首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vivo metabolic pathways of phospholipid biosynthesis in Rhodopseudomonas sphaeroides have been investigated. Rapid pulse-chase-labeling studies indicated that phosphatidylethanolamine and phosphatidylglycerol were synthesized as in other eubacteria. The labeling pattern observed for N-acylphosphatidylserine (NAPS) was inconsistent with the synthesis of this phospholipid occurring by direct acylation of phosphatidylserine (PS). Rather, NAPS appeared to be kinetically derived from an earlier intermediate such as phosphatidic acid or more likely CDP-diglyceride. Tris-induced NAPS accumulation specifically reduced the synthesis of PS. Treatment of cells with a bacteriostatic concentration of hydroxylamine (10 mM) greatly reduced total cellular phospholipid synthesis, resulted in accumulation of PS, and stimulated the phosphatidylglycerol branch of phospholipid metabolism relative to the PS branch of the pathway. When the cells were treated with a lower hydroxylamine dosage (50 microM), total phospholipid synthesis lagged as PS accumulated, however, phospholipid synthesis resumed coincident with a reversal of PS accumulation. Hydroxylamine alone was not sufficient to promote NAPS accumulation but this compound allowed continued NAPS accumulation when cells were grown in medium containing Tris. The significance of these observations is discussed in terms of NAPS biosynthesis being representative of a previously undescribed branch of the phospholipid biosynthetic sequence.  相似文献   

2.
Phosphatidylserine (PS) decarboxylase is involved in the synthesis of the abundant phospholipid phosphatidylethanolamine (PE), particularly in mitochondria, in many organisms, including yeast (Saccharomyces cerevisiae) and animals. Arabidopsis (Arabidopsis thaliana) contains three genes with sequence similarity to PS decarboxylases, and the respective gene products were functionally characterized after heterologous expression in yeast and Escherichia coli. While the PSD1 protein localizes to mitochondria, PSD2 and PSD3 are found in the endomembrane system. To study the role of PSD genes in plant phospholipid metabolism, Arabidopsis insertional mutants for psd1, psd2, and psd3 were obtained. The single mutants were decreased in PS decarboxylase activity to various extents, but mutant plants showed no obvious growth or morphological phenotype. A triple mutant, psd1 psd2 psd3, was generated that was totally devoid of PS decarboxylase activity. While the phospholipid composition in whole leaves was unchanged, the PE content in isolated mitochondria of psd1 psd2 psd3 was decreased. Therefore, the predominant proportion of PE in Arabidopsis is synthesized by alternative pathways, but a significant amount of mitochondrial PE is derived from the PS decarboxylase reaction. These results imply that, similar to yeast and animal cells, a specific phospholipid transfer from the endoplasmic reticulum to mitochondria exists in plants.  相似文献   

3.
Three plant cDNA libraries were expressed in yeast (Saccharomyces cerevisiae) and screened on agar plates containing toxic concentrations of aluminum. Nine cDNAs were isolated that enhanced the aluminum tolerance of yeast. These cDNAs were constitutively expressed in Arabidopsis (Arabidopsis thaliana) and one cDNA from the roots of Stylosanthes hamata, designated S851, conferred greater aluminum tolerance to the transgenic seedlings. The protein predicted to be encoded by S851 showed an equally high similarity to Delta6 fatty acyl lipid desaturases and Delta8 sphingolipid desaturases. We expressed other known Delta6 desaturase and Delta8 desaturase genes in yeast and showed that a Delta6 fatty acyl desaturase from Echium plantagineum did not confer aluminum tolerance, whereas a Delta8 sphingobase desaturase from Arabidopsis did confer aluminum tolerance. Analysis of the fatty acids and sphingobases of the transgenic yeast and plant cells demonstrated that S851 encodes a Delta8 sphingobase desaturase, which leads to the accumulation of 8(Z/E)-C(18)-phytosphingenine and 8(Z/E)-C(20)-phytopshingenine in yeast and to the accumulation of 8(Z/E)-C(18)-phytosphingenine in the leaves and roots of Arabidopsis plants. The newly formed 8(Z/E)-C(18)-phytosphingenine in transgenic yeast accounted for 3 mol% of the total sphingobases with a 8(Z):8(E)-isomer ratio of approximately 4:1. The accumulation of 8(Z)-C(18)-phytosphingenine in transgenic Arabidopsis shifted the ratio of the 8(Z):8(E) isomers from 1:4 in wild-type plants to 1:1 in transgenic plants. These results indicate that S851 encodes the first Delta8 sphingolipid desaturase to be identified in higher plants with a preference for the 8(Z)-isomer. They further demonstrate that changes in the sphingolipid composition of cell membranes can protect plants from aluminum stress.  相似文献   

4.
Phospholipid metabolism in the fission yeast Schizosaccharomyces pombe was examined. Three enzymes of phospholipid biosynthesis, cytidine diphosphate diacylglycerol synthase (CDP-DG), phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase, were characterized in extracts of S. pombe cells. Contrary to an earlier report, we were able to demonstrate that CDP-DG served as a precursor for PI and PS biosynthesis in S. pombe. S. pombe is naturally auxotrophic for the phospholipid precursor inositol. We found that S. pombe was much more resistant to loss of viability during inositol starvation than artificially generated inositol auxotrophs of Saccharomyces cerevisiae. The phospholipid composition of S. pombe cells grown in inositol-rich medium (50 microM) was similar to that of S. cerevisiae cells grown under similar conditions. However, growth of S. pombe at low inositol concentrations (below 30 microM) affected the ratio of the anionic phospholipids PI and PS, while the relative proportions of other glycerophospholipids remained unchanged. During inositol starvation, the rate of PI synthesis decreased rapidly, and there was a concomitant increase in the rate of PS synthesis. Phosphatidic acid and CDP-DG, which are precursors to these phospholipids, also increased when PI synthesis was blocked by lack of exogenous inositol. The major product of turnover of inositol-containing phospholipids in S. pombe was found to be free inositol, which accumulated in the medium and could be reused by the cell.  相似文献   

5.
The established pathways from serine to ethanolamine are indirect and involve decarboxylation of phosphatidylserine. Here we show that plants can decarboxylate serine directly. Using a radioassay based on ethanolamine (Etn) formation, pyridoxal 5'-phosphate-dependent l-serine decarboxylase (SDC) activity was readily detected in soluble extracts from leaves of diverse species, including spinach, Arabidopsis, and rapeseed. A putative Arabidopsis SDC cDNA was identified by searching GenBank for sequences homologous to other amino acid decarboxylases and shown by expression in Escherichia coli to encode a soluble protein with SDC activity. This cDNA was further authenticated by complementing the Etn requirement of a yeast psd1 psd2 mutant. In a parallel approach, a cDNA was isolated from a rapeseed library by its ability to complement the Etn requirement of a yeast cho1 mutant and shown by expression in E. coli to specify SDC. The deduced Arabidopsis and rapeseed SDC polypeptides are 90% identical, lack obvious targeting signals, and belong to amino acid decarboxylase group II. Recombinant Arabidopsis SDC was shown to exist as a tetramer and to contain pyridoxal 5'-phosphate. It does not attack d-serine, l-phosphoserine, other l-amino acids, or phosphatidylserine and is not inhibited by Etn, choline, or their phosphoesters. As a soluble, pyridoxal 5'-phosphate enzyme, SDC contrasts sharply with phosphatidylserine decarboxylases, which are membrane proteins that have a pyruvoyl cofactor.  相似文献   

6.
A wheat ethylene receptor homologue (W-er1) was isolated from a wheat stem cDNA library using the Arabidopsis ETR1 cDNA as a probe. The predicted amino acid sequence of W-er1 is over 70% similar to ERS1 from Arabidopsis and exhibits homology to bacterial two-component response regulators within the histidine kinase domain. Northern hybridization demonstrated that W-er1 was expressed in stem, leaf and root tissues. Treatments known to induce senescence of detached leaves including jasmonate, abscisic acid and wounding, increased the accumulation of W-er1 mRNA, while benzyladenine treatment did not. These data suggest that W-er1 may play a role in the process of leaf senescence.  相似文献   

7.
Phosphatidylserine (PS) has many important biological roles, but little is known about its role in plants, partly because of its low abundance. We show here that PS is enriched in Arabidopsis floral tissues and that genetic disruption of PS biosynthesis decreased heterozygote fertility due to inhibition of pollen maturation. At1g15110, designated PSS1, encodes a base-exchange-type PS synthase. Escherichia coli cells expressing PSS1 accumulated PS in the presence of l-serine at 23°C. Promoter-GUS assays showed PSS1 expression in developing anther pollen and tapetum. A few seeds with pss1-1 and pss1-2 knockout alleles escaped embryonic lethality but developed into sterile dwarf mutant plants. These plants contained no PS, verifying that PSS1 is essential for PS biosynthesis. Reciprocal crossing revealed reduced pss1 transmission via male gametophytes, predicting a rate of 61.6%pss1-1 pollen defects in PSS1/pss1-1 plants. Alexander's staining of inseparable qrt1-1 PSS1/pss1-1 quartets revealed a rate of 42% having three or four dead pollen grains, suggesting sporophytic pss1-1 cell death effects. Analysis with the nuclear stain 4',6-diamidino-2-phenylindole (DAPI) showed that all tetrads from PSS1/pss1-1 anthers retain their nuclei, whereas unicellular microspores were sometimes anucleate. Transgenic Arabidopsis expressing a GFP-LactC2 construct that binds PS revealed vesicular staining in tetrads and bicellular microspores and nuclear membrane staining in unicellular microspores. Hence, distribution and/or transport of PS across membranes were dynamically regulated in pollen microspores. However, among unicellular microspores from PSS1/pss1-2 GFP-LactC2 plants, all anucleate microspores showed little GFP-LactC2 fluorescence, suggesting that pss1-2 microspores are more sensitive to sporophytic defects or show partial gametophytic defects.  相似文献   

8.
9.
10.
This report describes the cloning of a cDNA from an Arabidopsis thaliana suspension culture cDNA library that encodes a potential 9-cis-epoxy-carotenoid dioxygenase, a key enzyme involved in the biosynthesis of abscisic acid. The predicted protein sequence of this cDNA, termed AtNCED1, shares conserved regions with those of published epoxy-carotenoid dioxygenase enzymes from maize and tomato. At NECD1 mRNA was present in turbid shoot tissues and rapid dehydration resulted in accumulation of AtNCED1 mRNA.  相似文献   

11.
我们观测了不同光照预处理对拟南芥、小麦和大豆叶片光合作用和低温(77K)叶绿素荧光参数F685、F735和F685/F735的影响。野生型拟南芥叶片光合作用对饱和光到有限光转变的响应曲线是V型,而缺乏叶绿体蛋白激酶的突变体STN7的这一曲线为L型。饱和白光可以引起拟南芥叶片F685/F735的明显降低,但是F735没有明显增高,而弱红光可以导致拟南芥叶片F685/F735的明显降低和F735的明显增高,表明弱红光可以引起状态1向状态2的转变,同时伴随从光系统Ⅱ脱离的LHCⅡ与光系统Ⅰ的结合,而饱和白光只能引起LHCⅡ从光系统Ⅱ反应中心复合体脱离。并且,低温叶绿素荧光分析结果证明,饱和白光可以引起大豆叶片LHCⅡ脱离,但是不能引起小麦叶片LHCⅡ脱离,而弱红光可以引起小麦叶片的这种状态转换,却不能引起大豆叶片的这种状态转换。因此,饱和白光引起的野生型拟南芥和大豆叶片的LHCⅡ脱离不是一个典型的状态转换现象。  相似文献   

12.

Leaf senescence, which affects plant growth and yield in rice, is an ideal target for crop improvement and remarkable advances have been made to identify the mechanism underlying this process. We have characterized an early senile mutant es5 (early leaf senescence 5) in rice exhibiting leaf yellowing phenotype after the 4-leaf stage. This phenotype was confirmed by the higher accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the disintegration of chloroplasts, reduction in chlorophyll content and photosynthetic rate and up-regulation of senescence-associated genes (SAGs) like Osh36, OsI57, and OsI85. Positional cloning revealed that the es5 phenotype is the result of one base substitution in ES5, encoding phosphatidylserine synthase (PSS) family protein, which is involved in the base-exchange type reaction to synthesize the minor membrane phospholipid phosphatidylserine. Functional complementation of ES5 in the es5 plants completely restored the wild-type phenotype. Ultra-high-performance liquid chromatography (UHPLC) analysis showed that es5 plants had increased levels of phosphatidylserine (PS) and decreased level of phosphatidylcholine (PC). These results provide evidence about the role of PS in rice leaf senescence.

  相似文献   

13.
Phosphatidylserine (PS), the major anionic phospholipid in eukaryotic cell membranes, is synthesized by the integral membrane enzymes PS synthase 1 (PSS1) and 2 (PSS2). PSS2 is highly expressed in specific tissues, such as brain and testis, where docosahexaenoic acid (DHA, 22:6n-3) is also highly enriched. The purpose of this work was to characterize the hydrocarbon-chain preference of PSS2 to gain insight on the specialized role of PSS2 in PS accumulation in the DHA-abundant tissues. Flag-tagged PSS2 was expressed in HEK cells and immunopurified in a functionally active form. Purified PSS2 utilized both PE plasmalogen and diacyl PE as substrates. Nevertheless, the latter was six times better utilized, indicating the importance of an ester linkage at the sn-1 position. Although no sn-1 fatty acyl preference was noted, PSS2 exhibited significant preference toward DHA compared with 18:1 or 20:4 at the sn-2 position. Preferential production of DHA-containing PS (DHA-PS) was consistently observed with PSS2 purified from a variety of cell lines as well as with microsomes from mutant cells in which PS synthesis relies primarily on PSS2. These findings suggest that PSS2 may play a key role in PS accumulation in brain and testis through high activity toward DHA-containing substrates that are abundant in these tissues.  相似文献   

14.
A method has been developed for the cloning of plasma membrane transporters by screening yeast transformed with a cDNA library for the accumulation of radiolabelled substrate. The applicability of the method is demonstrated by cloning the amino acid permease AAP1. A yeast mutant defective in proline uptake was transformed with an Arabidopsis thaliana cDNA library and plated on medium supplemented with L-[U-(14)C]proline. Yeast colonies accumulating radiolabelled proline were identified by autoradiography. The plasmids of these colonies were reintroduced into the yeast mutant and restoration of proline uptake was confirmed by L-[U-(14)C]proline uptake measurements. Whereas cloning of transporters by functional complementation requires that the substrate taken up is metabolized by yeast to promote growth, the method described here can be used to isolate transporters of substrates which are not metabolized. The method has great potential for the isolation of transporters of various substrates such as secondary plant products.  相似文献   

15.
Sphingolipids play critical roles in many physiologically important events in yeast Saccharomyces cerevisiae. In this study, we screened for yeast mutants showing high sensitivity to Aureobasidin A, an inhibitor of inositol phosphorylceramide synthase, and found that a lack of SAC1 encoding phosphoinositides phosphatase causes high sensitivity to the inhibitor. Double mutation analysis involving the SAC1 and non-essential sphingolipid-metabolizing enzyme genes revealed that csg1Δ, csg2Δ, ipt1Δ or scs7Δ causes synthetic lethality with deletion of SAC1. As previously reported, SAC1-repressed cells exhibited a reduced cellular phosphatidylserine (PS) level, and overexpression of PSS1 encoding PS synthase complemented the growth defects of scs7Δ, csg1Δ and ipt1Δ cells under SAC1-repressive conditions. Furthermore, repression of PSS1 expression resulted in synthetic growth defect with the deletion of CSG1, IPT1 or SCS7. The growth defects of scs7Δ, csg1Δ and ipt1Δ cells under SAC1- or PSS1-repressive conditions were also complemented by overexpression of Arf-GAP AGE1, which encodes a protein related to membrane trafficking. Under SAC1-repressive conditions, scs7Δ, csg1Δ and ipt1Δ cells showed defects in vacuolar morphology, which were complemented by overexpression of each of PSS1 and AGE1. These results suggested that a specific group of sphingolipid-metabolizing enzyme is required for yeast cell growth under impaired metabolism of glycerophospholipids.  相似文献   

16.
CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eucaryotic phospholipid biosynthesis and could be a key regulatory site in phospholipid metabolism. Therefore, we examined the effects of growth phase, phospholipid precursors, and the disruption of phosphatidylcholine (PC) synthesis on the membrane-associated phospholipid biosynthetic enzymes CDP-DG synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase in cell extracts of the fission yeast Schizosaccharomyces pombe. In complete synthetic medium containing inositol, maximal expression of CDP-DG synthase, PGP synthase, PI synthase, and PS synthase in wild-type cells occurred in the exponential phase of growth and decreased two- to fourfold in the stationary phase of growth. In cells starved for inositol, this decrease in PGP synthase, PI synthase, and PS synthase expression was not observed. Starvation for inositol resulted in a twofold derepression of PGP synthase and PS synthase expression, while PI synthase expression decreased initially and then remained constant. Upon the addition of inositol to inositol-starved cells, there was a rapid and continued increase in PI synthase expression. We examined expression of these enzymes in cho2 and cho1 mutants, which are blocked in the methylation pathway for synthesis of PC. Choline starvation resulted in a decrease in PS synthase and CDP-DG synthase expression in cho1 but not cho2 cells. Expression of PGP synthase and PI synthase was not affected by choline starvation. Inositol starvation resulted in a 1.7-fold derepression of PGP synthase expression in cho2 but not cho1 cells when PC was synthesized. PS synthase expression was not depressed, while CDP-DG synthase and PI synthase expression decreased in cho2 and cho1 cells in the absence of inositol. These results demonstrate that (i) CDP-DG synthase, PGP synthase, PI synthase, and PS synthase are similarly regulated by growth phase; (ii) inositol affects the expression of PGP synthase, PI synthase, and PS synthase; (iii) disruption of the methylation pathway results in aberrant patterns of regulation of growth phase and phospholipid precursors. Important differences between S. pombe and Saccharomyces cerevisiae with regard to regulation of these enzymes are discussed.  相似文献   

17.
我们观测了不同光照预处理对拟南芥、小麦和大豆叶片光合作用和低温(77K) 叶绿素荧光参数F685、F735和F685/F735的影响.野生型拟南芥叶片光合作用对饱和光到有限光转变的响应曲线是V型,而缺乏叶绿体蛋白激酶的突变体STN7的这一曲线为L型. 饱和白光可以引起拟南芥叶片F685/F735的明显降低,但是F735没有明显增高,而弱红光可以导致拟南芥叶片F685/F735的明显降低和F735的明显增高,表明弱红光可以引起状态1向状态2的转变,同时伴随从光系统II脱离的LHC II与光系统I的结合,而饱和白光只能引起LHC II从光系统II反应中心复合体脱离.并且,低温叶绿素荧光分析结果证明,饱和白光可以引起大豆叶片LHC II脱离,但是不能引起小麦叶片LHC II脱离,而弱红光可以引起小麦叶片的这种状态转换,却不能引起大豆叶片的这种状态转换.因此,饱和白光引起的野生型拟南芥和大豆叶片的LHC II脱离不是一个典型的状态转换现象.  相似文献   

18.
A phosphatidylserine-auxotrophic mutant of cultured Chinese hamster ovary cells, PSA-3, manifests a defect in phosphatidylserine synthase I activity (Kuge, O., Nishijima, M., and Akamatsu, Y. (1986) J. Biol. Chem. 261, 5790-5794). We cloned a Chinese hamster gene, designated pssC, which was able to transform the PSA-3 cell line to a phosphatidylserine prototroph. The resultant transformant contained phosphatidylserine in normal amounts but remained defective in phosphatidylserine synthase I activity, indicating that pssC is a suppressor gene. Using the genomic fragment of pssC as a probe, a cDNA clone of pssC was isolated, and its nucleotide sequence was determined. A computer search through a protein data bank revealed that pssC had homology with the Escherichia coli psd gene encoding the proenzyme of phosphatidylserine decarboxylase at the amino acid level. Introduction of the cloned pssC gene into PSA-3 resulted in a 2-fold increase in phosphatidylserine decarboxylase activity. When the pssC cDNA was placed downstream of the yeast GAL1 promoter and introduced into yeast Saccharomyces cerevisiae cells, the phosphatidylserine decarboxylase activity increased in a galactose-dependent manner. These results indicate that pssC encodes phosphatidylserine decarboxylase. The mechanism by which pssC complements the defect of PSA-3 in phosphatidylserine biosynthesis is discussed.  相似文献   

19.
Obtusifoliol 14alpha-demethylase is a plant orthologue of sterol 14alpha-demethylase (CYP51) essential in sterol biosynthesis. We have prepared CYP51 antisense Arabidopsis in order to shed light on the sterol and steroid hormone biosynthesis in plants. Arabidopsis putative CYP51 cDNA (AtCYP51) was obtained from Arabidopsis expressed sequence tag (EST) library and its function was examined in a yeast lanosterol 14alpha-demethylase (Erg11) deficient mutant. A recombinant AtCYP51 protein fused with a yeast Erg11 signal-anchor peptide was able to complement the erg11 mutation, which confirmed AtCYP51 to be a functional sterol 14alpha-demethylase. AtCYP51 was then used to generate transgenic Arabidopsis by transforming with pBI vector harboring AtCYP51 in the antisense direction under CaMV35S promoter. The resulting transgenic plants were decreased in accumulation of AtCYP51 mRNA and increased in the amount of endogenous obtusifoliol. They showed a semidwarf phenotype in the early growth stage and a longer life span than control plants. This newly found phenotype is different from previously characterized brassinosteroid (BR)-deficient campesterol biosynthesis mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号