations reflect bilayer perturbations due to the weak interactions of ferricytochrome c. The DPPC multilamellar gel to liquid-crystalline phase transition temperature, TM, defined by either the C-H stretching mode I2935/I2880 or the C-C stretching mode I1061/I1090 peak height intensity ratios, is decreased by approximately 4 degrees C for the approximately 10(-4) M ferricytochrome c reconstituted DPPC liposomes. Other spectral features, such as the increase in the 2935 cm-1 C-H stretching mode region and the enhancement of higher frequency CH2 twisting modes, which arise in bilayers containing approximately 10(-4) M protein, are interpreted in terms of protein penetration into the hydrophobic region of the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号