首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple and cost-effective methods are needed to extract DNA in order to use it in large-scale studies. Blood is an excellent DNA source; however, it is costly and invasive thus an alternative is needed. Several kits and chemical protocols using buccal cells have been proposed for DNA extraction. The objective of the study is to evaluate buccal NaOH chemical protocol and Nucleospin Tissue Kit (BD Biosciences, Macery-Nagel, Germany) for DNA extraction. DNA swab samples were collected from 300 voluntary participants. DNA yields and purity were measured by NaOH and Nucleospin Tissue Kit techniques; the cost and time consumption for DNA extraction per sample were assessed as well. Results have shown that DNA amount and purity extracted by NaOH procedure was compared to that of the kit (p = 0.164; p = 0.249, respectively). NaOH method was considered cheaper and less time consuming (0.06 versus 3.80 USD, and 1.33 versus 3.59 minutes per sample, p < 0.001). Buccal cell derived DNA extracted by NaOH protocol can be considered a feasible substitute for more expensive and time-consuming kits.  相似文献   

2.
The use of nondestructive methods for obtaining DNA from amphibians (e.g. buccal swabs) allows genetic studies to be performed without affecting the survival of the studied individuals. In this study, we compared two methods of nondestructive DNA sampling, buccal swabs and interdigital membrane or toe‐clipping, in several amphibian species of different size: Rhinella spinulosa, Ratacamensis, six species of the genus Telmatobius and Pleurodema thaul. We evaluated the integrity of the DNA extracted by sequencing fragments of mitochondrial and nuclear genes and by generating amplified fragment length polymorphisms markers (AFLPs). In all cases, we obtained an adequate amount of DNA (mean range 55–298 ng/μL). We obtained identical DNA sequences from buccal swab and interdigital membrane/toe‐clip for all individuals. The differences in the coding of AFLP markers between the tissues were similar to those reported for replicas of the same type of sample in similar analyses in other species of amphibians. In conclusion, the use of buccal swabs is a trustworthy and inexpensive method to obtain DNA for mitochondrial and nuclear sequencing and AFLP analyses. Given the types of markers evaluated, buccal swabs may be used for phylogenetic, phylogeographic and population genetic studies, even in small amphibians (<33 mm).  相似文献   

3.
Isolation of DNA from blood and buccal swabs in adequate quantities is an integral part of forensic research and analysis. The present study was performed to determine the quality and the quantity of DNA extracted from four commonly available samples and to estimate the time duration of the ensuing PCR amplification. Here, we demonstrate that hair and urine samples can also become an alternate source for reliably obtaining a small quantity of PCR-ready DNA. We developed a rapid, cost-effective, and noninvasive method of sample collection and simple DNA extraction from buccal swabs, urine, and hair using the phenol-chloroform method. Buccal samples were subjected to DNA extraction, immediately or after refrigeration (4–6°C) for 3 days. The purity and the concentration of the extracted DNA were determined spectrophotometerically, and the adequacy of DNA extracts for the PCR-based assay was assessed by amplifying a 1030-bp region of the mitochondrial D-loop. Although DNA from all the samples was suitable for PCR, the blood and hair samples provided a good quality DNA for restriction analysis of the PCR product compared with the buccal swab and urine samples. In the present study, hair samples proved to be a good source of genomic DNA for PCR-based methods. Hence, DNA of hair samples can also be used for the genomic disorder analysis in addition to the forensic analysis as a result of the ease of sample collection in a noninvasive manner, lower sample volume requirements, and good storage capability.  相似文献   

4.
Samples for forensic DNA analysis are often collected from a wide variety of objects using cotton or nylon tipped swabs. Testing has shown that significant quantities of DNA are retained on the swab, however, and subsequently lost. When processing evidentiary samples, the recovery of the maximum amount of available DNA is critical, potentially dictating whether a usable profile can be derived from a piece of evidence or not. The QIAamp DNA Investigator extraction kit was used with its recommended protocol for swabs (one hour incubation at 56°C) as a baseline. Results indicate that over 50% of the recoverable DNA may be retained on the cotton swab tip, or otherwise lost, for both blood and buccal cell samples when using this protocol. The protocol’s incubation time and temperature were altered, as was incubating while shaking or stationary to test for increases in recovery efficiency. An additional step was then tested that included periodic re-suspension of the swab tip in the extraction buffer during incubation. Aliquots of liquid blood or a buccal cell suspension were deposited and dried on cotton swabs and compared with swab-less controls. The concentration of DNA in each extract was quantified and STR analysis was performed to assess the quality of the extracted DNA. Stationary incubations and those performed at 65°C did not result in significant gains in DNA yield. Samples incubated for 24 hours yielded less DNA. Increased yields were observed with three and 18 hour incubation periods. Increases in DNA yields were also observed using a swab re-suspension method for both cell types. The swab re-suspension method yielded an average two-fold increase in recovered DNA yield with buccal cells and an average three-fold increase with blood cells. These findings demonstrate that more of the DNA collected on swabs can be recovered with specific protocol alterations.  相似文献   

5.

Background

South Africa has high rates of HIV and HPV and high incidence and mortality from cervical cancer. However, cervical cancer is largely preventable when early screening and treatment are available. We estimate the costs and cost-effectiveness of conventional cytology (Pap), visual inspection with acetic acid (VIA) and HPV DNA testing for detecting cases of CIN2+ among HIV-infected women currently taking antiretroviral treatment at a public HIV clinic in Johannesburg, South Africa.

Methods

Method effectiveness was derived from a validation study completed at the clinic. Costs were estimated from the provider perspective using micro-costing between June 2013-April 2014. Capital costs were annualized using a discount rate of 3%. Two different service volume scenarios were considered. Threshold analysis was used to explore the potential for reducing the cost of HPV DNA testing.

Results

VIA was least costly in both scenarios. In the higher volume scenario, the average cost per procedure was US$ 3.67 for VIA, US$ 8.17 for Pap and US$ 54.34 for HPV DNA. Colposcopic biopsies cost on average US$ 67.71 per procedure. VIA was least sensitive but most cost-effective at US$ 17.05 per true CIN2+ case detected. The cost per case detected for Pap testing was US$ 130.63 using a conventional definition for positive results and US$ 187.52 using a more conservative definition. HPV DNA testing was US$ 320.09 per case detected. Colposcopic biopsy costs largely drove the total and per case costs. A 71% reduction in HPV DNA screening costs would make it competitive with the conservative Pap definition.

Conclusions

Women need access to services which meet their needs and address the burden of cervical dysplasia and cancer in this region. Although most cost-effective, VIA may require more frequent screening due to low sensitivity, an important consideration for an HIV-positive population with increased risk for disease progression.  相似文献   

6.
This study introduces a novel DNA sampling method in amphibians using skin swabs. We assessed the relevancy of skin swabs relevancy for genetic studies by amplifying a set of 17 microsatellite markers in the alpine newt Ichthyosaura alpestris, including 14 new polymorphic loci, and a set of 11 microsatellite markers in Hyla arborea, from DNA collected with buccal swabs (the standard swab method), dorsal skin swabs and ventral skin swabs. We tested for quality and quantity of collected DNA with each method by comparing electrophoresis migration patterns. The consistency between genotypes obtained from skin swabs and buccal swabs was assessed. Dorsal swabs performed better than ventral swabs in both species, possibly due to differences in skin structure. Skin swabbing proved to be a useful alternative to buccal swabbing for small or vulnerable animals: by drastically limiting handling, this method may improve the trade-off between the scientific value of collected data, individual welfare and species conservation. In addition, the 14 new polymorphic microsatellites for the alpine newt will increase the power of genetic studies in this species. In four populations from France (n=19-25), the number of alleles per locus varied from 2 to 16 and expected heterozygosities ranged from 0.04 to 0.91. Presence of null alleles was detected in two markers and two pairs displayed gametic disequilibrium. No locus appeared to be sex-linked.  相似文献   

7.
Abstract

Buccal cell samples are increasingly used in epidemiological studies as a source of genomic DNA. The accurate and precise quantitation of human DNA is critical for the optimal use of these samples. However, it is complicated by the presence of bacterial DNA and wide inter-individual variation in DNA concentration from buccal cell collections. The paper evaluated the use of ultraviolet light (UV) spectroscopy, Höechst (H33258) and PicoGreen? as measures of total DNA, and real-time quantitative polymerase chain reaction (PCR) as a measure of human amplifiable DNA in buccal samples. Using serially diluted white blood cell DNA samples (at a concentration range of 300 to 0.5?ng µl?1), UV spectroscopy showed the largest bias, followed by Höechst, especially for low concentrations. PicoGreen and real-time PCR provided the most accurate and precise estimates across the range of concentrations evaluated, although an increase in bias with decreasing concentrations was observed. The ratio of real-time PCR to PicoGreen provided a reasonable estimate of the percentage of human DNA in samples containing known mixtures of human and bacterial DNA. Quantification of buccal DNA from samples collected in a breast cancer case-control study by PicoGreen and real-time PCR indicated that cytobrush and mouthwash DNA samples contain similar percentages of human amplifiable DNA. Real-time PCR is recommended for the quantification of buccal cell DNA in epidemiological studies since it provides precise estimates of human amplifiable DNA across the wide range of DNA concentrations commonly observed in buccal cell DNA samples.  相似文献   

8.
Modern dog breeds possess large numbers of genetic diseases for which there are currently few candidate genes or diagnostic tests. Linkage of a microsatellite marker to a disease phenotype is often the only available tool to aid in the development of screening tests for disease carriers. Detection of linkage to a specific disease phenotype requires screening of large numbers of markers across known affected and unaffected animals. To establish high throughput genome scanning this study placed 100 canine microsatellite markers, arranged by fragment size and fluorescent dye label, into 12 PCR multiplexed panels. The highest degree of multiplexing was 11 markers per panel while the lowest was five markers per panel; each panel was run in one gel lane on automated DNA sequencers. Selection of the markers was based upon chromosomal or linkage group locations, degree of polymorphism, PCR multiplex compatibility and ease of interpretation. The marker set has an average spacing of 22.25 centiMorgan (cM). Marker polymorphism was evaluated across 28 American Kennel Club (AKC) recognized breeds. The utility of buccal swab vs. blood samples was also validated in this study as all template DNA was derived from swabs obtained and submitted by participating dog breeders and owners. The PCR multiplexed microsatellite panels and sampling method described in this report will provide investigators with a cost effective and expedient means of pursuing linkage studies of specific canine genetic diseases.  相似文献   

9.
ABSTRACT: BACKGROUND: DNA from buccal brush samples is being used for high-throughput analyses in a variety of applications, but the impact of sample type on genotyping success and downstream statistical analysis remains unclear. The objective of the current study was to determine laboratory predictors of genotyping failure among buccal DNA samples, and to evaluate the successfully genotyped results with respect to analytic quality control metrics. Sample and genotyping characteristics were compared between buccal and blood samples collected in the population-based Genetic and Environmental Risk Factors for Hemorrhagic Stroke (GERFHS) study (https://gerfhs.phs.wfubmc.edu/public/index.cfm). RESULTS: Seven-hundred eight (708) buccal and 142 blood DNA samples were analyzed for laboratory-based and analysis metrics. Overall genotyping failure rates were not statistically different between buccal (11.3%) and blood (7.0%, p = 0.18) samples; however, both the Contrast Quality Control (cQC) rate and the dynamic model (DM) call rates were lower among buccal DNA samples (p < 0.0001). The ratio of double-stranded to total DNA (ds/total ratio) in the buccal samples was the only laboratory characteristic predicting sample success (p < 0.0001). A threshold of at least 34% ds/total DNA provided specificity of 98.7% with a 90.5% negative predictive value for eliminating probable failures. After genotyping, median sample call rates (99.1% vs. 99.4%, p < 0.0001) and heterozygosity rates (25.6% vs. 25.7%, p = 0.006) were lower for buccal versus blood DNA samples, respectively, but absolute differences were small. Minor allele frequency differences from HapMap were smaller for buccal than blood samples, and both sample types demonstrated tight genotyping clusters, even for rare alleles. CONCLUSIONS: We identified a buccal sample characteristic, a ratio of ds/total DNA <34%, which distinguished buccal DNA samples likely to fail high-throughput genotyping. Applying this threshold, the quality of final genotyping resulting from buccal samples is somewhat lower, but compares favorably to blood. Caution is warranted if cases and controls have different sample types, but buccal samples provide comparable results to blood samples in large-scale genotyping analyses.  相似文献   

10.
Disease detection in historical samples currently relies on DNA extraction and amplification, or immunoassays. These techniques only establish pathogen presence rather than active disease. We report the first use of shotgun proteomics to detect the protein expression profile of buccal swabs and cloth samples from two 500-year-old Andean mummies. The profile of one of the mummies is consistent with immune system response to severe pulmonary bacterial infection at the time of death. Presence of a probably pathogenic Mycobacterium sp. in one buccal swab was confirmed by DNA amplification, sequencing, and phylogenetic analyses. Our study provides positive evidence of active pathogenic infection in an ancient sample for the first time. The protocol introduced here is less susceptible to contamination than DNA-based or immunoassay-based studies. In scarce forensic samples, shotgun proteomics narrows the range of pathogens to detect using DNA assays, reducing cost. This analytical technique can be broadly applied for detecting infection in ancient samples to answer questions on the historical ecology of specific pathogens, as well as in medico-legal cases when active pathogenic infection is suspected.  相似文献   

11.
Molecular and genetic studies of canine disease phenotypes can be limited by the amount of DNA available for analysis. New methods have been developed to amplify the genomic DNA of a species producing large quantities of DNA from small starting amounts. Whole genome amplification (WGA) of DNA is now being used in human studies, although this technique has not been applied extensively in veterinary research. We evaluated WGA of canine DNA for suitability in a range of molecular tests. DNA from 93 canine blood extracted and 18 buccal swab samples was subjected to WGA using the GenomiPhi kit (Amersham). Genomic DNA was compared with WGA product using a range of techniques, including reference strand-mediated conformation analysis, denaturing high-performance liquid chromatography analysis, microsatellite genotyping, direct DNA sequencing, and single nucleotide polymorphism allelic discrimination. All samples amplified well, giving an average yield of 3 mug of DNA from 2.5 ng of starting material. Extremely high levels of experimental reproducibility and concordance were observed between source and WGA DNA samples for all analyses used: greater than 95% for blood extracted DNA and greater than 80% for buccal swab DNA. These studies clearly demonstrate the usefulness of WGA of canine DNA as a means of increasing DNA quantities for canine studies. This technique will have major implications for future veterinary research.  相似文献   

12.
Buccal swabbing is a minimally invasive method to obtain DNA and biological material from humans and animals, including fish. Reports on buccal swabbing in fish are few and only for a limited number of species. Rainbow trout (Oncorhynchus mykiss) is an important animal model and because the yield of DNA may vary among and within different species in individuals of different sizes, it was selected as useful to optimize the buccal DNA collection in this species. Different storage methods were evaluated, aimed at DNA preservation by limiting DNA degradation and bacterial growth, using commonly available and inexpensive reagents. DNA quality was also tested by amplification of a single‐copy nuclear gene and a mitochondrial gene. The results suggest that ethanol is the best storage choice for buccal swab sampling in fish genetic studies, as well as suitable for small‐bodied rainbow trout.  相似文献   

13.
《Animal biotechnology》2013,24(2):223-235
ABSTRACT

Modern dog breeds possess large numbers of genetic diseases for which there are currently few candidate genes or diagnostic tests. Linkage of a microsatellite marker to a disease phenotype is often the only available tool to aid in the development of screening tests for disease carriers. Detection of linkage to a specific disease phenotype requires screening of large numbers of markers across known affected and unaffected animals. To establish high throughput genome scanning this study placed 100 canine microsatellite markers, arranged by fragment size and fluorescent dye label, into 12 PCR multiplexed panels. The highest degree of multiplexing was 11 markers per panel while the lowest was five markers per panel; each panel was run in one gel lane on automated DNA sequencers. Selection of the markers was based upon chromosomal or linkage group locations, degree of polymorphism, PCR multiplex compatibility and ease of interpretation. The marker set has an average spacing of 22.25?centiMorgan (cM). Marker polymorphism was evaluated across 28 American Kennel Club (AKC) recognized breeds. The utility of buccal swab vs. blood samples was also validated in this study as all template DNA was derived from swabs obtained and submitted by participating dog breeders and owners. The PCR multiplexed microsatellite panels and sampling method described in this report will provide investigators with a cost effective and expedient means of pursuing linkage studies of specific canine genetic diseases.  相似文献   

14.
Buccal cells are increasingly used as a source of quality DNA to improve participation rates in molecular studies. Here, three buccal cell collection protocols were compared to determine factors affecting the yield of cells, total DNA per sample, and DNA yield per cell. In addition, kinetic quantitative polymerase chain reaction (PCR) (TaqMan™) was used to quantify human DNA available for PCR. The method of collection used influenced the overall DNA yield per sample. The collection buffer used influenced the number of cells but not the overall DNA yield per sample. Repeated freezing and thawing did not affect overall DNA yield per sample, DNA yield per cell, or the total number of cells collected. Mouthwashes had the highest DNA yield per sample (20.8 µg) compared with cytobrush samples (1.9 µg from three cytobrushes) and tongue depressors (0.8 µg from three tongue depressors). However, mouthwash samples may contain significant non-human DNA and other contaminants that could interfere with some molecular studies. Spectrometry grossly overestimated the total DNA recovered from mouthwash samples compared with fluorometry or quantitative PCR.  相似文献   

15.
The dog is an attractive model for genetic studies of complex disease. With drafts of the canine genome complete, a large number of single-nucleotide polymorphisms (SNPs) that are potentially useful for gene-mapping studies and empirical estimations of canine diversity and linkage disequilibrium (LD) are now available. Unfortunately, most canine SNPs remain uncharacterized, and the amount and quality of DNA available from population-based samples are limited. We assessed how these real-world challenges influence automated SNP genotyping methods such as Illumina's GoldenGate assay. We examined 384 SNPs on canine chromosome 9 and successfully genotyped a minimum of 217 and a maximum of 275 SNPs using buccal swab samples for 181 dogs (86 beagles, 76 border collies, and 15 Australian shepherds). Call rates per SNP and sample averaged 97%, with reproducibility within and between analyses averaging 98%. The majority of these SNPs were polymorphic across all 3 breeds. We observed extensive LD, albeit less than reported for surveys using fewer dogs, consistent between breeds. Analyses of population substructure indicated that beagles are distinct from border collies and Australian shepherds. These results demonstrate the suitability of amplified canine buccal samples for high-throughput multiplex genotyping and confirm extensive LD in the dog.  相似文献   

16.

Background

To improve care for children in district hospitals in Kenya, a multifaceted approach employing guidelines, training, supervision, feedback, and facilitation was developed, for brevity called the Emergency Triage and Treatment Plus (ETAT+) strategy. We assessed the cost effectiveness of the ETAT+ strategy, in Kenyan hospitals. Further, we estimate the costs of scaling up the intervention to Kenya nationally and potential cost effectiveness at scale.

Methods and Findings

Our cost-effectiveness analysis from the provider''s perspective used data from a previously reported cluster randomized trial comparing the full ETAT+ strategy (n = 4 hospitals) with a partial intervention (n = 4 hospitals). Effectiveness was measured using 14 process measures that capture improvements in quality of care; their average was used as a summary measure of quality. Economic costs of the development and implementation of the intervention were determined (2009 US$). Incremental cost-effectiveness ratios were defined as the incremental cost per percentage improvement in (average) quality of care. Probabilistic sensitivity analysis was used to assess uncertainty. The cost per child admission was US$50.74 (95% CI 49.26–67.06) in intervention hospitals compared to US$31.1 (95% CI 30.67–47.18) in control hospitals. Each percentage improvement in average quality of care cost an additional US$0.79 (95% CI 0.19–2.31) per admitted child. The estimated annual cost of nationally scaling up the full intervention was US$3.6 million, approximately 0.6% of the annual child health budget in Kenya. A “what-if” analysis assuming conservative reductions in mortality suggests the incremental cost per disability adjusted life year (DALY) averted by scaling up would vary between US$39.8 and US$398.3.

Conclusion

Improving quality of care at scale nationally with the full ETAT+ strategy may be affordable for low income countries such as Kenya. Resultant plausible reductions in hospital mortality suggest the intervention could be cost-effective when compared to incremental cost-effectiveness ratios of other priority child health interventions. Please see later in the article for the Editors'' Summary  相似文献   

17.
Increasing demand and overfishing of high‐value species has promoted interest in both conservation and aquaculture initiatives supporting stock restoration programs for tropical sea cucumbers. Accordingly, there is a need for baseline information on the genetic structures and relatedness of sea cucumber populations to support sustainable implementation of mariculture and conservation programs, which often involve coastal communities in developing countries. Identification of a non‐destructive tissue sampling technique for sea cucumbers that allows extraction of high‐quality genomic DNA in a sustainable and culturally appropriate way is thus required. Six sampling techniques were assessed for their suitability to collect tissue for DNA extraction from sandfish (Holothuria scabra): core needle biopsy, punch biopsy, shave biopsy, buccal swab, anal swab, and evisceration. The quantity, quality, and purity of extracted DNA were compared to assess the relative merit of each sampling method. The swab biopsy method produced the best quality DNA agarose band image, and evisceration resulted in the highest yields of DNA, at an average of 525.9 (±98.0) μg g?1. However, when considering all criteria assessed, the swab biopsy methods (both buccal and anal) proved superior. Swabbing not only produced the best quality DNA agarose band image, it was also the only technique that produced DNA that amplified 100% of the time across both extraction protocols. We hope that the non‐destructive sampling techniques evaluated in this study provide a foundation for the genetic analysis of sea cucumber stocks to support their conservation and management.  相似文献   

18.
Buccal cells are increasingly used as a source of quality DNA to improve participation rates in molecular studies. Here, three buccal cell collection protocols were compared to determine factors affecting the yield of cells, total DNA per sample, and DNA yield per cell. In addition, kinetic quantitative polymerase chain reaction (PCR) (TaqMan?) was used to quantify human DNA available for PCR. The method of collection used influenced the overall DNA yield per sample. The collection buffer used influenced the number of cells but not the overall DNA yield per sample. Repeated freezing and thawing did not affect overall DNA yield per sample, DNA yield per cell, or the total number of cells collected. Mouthwashes had the highest DNA yield per sample (20.8 μg) compared with cytobrush samples (1.9 μg from three cytobrushes) and tongue depressors (0.8 μg from three tongue depressors). However, mouthwash samples may contain significant non-human DNA and other contaminants that could interfere with some molecular studies. Spectrometry grossly overestimated the total DNA recovered from mouthwash samples compared with fluorometry or quantitative PCR.  相似文献   

19.
Non-invasive DNA sampling is an important tool in amphibian conservation. Buccal swabs are nowadays replacing the wounding toe-clipping method. Skin and cloaca swabbing are even less invasive and easier to handle than buccal swabbing, but could result in contaminations of genetic material. Therefore, we test if external skin and cloaca swabs are as reliable as buccal swabs for genetic analysis of amphibians. We analysed eight microsatellite loci for the common frog (Rana temporaria, Linnaeus 1758) and compared genotyping results for buccal, skin and cloaca swabs regarding allelic dropouts and false alleles. Furthermore, we compared two DNA extraction methods regarding efficiency and cost. DNA quality and quantity (amplification success, genotyping error rate, in nanogram per microlitre) were comparable among DNA sources and extraction methods. However, skin and cloaca samples exhibited high degrees of contamination with foreign individuals, which was due to sample collection during mating season. Here, we established a simple low budget procedure to receive DNA of amphibians avoiding stressful buccal swabbing or harmful toe clipping. However, the possibility of contaminations of external swabs has to be considered.  相似文献   

20.
In molecular biology studies of Anura, nondestructive methods to obtain genetic material are needed as alternatives to toe clipping. This work evaluates a nondestructive method for sampling DNA from blood puncture, comparing the performance of three different extraction protocols (Qiagen Kit, Salting-out and Chelex). We collected 134 individuals of Eleutherodactylus johnstonei, extracting blood via puncture of the medial vein using commercial-grade glucometer lancets. We extracted 100-1880 ng DNA, finding no differences between the extraction protocols. We compared the quality of the resulting DNA through amplification and sequencing of the 16S mitochondrial gene. Amplification was successful for the three extraction protocols, although Chelex showed better performance, making it the most recommendable protocol for extraction of DNA from blood. The resulting sequences corresponded to those registered in the GenBank for this species. Additionally, we found no significant differences in survival or weight change between the individuals that were manipulated and a control group (mean survival 66.7% treated, 62.9% untreated). Data reveal that blood samples obtained by puncture are a convenient alternative to other tissues (phalange, buccal swab, liver) that have traditionally been used as DNA sources for anurans. The technique is applicable to small and large species, covering most anuran diversity, provides enough DNA for many genetic applications and produces no noticeable effect on the survival or performance, given that it does not affect the motor parts or the dexterity of the animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号